KR100892539B1 - Vehicle distance control method - Google Patents
Vehicle distance control method Download PDFInfo
- Publication number
- KR100892539B1 KR100892539B1 KR1020070127095A KR20070127095A KR100892539B1 KR 100892539 B1 KR100892539 B1 KR 100892539B1 KR 1020070127095 A KR1020070127095 A KR 1020070127095A KR 20070127095 A KR20070127095 A KR 20070127095A KR 100892539 B1 KR100892539 B1 KR 100892539B1
- Authority
- KR
- South Korea
- Prior art keywords
- vehicle
- distance
- coefficient
- speed
- transfer function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/105—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/408—Radar; Laser, e.g. lidar
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/804—Relative longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2754/00—Output or target parameters relating to objects
- B60W2754/10—Spatial relation or speed relative to objects
- B60W2754/30—Longitudinal distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/14—Cruise control
- B60Y2300/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Controls For Constant Speed Travelling (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
본 발명은 선행차량과 현재차량 각각의 차간거리 및 차량속도와 타임갭, 거리계수 및 속도계수를 이용하여 목표 차간거리와 목표 가속도를 설정하고, 그에 따라 현재차량의 구동력 또는 제동력을 조절하는 차량의 차간거리 제어방법으로서, 거리계수 및 속도계수는 차간거리 또는 차량속도 전달함수의 주요극점이 음의 실수 축 상에 존재하도록 선정되며, 선정된 거리계수 및 속도계수는 전달함수에 대입되고, 타임갭은 전달함수의 출력이 오버슈트가 발생되지 않도록 하는 값 중 최소값으로 선정되어, 군집차량 행렬시에도 제어의 이탈이 방지되며 충돌 완화를 위하여 별도의 제어기가 불필요하며, 제어 미정계수의 선정이 용이하고 정확해진다.The present invention sets the target distance and target acceleration by using the distance between the preceding vehicle and the current vehicle, the vehicle speed, the time gap, the distance coefficient and the speed coefficient, and adjusts the driving force or braking force of the current vehicle accordingly. As the distance control method, distance coefficient and speed coefficient are selected so that the main pole of the distance or vehicle speed transfer function exists on the negative real axis, and the selected distance coefficient and speed coefficient are substituted into the transfer function, and time gap Since the output of the transfer function is selected as the minimum value to prevent the overshoot from occurring, the deviation of control is prevented even in the cluster vehicle matrix, and a separate controller is not necessary to alleviate the collision, and it is easy to select an unknown control coefficient. To be accurate.
Description
본 발명은 선행차량을 레이더로 포착하여 상대거리와 상대속도를 측정하고 그에 따라 차량의 구동부와 제동부를 제어하여 차량이 적정거리와 적정속도로 주행할 수 있게끔 하는 차량의 차간거리 제어방법에 관한 것이다.The present invention relates to a vehicle inter-vehicle distance control method for capturing a preceding vehicle with a radar to measure a relative distance and a relative speed, and accordingly to control the driving unit and the braking unit of the vehicle so that the vehicle can travel at an appropriate distance and an appropriate speed. will be.
차량의 주행환경에 따라 또는 운전자의 성향에 따라 가속패들과 브레이크패들을 번갈아가며 밟는 것이 여의치 않을 경우가 있다. 이는 특히 정체구간이나 고속구간처럼 선행차량과 일정간격을 유지하며 운행할 경우 나타난다. 따라서 최근 차량에는 운전자가 굳이 패들을 밟지 않아도 선행차량과 안전거리를 유지하며 운행할 수 있도록 차간거리 제어시스템이 장착된다.Depending on the driving environment of the vehicle or the driver's inclination, it may not be possible to alternate between the acceleration paddles and the brake paddles. This is especially the case when driving at a certain distance from the preceding vehicle, such as a congestion section or a high-speed section. Therefore, in recent years, the vehicle is equipped with an inter-vehicle distance control system so that the driver can drive while maintaining a safe distance with the preceding vehicle without stepping on the paddle.
종래의 차간거리 제어방법은 순항제어(Cruise Control)로서 선행차량과의 관계를 고려치 않고 단순히 일정속도의 유지만이 가능하였으나, 최근에는 이에 나아가 구동 또는 제동을 적절히 반복함으로써 선행차량과의 관계를 고려하여 좀 더 능동적인 제어가 가능한 적응형 순항제어(ACC, Adaptive Cruise Control)방법이 이용된다.Conventional inter-vehicle distance control method is a cruise control (Cruise Control), it was possible to simply maintain a constant speed without considering the relationship with the preceding vehicle, but in recent years, the relationship with the preceding vehicle is improved by repeating the driving or braking properly. In consideration of this, an adaptive cruise control (ACC) method is used that enables more active control.
적응형 순항제어식 차간거리 제어방법은 차량의 전방에 마련된 레이더로부터 선행차량의 속도와 차간거리를 측정하고, 이를 현재차량의 속도와 비교하여 적당한 속도를 얻기 위하여 구동부나 제동부를 선택적으로 가동하는 방법이다. 이를 이용할 경우 운전자는 스티어링 조작만이 필요하며, 가감속은 컨트롤러에 의하여 선행차량과의 관계에서 자동제어된다. 이 경우 일반적으로 측정인자로는 선행차량과 현재차량 각각의 차간거리 및 차량속도, 미정계수로는 타임갭, 거리계수 및 속도계수를 이용하여 목표 차간거리와 목표 가속도를 설정하고, 그에 따라 현재차량의 구동력 또는 제동력을 조절한다.The adaptive cruise control inter-vehicle distance control method measures the speed and the inter-vehicle distance of the preceding vehicle from the radar provided in front of the vehicle, and selectively operates the driving unit or the braking unit to obtain an appropriate speed by comparing it with the speed of the current vehicle. to be. In this case, the driver needs only steering operation, and the acceleration / deceleration is automatically controlled in the relationship with the preceding vehicle by the controller. In this case, the measurement distance is generally set by using the distance between the preceding vehicle and the current vehicle, the vehicle speed, and the undefined coefficient by using the time gap, the distance coefficient, and the speed coefficient. Adjust the driving force or braking force.
도 1을 참고하여 일반적인 차간거리 제어방법을 살펴보면, 차량 전방의 레이더로부터 선행차량의 속도와 차간거리를 측정한 후, 컨트롤러에서 구동 또는 제동 신호를 생성한다. 구동부 엔진의 스로틀 밸브 또는 제동부의 브레이크는 선택적으로 작동되어 선행차량과 거리나 속도가 조절된다.Referring to FIG. 1, a general inter-vehicle distance control method is performed. After measuring the speed and the inter-vehicle distance of the preceding vehicle from the radar in front of the vehicle, the controller generates a driving or braking signal. The throttle valve of the drive engine or the brake of the brake is selectively operated to adjust the distance or speed with the preceding vehicle.
그러나 종래의 이러한 차간거리 제어방법은 다수의 차량이 줄지어 이동하는 군집구행이 이루어지는 경우, 선행차량의 급정거시 그 차간거리와 차량속도의 변화가 후방차량으로 증가하며 전파된다. 이 경우 전체 군집차량은 제어능력을 상실하고 후방차량은 추돌사고가 발생할 수 있다. 이를 도 2를 참고하여 살펴보면, 정상상태 추종(Steady-State Following)의 경우를 나타낸 것인데, 정상상태 추종이란, 차량간의 속도 차이가 거의 나지 않는 경우를 말한다. 이 경우 종래의 차간거리 제어방법을 사용하여 예측실험을 하면, 차간거리와 차량속도 변화의 폭이 점점 큰 폭으로 후방차량에 전파되어 결국 후방차량 중 언젠가는 제어가 불가능하여 전방차량과 추돌하는 경우가 발생되는 것을 볼 수 있다. 이는 종래의 차간거리 제어방법은 현재차량과 바로 앞의 선행차량과의 관계만을 고려한 결과로서, 제어시 고려사항에 군집주행 전체를 고려하지 않았기 때문이다.However, in the conventional method of controlling a distance between vehicles, when a group of vehicles are moved in line, a change in the distance between the vehicle and the vehicle speed is propagated to the rear vehicle when the preceding vehicle suddenly stops. In this case, the entire cluster vehicle loses control and the rear vehicle may crash. Referring to FIG. 2, the case of Steady-State Following is shown, and the steady state following means that there is almost no difference in speed between vehicles. In this case, when the prediction experiment is conducted by using the conventional inter-vehicle distance control method, the difference between the inter-vehicle distance and the speed of the vehicle propagates to the rear vehicle gradually and eventually collides with the front vehicle because it is impossible to control one day among the rear vehicles. You can see that is generated. This is because the conventional inter-vehicle distance control method only considers the relationship between the current vehicle and the preceding vehicle and does not consider the entire cluster driving in consideration of control.
종래의 차간거리 제어방법은 군집주행 전체를 고려하지 않아 안전성에 문제가 있었고, 이러한 충돌을 완화하기 위하여는 별도의 제어기가 필요하였으며, 거리나 속도계수 등의 미정계수의 튜닝시 단순 튜닝에 의존하여 적합한 제어를 위하여 많은 시간이 소요되는 문제가 있었다.The conventional inter-vehicle distance control method has a safety problem because it does not consider the entire group driving, and a separate controller is required to alleviate such collisions, and relying on simple tuning when tuning the unknown coefficients such as distance or speed coefficient There is a problem that takes a long time for proper control.
본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 차량의 군집주행시 안전성을 확보하며, 단시간에 정확한 제어기의 미정계수를 구하는데 그 목적이 있다.The present invention has been proposed in order to solve such a problem, and has the purpose of ensuring the safety when driving the vehicle cluster, and to obtain the unknown coefficient of the correct controller in a short time.
상기의 목적을 달성하기 위한 본 발명에 따른 차량의 차간거리 제어방법은, 선행차량과 현재차량 각각의 차간거리 및 차량속도와 타임갭, 거리계수 및 속도계수를 이용하여 목표 차간거리 와 목표 가속도를 설정하고, 그에 따라 현재차량의 구동력 또는 제동력을 조절하며,In order to achieve the above object, a method for controlling a distance between vehicles according to the present invention may be achieved by using a distance between a preceding vehicle and a current vehicle, a vehicle speed, a time gap, a distance coefficient, and a speed coefficient. Setting and adjust the driving or braking force of the current vehicle accordingly,
상기 거리계수 및 속도계수는 차간거리 또는 차량속도 전달함수의 주요극점이 실수 축에 존재할 조건에서 선정되고, 타임갭은 선정된 거리계수 및 속도계수가 대입된 전달함수의 출력이 오버슈트가 발생되지 않도록 하는 최소값으로 선정된다.The distance coefficient and the speed coefficient are selected under the condition that the main pole of the inter-vehicle distance or the vehicle speed transfer function exists on the real axis, and the time gap is set so that the output of the transfer function in which the selected distance coefficient and the speed coefficient are substituted does not cause an overshoot. Is selected as the minimum value.
상기 선정된 거리계수, 속도계수 및 타임갭은 데이터 맵으로 구성되며, 차량 실내에는 타임갭 조절부가 마련되어, 탑승자의 타임갭 조절시 데이터 맵으로부터 그에 대응되는 거리계수 및 속도계수를 도출하여 목표 차간거리와 목표 가속도를 설정하게 됨이 바람직하다.The selected distance coefficient, speed coefficient, and time gap are composed of a data map, and a time gap controller is provided in a vehicle interior, and the corresponding distance and speed coefficients are derived from the data map when adjusting the time gap of the occupant. It is desirable to set the target acceleration.
상기 각 전달함수는 선행차량을 입력으로, 현재차량을 출력으로 하여 차간거리 또는 차량속도의 전파경향을 나타내며, 분모와 분자 각각의 계수로는 타임갭, 거리계수 및 속도계수로 구성됨이 바람직하다.Each of the transfer functions represents a propagation tendency of the inter-vehicle distance or vehicle speed by inputting the preceding vehicle and the output of the current vehicle, and the denominator and the respective coefficients are preferably composed of a time gap, a distance coefficient, and a speed coefficient.
상술한 바와 같은 구성으로 이루어진 차량의 차간거리 제어방법에 따르면, 차량의 군집주행시에도 후방차량이 이에 대비하여 차간거리와 차량속도 변화의 전파가 크지 않고, 후방차량의 추돌이 방지된다. 또한, 충돌 완화를 위하여 별도의 제어기가 불필요하며, 제어 미정계수의 선정이 용이하고 정확해진다.According to the method for controlling the inter-vehicle distance of the vehicle having the above-described configuration, the rear-vehicle does not have large propagation of the change in the inter-vehicle distance and the speed of the vehicle, and the collision of the rear-vehicle is prevented even when the vehicle is clustered. In addition, a separate controller is not required to alleviate the collision, and selection of control unknowns becomes easy and accurate.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 차량의 차간거리 제어방법에 대하여 살펴본다.Hereinafter, a method for controlling a distance between vehicles according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
도 3은 차량의 군집주행시 그 주행 요소를 전달함수로 표현하기 위하여 각 차량을 배치한 것으로, 현재차량은 vehicle(i)이다. vehicle(i-1)은 선행차량, vehicle(i+1)은 후방차량이다. C 는 차간거리, x 는 차량 위치, v 는 차량속도, a 는 차량가속도이다.FIG. 3 shows each vehicle in order to express the driving element as a transfer function when the vehicle is clustered. The current vehicle is vehicle (i). vehicle (i-1) is a preceding vehicle and vehicle (i + 1) is a rear vehicle. C is the vehicle distance, x is the vehicle position, v is the vehicle speed, and a is the vehicle acceleration.
일반적으로 현재차량의 차간거리와 상대속도는 수식 1, 목표 차간거리와 목표 가속도는 수식 2로 정의된다. 차량 모델은 목표 가속도에 대한 차량의 가속도 특성으로서 수식 3으로 정의된다. 또한 수식 3의 q 는 차량의 가속도 변화에 대한 응답특성(시정수)으로서 실험적으로 구해진다.In general, the distance and relative speed of the current vehicle are defined by
[수식 1][Equation 1]
[수식 2][Formula 2]
[수식 3][Equation 3]
, ,
상기 수식 1 내지 3을 정리하여 라플라스 변환시 일반적으로 차간거리의 전달함수는 수식 4와 같이 나타내어진다. 여기서 k1은 거리계수이며, k2는 속도계수이고, τ는 타임갭이다. 차간거리 전달함수는 선행차량의 앞차(즉, 선행차량보다 더 선행하는 차량)와의 거리를 입력으로 하고, 현재차량의 앞차(즉, 상기 선행차량)와의 거리를 출력으로 하는 것으로서, 차간거리의 전파경향을 대표한다. 수식 2에서 살펴보면 목표 가속도 a는 k1과 k2에 의하여 조율되며, 목표 차간거리는 τ에 의하여 결정된다. 목표 차간거리는 목표 가속도에 영향을 미치므로 결국, k1, k2 및 τ가 목표 가속도의 결정인자라 볼 수 있다.In general, the transfer function of the inter-vehicle distance in Laplace transform is summarized as in
[수식 4][Equation 4]
차량의 좀 더 안전한 제어를 위하여는 차간거리뿐만 아니라 차량속도의 전달함수 역시 필요하다. 따라서 상기 수식 1 내지 3으로부터 전달함수를 유도할 필요가 있다. 수식 1 내지 3으로부터 x에 관한 수식 5가 도출되며, 수식 5로부터 v에 관한 수식 6이 얻어진다. 수식 6을 정리하여 라플라스변환시 차량속도의 전달함수인 수식 7이 얻어진다. 수식 7의 차량속도 전달함수는 선행차량의 차량속도를 입력으로 하고 현재차량의 차량속도를 출력으로 하여 차량속도의 전파경향을 나타낸다.For safer control of the vehicle, not only the distance between vehicles but also the transfer function of the vehicle speed is required. Therefore, it is necessary to derive the transfer function from
[수식 5][Equation 5]
[수식 6][Equation 6]
[수식 7][Formula 7]
상기 수식 4와 수식 7을 비교하여 보면, 각 전달함수는 선행차량을 입력으로, 현재차량을 출력으로 하여 차간거리 또는 차량속도의 전파경향을 나타내며, 분모와 분자 각각의 계수로는 타임갭, 거리계수 및 속도계수로 구성되고, 차간거리의 전달함수와 차량속도의 전달함수는 같다는 것을 알 수 있다. 결국, 하나의 대표적인 전달함수를 이용하여 차간거리와 속도 모두 제어가 가능해진다.Comparing
현재차량의 차간거리와 차량속도를 제어함에 있어서, 군집차량 행렬이나 선 행차량의 급정거를 고려한다면, 그 경우에 있어서 차량이 제어가능 영역의 내부에 있도록 함은 매우 중요하다. 이는 오버슈팅을 방지할 필요가 있다는 것이고, 따라서 전달함수의 중요극점(Dominant Pole)이 음의 실수 축 상에 위치할 경우 시스템은 안정화되고 오버슈팅이 일어나지 않는다고 볼 수 있으므로, 상기 전달함수를 그러한 조건하에 둔다면, 차간거리와 차량속도가 오버슈팅 없이 원하는 목표치에 안정적으로 도달할 수 있다. 상기 전달함수는 수식 8과 같이 G1과 G2로 나뉘고, 각각의 분모에는 시정수으로 주어지는 q와 미정계수인 k1 및 k2가 변수로 있다. q는 기지의 값이므로 k1과 k2를 상기 오버슈팅이 일어나지 않는 조건상에서 구한다면 일정한 범위의 k1 및 k2의 범위가 도출된다.In controlling the inter-vehicle distance and vehicle speed of the current vehicle, it is very important to ensure that the vehicle is inside the controllable area in such a case, in consideration of the sudden stopping of the group vehicle matrix or the preceding vehicle. This means that there is a need to prevent overshooting, so if the dominant pole of the transfer function is located on the negative real axis, the system will be stabilized and no overshooting will occur. If left underneath, the inter-vehicle distance and vehicle speed can reliably reach the desired target without overshooting. The transfer function is divided into G1 and G2 as shown in Equation 8, and each denominator includes q, which is a time constant, and k1 and k2, which are unknown coefficients, as variables. Since q is a known value, if k1 and k2 are obtained on the condition that the overshooting does not occur, a range of k1 and k2 in a predetermined range is derived.
수식 8의 전달함수의 주요극점이 음의 실수 축 상에 있을 조건은 분모를 이용하여 카르타노의 3차 방정식해법으로 수식 9와 같이 구할 수 있다.The condition that the main pole of the transfer function of Equation 8 is on the negative real axis can be obtained as shown in Equation 9 by Cartano's third-order equation solution using the denominator.
[수식 8]Equation 8
[수식 9][Equation 9]
도 4는 상기 조건을 만족시키는 k1 및 k2의 범위를 나타낸 그래프로서, Area(1)은 Routh 판별법에 의할 때 극점이 양수인 영역이며, Area(2)는 2개의 주요극점이 허근인 영역이고, Area(3)은 주요극점이 모두 음의 실근이고, Area(4)는 1개의 주요극점이 음의 실근인 범위로서, Area(3)과 (4) 범위의 k1과 k2가 선택될 경우 오버슈팅이 방지된다. 예를 들어 k1이 0.1일 때, k2가 -0.5이면 오버슈팅이 일어나지만, -1이면 오버슈팅이 일어나지 않아 현재차량이 선행차량과 충돌되지 않는다. 물론, τ값 역시 고려가 필요하다.Fig. 4 is a graph showing the ranges of k1 and k2 satisfying the above conditions, where Area (1) is an area having a positive pole when the Routh determination method is used, and Area (2) is an area where two main poles are empty. Area (3) is a negative real root of all major poles, and Area (4) is a negative real root of one major pole. Overshooting when k1 and k2 in the ranges (3) and (4) are selected. This is avoided. For example, when k1 is 0.1, if k2 is -0.5, overshooting occurs, but if -1, overshooting does not occur and the current vehicle does not collide with the preceding vehicle. Of course, the value of τ also needs to be considered.
k1과 k2가 상기 조건을 만족하여도 때에 따라서는 τ값에 의하여도 오버슈팅 여부가 결정될 수 있다. τ의 결정은 각각의 k1 및 k2조합에 따른 G(s)의 단위계단응답(step response)을 살펴보면 알 수 있다. 상기 Area(3)과 (4)의 범위내의 k1 및 k2의 조합을 G(s)에 대입한 후, 각각의 단위계단응답에서 오버슈팅이 발생되지 않는 최소의 τ를 연속된 시뮬레이션을 통하여 얻을 수 있다.When k1 and k2 satisfy the above conditions, overshooting may also be determined based on the value of τ. The determination of τ can be found by looking at the step response of G (s) for each k1 and k2 combination. After substituting a combination of k1 and k2 within the ranges of Areas (3) and (4) into G (s), a minimum τ in which no overshooting occurs in each unit step response can be obtained through continuous simulation. have.
도 5는 x축을 k1으로, y축을 k2로, z축을 τ로 하여 각각의 상관관계를 나타낸 3차원 그래프이다. 이를 살펴보면, x-y 평면은 k1과 k2로서 상기 Area(3)과 (4)의 영역에만 존재하고, τ 역시 k1과 k2가 존재하는 부분에만 z축 상으로 존재하게 된다.FIG. 5 is a three-dimensional graph showing correlations with x-axis as k1, y-axis as k2 and z-axis as τ. Looking at this, the x-y plane exists only in the areas of the areas (3) and (4) as k1 and k2, and τ also exists on the z-axis only in the areas where k1 and k2 exist.
상기한 과정을 간략히 살펴보면, 차량의 차간거리 제어방법은 최종적으로 목표 차간거리와 목표 가속도가 필요한데, 이를 구하기 위하여는 k1(거리계수), k2(속도계수) 및 τ(타임갭) 값이 필요하다. 차간거리 전달함수나 차량속도 전달함수의 출력이 오버슈팅되지 않아야 현재차량이 선행차량에 충돌되지 않으므로 중요극점이 음의 실수 축 상에 있어야하고, 그 조건을 만족하는 k1과 k2를 구하고, 이 를 전달함수에 대입하여 실제 전달함수의 단위계단응답이 오버슈팅되지 않도록 하는 최소의 τ값을 찾는다. 구해진 k1, k2 및 τ값은 측정값과 같이 상기 수식 2에 대입되어 목표 차간거리와 목표 가속도가 도출되며, 차량의 구동부나 제동부에 신호가 보내진다.Briefly looking at the above process, the distance control method of the vehicle finally needs a target distance and acceleration, and to obtain this, k1 (distance coefficient), k2 (speed coefficient) and τ (time gap) values are required. . Since the current vehicle does not collide with the preceding vehicle unless the output of the inter-vehicle transfer function or vehicle speed transfer function is overshooted, the critical pole must be on the negative real axis, and k1 and k2 satisfying the condition are obtained. Substitute the transfer function to find the minimum value of τ that will not overshoot the actual step function response. The obtained k1, k2, and τ values are substituted into
도 6은 상기 방식에 의하여 도출된 k1, k2 및 τ의 상관관계를 보여주는 데이터 맵이다. 예를 들어 τ가 1.12이면 k1이 0.20이고 k2가 -1.10이다. 이를 이용할 경우 차량의 탑승자가 τ값을 조정하면, k1과 k2 값이 도출되고, 이를 이용하여 상기 방식으로 차간거리를 제어할 수 있다.6 is a data map showing the correlation of k1, k2 and τ derived by the above scheme. For example, when τ is 1.12, k1 is 0.20 and k2 is -1.10. In this case, when the occupant of the vehicle adjusts the τ value, the k1 and k2 values are derived, and the inter-vehicle distance can be controlled in this manner.
본 발명은 특정한 실시 예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 정신이나 분야를 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진자에게 있어서 자명할 것이다.While the invention has been shown and described with respect to particular embodiments, it will be appreciated that the invention can be variously modified and modified without departing from the spirit or scope of the invention as provided by the following claims. It will be apparent to those of ordinary skill in Esau.
도 1은 종래의 일 실시 예에 따른 차간거리 제어방법의 개념도.1 is a conceptual diagram of a distance control method according to a conventional embodiment.
도 2는 종래의 일 실시 예에 따른 차간거리 제어방법의 문제점을 나타낸 도면.2 is a view showing a problem of the inter-vehicle distance control method according to an embodiment of the prior art.
도 3은 본 발명의 일 실시 예에 따른 차간거리 제어방법의 전달함수를 구성하기 위한 개념도.3 is a conceptual diagram for configuring a transfer function of the inter-vehicle distance control method according to an embodiment of the present invention.
도 4는 본 발명의 일 실시 예에 따른 차간거리 제어방법의 거리계수(k1) 및 속도계수(k2)의 선정 범위를 나타낸 그래프.4 is a graph showing a range of selection of the distance coefficient k1 and the speed coefficient k2 of the inter-vehicle distance control method according to an embodiment of the present invention.
도 5는 본 발명의 일 실시 예에 따른 차간거리 제어방법의 거리계수(k1), 속도계수(k2) 및 타임갭(τ)의 관계를 나타낸 그래프.5 is a graph showing the relationship between the distance coefficient k1, the speed coefficient k2 and the time gap τ of the inter-vehicle distance control method according to an embodiment of the present invention.
도 6은 본 발명의 일 실시 예에 따른 차간거리 제어방법의 데이터 맵.6 is a data map of the inter-vehicle distance control method according to an embodiment of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070127095A KR100892539B1 (en) | 2007-12-07 | 2007-12-07 | Vehicle distance control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070127095A KR100892539B1 (en) | 2007-12-07 | 2007-12-07 | Vehicle distance control method |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100892539B1 true KR100892539B1 (en) | 2009-04-09 |
Family
ID=40757511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070127095A Active KR100892539B1 (en) | 2007-12-07 | 2007-12-07 | Vehicle distance control method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100892539B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101478063B1 (en) * | 2012-11-06 | 2015-01-02 | 주식회사 만도 | Adaptive cruise control system and control method thereof |
WO2017022881A1 (en) * | 2015-08-03 | 2017-02-09 | 엘지전자 주식회사 | Vehicle and control method therefor |
CN107380165A (en) * | 2017-07-27 | 2017-11-24 | 浙江工业大学 | Vehicle distance control method in vehicle self-adaptive speed change cruise process |
KR20190043416A (en) | 2017-10-18 | 2019-04-26 | 현대자동차주식회사 | Apparatus and method for controlling creep torque of eco vehicle |
US11247677B2 (en) * | 2017-08-23 | 2022-02-15 | Hitachi Astemo, Ltd. | Vehicle control device for maintaining inter-vehicle spacing including during merging |
CN114179802A (en) * | 2021-12-01 | 2022-03-15 | 中国科学院计算技术研究所 | Vehicle cooperation self-adaptive cruise control method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980080854A (en) * | 1997-03-31 | 1998-11-25 | 하나와기이찌 | Vehicle tracking control device |
JP2000355235A (en) | 1999-06-15 | 2000-12-26 | Nissan Motor Co Ltd | Preceding vehicle follow-up controller |
JP2003260956A (en) | 2002-03-08 | 2003-09-16 | Nissan Motor Co Ltd | Control device for following preceding vehicle |
KR20070064490A (en) * | 2005-12-17 | 2007-06-21 | 현대자동차주식회사 | Vehicle distance control system and its control method |
-
2007
- 2007-12-07 KR KR1020070127095A patent/KR100892539B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980080854A (en) * | 1997-03-31 | 1998-11-25 | 하나와기이찌 | Vehicle tracking control device |
JP2000355235A (en) | 1999-06-15 | 2000-12-26 | Nissan Motor Co Ltd | Preceding vehicle follow-up controller |
JP2003260956A (en) | 2002-03-08 | 2003-09-16 | Nissan Motor Co Ltd | Control device for following preceding vehicle |
KR20070064490A (en) * | 2005-12-17 | 2007-06-21 | 현대자동차주식회사 | Vehicle distance control system and its control method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101478063B1 (en) * | 2012-11-06 | 2015-01-02 | 주식회사 만도 | Adaptive cruise control system and control method thereof |
WO2017022881A1 (en) * | 2015-08-03 | 2017-02-09 | 엘지전자 주식회사 | Vehicle and control method therefor |
CN107380165A (en) * | 2017-07-27 | 2017-11-24 | 浙江工业大学 | Vehicle distance control method in vehicle self-adaptive speed change cruise process |
US11247677B2 (en) * | 2017-08-23 | 2022-02-15 | Hitachi Astemo, Ltd. | Vehicle control device for maintaining inter-vehicle spacing including during merging |
KR20190043416A (en) | 2017-10-18 | 2019-04-26 | 현대자동차주식회사 | Apparatus and method for controlling creep torque of eco vehicle |
US10814874B2 (en) | 2017-10-18 | 2020-10-27 | Hyundai Motor Company | Apparatus and method for controlling creep torque in environmentally-friendly vehicle |
CN114179802A (en) * | 2021-12-01 | 2022-03-15 | 中国科学院计算技术研究所 | Vehicle cooperation self-adaptive cruise control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100892539B1 (en) | Vehicle distance control method | |
KR100723277B1 (en) | Method and apparatus for controlling the running speed of motor vehicles | |
CN102649431B (en) | Method for operating a driver assistance system of a motor vehicle and driver assistance system | |
US7987038B2 (en) | Cruise control | |
EP2899087B1 (en) | Vehicle driving behavior predicting device | |
US20190232970A1 (en) | Acceleration and deceleration control system and acceleration and deceleration control method | |
CN104670235A (en) | Implementing method for front vehicle following | |
US9298187B2 (en) | Vehicle travel assist apparatus | |
US20230242141A1 (en) | Driving assistance device, driving assistance method, and storage medium | |
JP5100426B2 (en) | Follow-up control device | |
US12337913B2 (en) | Driving control apparatus and driving control method | |
US7177748B2 (en) | Device and method for controlling a motor vehicle travel speed | |
US7472018B2 (en) | Vehicle guidance system | |
US10955849B2 (en) | Automatic driving system | |
US10124751B2 (en) | Electronic control unit | |
JP2006044590A (en) | Vehicle deceleration control device | |
JP4720166B2 (en) | Vehicle speed detection device | |
JP2004322729A (en) | Travel control device | |
US20240083426A1 (en) | Control calculation apparatus and control calculation method | |
CN116215522A (en) | Lane-Based Vehicle Operation | |
JP2020044957A (en) | Steering control system | |
JPH1191398A (en) | Inter-vehicle distance control device | |
JP2007223489A (en) | Traveling controller for vehicle | |
JP7550738B2 (en) | Driving assistance device, driving assistance method, and program | |
JP7567700B2 (en) | Trajectory processing system, trajectory processing device, trajectory processing method, trajectory processing program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20071207 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20081128 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20090227 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20090401 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20090401 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment | ||
PR1001 | Payment of annual fee |
Payment date: 20120330 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment | ||
PR1001 | Payment of annual fee |
Payment date: 20130329 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20140331 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20150331 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20160331 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20170331 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20180329 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20180329 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190327 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20190327 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20200330 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20210329 Start annual number: 13 End annual number: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20220328 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20230327 Start annual number: 15 End annual number: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20240325 Start annual number: 16 End annual number: 16 |