KR100880513B1 - Method for producing catalyst for high temperature desulfurization using blast furnace slag - Google Patents
Method for producing catalyst for high temperature desulfurization using blast furnace slag Download PDFInfo
- Publication number
- KR100880513B1 KR100880513B1 KR1020070107186A KR20070107186A KR100880513B1 KR 100880513 B1 KR100880513 B1 KR 100880513B1 KR 1020070107186 A KR1020070107186 A KR 1020070107186A KR 20070107186 A KR20070107186 A KR 20070107186A KR 100880513 B1 KR100880513 B1 KR 100880513B1
- Authority
- KR
- South Korea
- Prior art keywords
- desulfurization
- blast furnace
- catalyst
- high temperature
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006477 desulfuration reaction Methods 0.000 title claims abstract description 50
- 230000023556 desulfurization Effects 0.000 title claims abstract description 50
- 239000002893 slag Substances 0.000 title claims abstract description 49
- 239000003054 catalyst Substances 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 90
- 238000006243 chemical reaction Methods 0.000 claims abstract description 50
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 48
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 47
- 238000004070 electrodeposition Methods 0.000 claims abstract description 37
- -1 aluminum ions Chemical class 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000011268 mixed slurry Substances 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 239000000843 powder Substances 0.000 claims abstract description 15
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000004202 carbamide Substances 0.000 claims abstract description 14
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000001914 filtration Methods 0.000 claims abstract description 6
- 238000001035 drying Methods 0.000 claims abstract description 5
- 238000005406 washing Methods 0.000 claims abstract description 5
- 239000000654 additive Substances 0.000 claims abstract description 4
- 230000000996 additive effect Effects 0.000 claims abstract description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 3
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 230000000694 effects Effects 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 7
- 239000006227 byproduct Substances 0.000 abstract description 4
- 238000001179 sorption measurement Methods 0.000 abstract description 4
- 238000000151 deposition Methods 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002659 electrodeposit Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- CHLJYJMHKCYDMM-UHFFFAOYSA-N alumane;nickel Chemical compound [AlH3].[Ni].[Ni] CHLJYJMHKCYDMM-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/009—Preparation by separation, e.g. by filtration, decantation, screening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
본 발명은 고로 슬래그를 이용한 고온 탈황용 촉매의 제조방법에 관한 것으로, 용광로에서 생산되는 부산물인 고온 슬래그를 미분화하여 고온에서 탈황하는데 사용하도록 슬래그 분말 표면에 니켈과 알루미늄을 전착 반응시켜, 촉매 표면에서 화학적인 흡착에 의한 효과를 증진 및 개선시킬 수 있으며, 고온에서의 탈황 성능이 우수할 뿐만 아니라, 화학적 안정성을 향상시킬 수 있는 고로 슬래그를 이용한 고온 탈황용 촉매의 제조방법을 제공하기 위한 것으로서, 그 기술적 구성은 고온 탈황용으로 사용되는 촉매의 제조방법에 있어서, 니켈 및 알루미늄 이온이 각각 3~5mol%로 일대일 제조된 염수 용액에 고로 슬래그 분말 325메쉬(mesh)를 혼합하는 단계; 상기 니켈과 알루미늄 및 고로 슬래그 분말이 혼합된 혼합물에 반응 첨가제로 우레아를 첨가하는 단계; 상기 우레아가 첨가된 혼합 슬러리에 암모니아수를 첨가한 후 혼합 슬러리의 농도를 9~10pH로 조절하는 단계; 반응 온도를 80 ℃로 유지하는 단계; 제작된 전착 탈황용 촉매를 수세 후 여과 및 건조하는 단계; 및 건조된 전착 탈황용 촉매를 900℃ 이상에서 열처리하는 단계; 를 포함하여 이루어지는 것을 특징으로 한다.The present invention relates to a method for the preparation of a catalyst for high temperature desulfurization using blast furnace slag, by depositing nickel and aluminum on the surface of the slag powder to be used for desulfurization at high temperature by micronizing the high temperature slag which is a by-product produced in the blast furnace. The present invention provides a method for preparing a catalyst for high temperature desulfurization using blast furnace slag that can enhance and improve the effect of chemical adsorption, and has excellent desulfurization performance at high temperature and can also improve chemical stability. Technical composition is a method for producing a catalyst used for high temperature desulfurization, comprising: mixing blast furnace slag powder 325 mesh (mesh) in a saline solution prepared in one to one with nickel and aluminum ions 3 to 5 mol%; Adding urea as a reaction additive to the mixture of nickel, aluminum, and blast furnace slag powder; Adding ammonia water to the mixed slurry to which the urea is added, and then adjusting the concentration of the mixed slurry to 9 to 10 pH; Maintaining the reaction temperature at 80 ° C .; Filtering and drying the produced electrodeposition desulfurization catalyst after washing with water; And heat treating the dried electrodeposition desulfurization catalyst at 900 ° C. or higher. Characterized in that comprises a.
Description
본 발명은 고로 슬래그를 이용한 고온 탈황용 촉매의 제조방법에 관한 것으로서, 보다 상세하게는 용광로에서 생산되는 부산물인 고온 슬래그를 미분화하여 고온에서 탈황하는데 사용하도록 슬래그 분말 표면에 니켈과 알루미늄을 전착 반응시켜, 촉매 표면에서 화학적인 흡착에 의한 효과를 증진 및 개선시킬 수 있는 고로 슬래그를 이용한 고온 탈황용 촉매의 제조방법에 관한 것이다.The present invention relates to a method for producing a catalyst for high temperature desulfurization using blast furnace slag, and more particularly, by electrodepositing nickel and aluminum on the surface of slag powder to be used for desulfurization at high temperature by micronizing high temperature slag which is a byproduct produced in a blast furnace. In addition, the present invention relates to a method for producing a catalyst for high temperature desulfurization using blast furnace slag that can enhance and improve the effect of chemical adsorption on the surface of a catalyst.
일반적으로, 탈황용 촉매 담체용으로 감마 알루미나가 널리 사용되고 있으며, 촉매 효율을 증대시키기 위해서 활성조제가 첨가되고 있다.In general, gamma alumina is widely used for desulfurization catalyst carriers, and active aids are added to increase catalyst efficiency.
여기서, 활성조제의 첨가법으로는 함침법이 많이 이용되고 있으며, 함침법은 수용성염을 물에 용해하여 수용액으로 제조하고, 여기에 감마 알루미나를 함침하여 활성조제를 첨가하는 기술 및 방법이다.Here, the impregnation method is used a lot of methods of adding the active aid, the impregnation method is a technique and method for dissolving a water-soluble salt in water to prepare an aqueous solution, and impregnating gamma alumina to add an active aid.
그 대표적인 방법으로는 일본 공개특허공보 평7-31878호에 게시하고 있는 바와 같이, 알루미나, 마그네시아 및 실리카를 함유하는 촉매 담체에 수소화 활성을 갖는 금속 성분을 담지하여 촉매를 제조하는 방법이 있다.As a representative method thereof, there is a method of preparing a catalyst by supporting a metal component having hydrogenation activity on a catalyst carrier containing alumina, magnesia and silica, as disclosed in JP-A-7-31878.
또 다른 방법으로, 무기산화물의 담체 상에 몰리브덴을 산화물로 환산하여 5~20 중량%를 함유시켜 건조 및 소성 후에 니켈 등의 기타 물질을 첨가하여 15~350℃에서 다시 소성하는 방법으로 탈황용 촉매 재료를 제조하는 방법이 일본 특허공개공보 평9-164334호에 제안된바 있다.In another method, 5 to 20% by weight of molybdenum in terms of oxides on a carrier of the inorganic oxide is contained, and after drying and firing, another material such as nickel is added and calcined again at 15 to 350 ° C. for a catalyst for desulfurization. A method for producing a material has been proposed in Japanese Patent Laid-Open No. 9-164334.
여기서, 촉매 담체에 이용되는 감마 알루미나는 불완전한 결정구조에서 스피넬 구조내에 산소 이온이 확산됨에 따라 원자의 재배열이 발생되어 비표면적이 급격히 감소되어 촉매의 특성 및 활성이 저하된다는 문제점이 있었다.Here, the gamma alumina used in the catalyst carrier has a problem in that as the oxygen ions diffuse into the spinel structure in an incomplete crystal structure, rearrangement of atoms occurs, and the specific surface area is drastically reduced, thereby degrading the characteristics and activity of the catalyst.
상술한 바와 같은 문제점으로 인해 촉매 반응 시 반응 생성물의 수율이 감소되고, 공정의 안정성이 저하되는 문제점이 있으며, 특히 탈황 처리공정에서 400℃ 이상의 고온에서는 현저한 탈황 수율이 감소하는 경향을 보이는 문제점이 있어 일반적으로 300℃ 전, 후에서 탈황 처리공정을 하고 있는 실정이다.Due to the problems described above, there is a problem in that the yield of the reaction product is reduced during the catalytic reaction and the stability of the process is lowered. In particular, there is a problem that the desulfurization yield tends to be decreased at a high temperature of 400 ° C. or higher in the desulfurization process. Generally, the desulfurization treatment is performed before and after 300 ° C.
본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 용광로에서 생산되는 부산물인 고온 슬래그를 미분화하여 고온에서 탈황하는데 사용하도록 슬래그 분말 표면에 니켈과 알루미늄을 전착 반응시켜, 촉매 표면에서 화학적인 흡착에 의한 효과를 증진 및 개선시킬 수 있으며, 고온에서의 탈황 성능이 우수할 뿐만 아니라, 화학적 안정성을 향상시킬 수 있는 고로 슬래그를 이용한 고온 탈황용 촉매의 제조방법을 제공하는 것을 목적으로 한다.The present invention has been made in order to solve the problems described above, by depositing nickel and aluminum on the surface of the slag powder to be used to desulfurize the high temperature slag as a by-product produced in the blast furnace at high temperature, the chemical on the catalyst surface It is an object of the present invention to provide a method for producing a catalyst for high temperature desulfurization using blast furnace slag which can enhance and improve the effect by adsorption, which is excellent in desulfurization performance at high temperature, and which can improve chemical stability.
상기한 바와 같은 목적을 달성하기 위하여 본 발명은, 고온 탈황용으로 사용되는 촉매의 제조방법에 있어서, 니켈 및 알루미늄 이온이 각각 3~5mol%로 일대일 제조된 염수 용액에 고로 슬래그 분말 325메쉬(mesh)를 혼합하는 단계; 상기 니켈과 알루미늄 및 고로 슬래그 분말이 혼합된 혼합물에 반응 첨가제로 우레아를 첨가하는 단계; 상기 우레아가 첨가된 혼합 슬러리에 암모니아수를 첨가한 후 혼합 슬러리의 농도를 9~10pH로 조절하는 단계; 반응 온도를 80 ℃로 유지하는 단계; 제작된 전착 탈황용 촉매를 수세 후 여과 및 건조하는 단계; 및 건조된 전착 탈황용 촉매를 900℃ 이상에서 열처리하는 단계; 를 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the object as described above, the present invention, in the method for producing a catalyst used for high temperature desulfurization, blast furnace slag powder 325 mesh in a salt solution prepared in one to one nickel and
여기서, 상기 니켈 및 알루미늄이 혼합된 혼합물에 첨가되는 우레아가 상기 혼합물의 100중량%에 대하여 1 ~ 5중량%로 포함된다.Here, urea added to the mixture of nickel and aluminum is included in an amount of 1 to 5% by weight based on 100% by weight of the mixture.
본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 용광로에서 생산되는 부산물인 고온 슬래그를 미분화하여 고온에서 탈황하는데 사용하도록 슬래그 분말 표면에 니켈과 알루미늄을 전착 반응시켜, 촉매 표면에서 화학적인 흡착에 의한 효과를 증진 및 개선시킬 수 있으며, 고온의 수증기 개질 반응이나, 배가스 처리용, 고온 탈황용으로 사용 시 열적 및 화학적으로 우수할 뿐만 아니라, 안정성을 확보할 수 있으며, 촉매의 수명을 연장할 수 있고, 촉매 교체 시 발생되는 비용을 절감할 수 있는 등의 효과를 거둘 수 있다.The present invention is to solve the problems as described above, by electrodepositing nickel and aluminum on the surface of the slag powder to be used to desulfurize the high temperature slag as a by-product produced in the blast furnace at high temperature, the chemical adsorption on the catalyst surface It can enhance and improve the effect, and it is not only excellent thermally and chemically when used for high temperature steam reforming reaction, flue gas treatment, and high temperature desulfurization, it can secure stability and prolong the life of catalyst. In addition, it is possible to reduce the costs incurred when replacing the catalyst.
이하, 본 발명에 의한 바람직한 실시예를 첨부된 도면을 참조하면서 상세히 설명한다. 또한, 본 실시예는 본 발명의 권리범위를 한정하는 것은 아니고 단지 예시로 제시된 것이며, 그 기술적 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the present embodiment is not intended to limit the scope of the present invention, but is presented by way of example only, and various modifications may be made without departing from the technical gist of the present invention.
도 1은 본 발명에 의한 고로 슬래그를 이용한 고온 탈황용 촉매의 제조방법에 따른 니켈 및 알루미늄 이온의 탈황전환율을 나타내는 그래프이고, 도 2는 본 발명에 의한 고로 슬래그를 이용한 고온 탈황용 촉매의 제조방법을 나타내는 흐름도이다.1 is a graph showing the desulfurization conversion rate of nickel and aluminum ions according to the method for preparing a catalyst for high temperature desulfurization using blast furnace slag according to the present invention, and FIG. 2 is a method for producing a catalyst for high temperature desulfurization using blast furnace slag according to the present invention. It is a flow chart showing.
도면에서 도시하고 있는 바와 같이, 본 발명에 의한 고로 슬래그를 이용한 고온 탈황용 촉매의 제조방법은 니켈 및 알루미늄 이온이 각각 3~5mol%로 일대일 제조된 염수 용액에 고로 슬래그 분말 325메쉬(mesh)를 혼합한다(S10).As shown in the drawings, the method for producing a catalyst for high temperature desulfurization using the blast furnace slag according to the present invention is blast furnace slag powder 325 mesh (mesh) in a saline solution prepared one-to-one with 3 to 5 mol% of nickel and aluminum ions, respectively. Mix (S10).
본 발명의 일 실시예에서는 상기 니켈 및 알루미늄 이온이 3~5mol%로 일대일 제조되고, 이에 고로 슬래그 분말 325메쉬(mesh)를 혼합하도록 이루어져 있으나, 이에 한정되지 않는다.In an embodiment of the present invention, the nickel and aluminum ions are manufactured one to one at 3 to 5 mol%, and blast furnace slag powder 325 mesh is mixed, but is not limited thereto.
한편, 본 발명에 의한 고로 슬래그를 이용한 고온 탈황용 촉매 제조방법은 니켈 및 알루미늄 이온을 고로 슬래그의 표면에 전착시키기 위하여 전착 반응에 니켈 및 알루미늄 이온을 사용하여 촉매 반응의 비표면적을 증대시켜 촉매의 활성을 촉진한다.Meanwhile, the method for preparing a high temperature desulfurization catalyst using blast furnace slag according to the present invention increases the specific surface area of the catalyst reaction by using nickel and aluminum ions in the electrodeposition reaction in order to deposit nickel and aluminum ions on the surface of the blast furnace slag. Promotes activity.
여기서, 본 발명에 적용되는 고로 슬래그의 조성은 [표 1]에서 나타내는 바와 같다.Here, the composition of the blast furnace slag applied to the present invention is as shown in [Table 1].
그리고, 상기 니켈과 알루미늄 및 고로 슬래그 분말이 혼합된 혼합물에 반응 첨가제로 우레아를 첨가하고(S20), 상기 우레아가 첨가된 혼합 슬러리에 암모니아수를 첨가한 후 혼합 슬러리의 농도를 9~10pH로 조절한다(S30). 이때, 전착 반응 시 고로 슬래그의 표면에 니켈 및 알루미늄 이온이 균일하게 전착되도록 니켈 및 알루미늄 이온의 혼합 슬러리에 우레아를 1 ~ 5중량% 첨가한다. 즉, 상기 니켈 및 알루미늄이 혼합된 혼합물의 100중량%에 대하여 1 ~ 5중량%의 우레아를 첨가한다.In addition, urea is added as a reaction additive to the mixture of nickel, aluminum and blast furnace slag powder (S20), and ammonia water is added to the mixed slurry to which the urea is added, and then the concentration of the mixed slurry is adjusted to 9 to 10 pH. (S30). At this time, 1 to 5% by weight of urea is added to the mixed slurry of nickel and aluminum ions so that nickel and aluminum ions are uniformly electrodeposited on the surface of the blast furnace slag during the electrodeposition reaction. That is, 1 to 5% by weight of urea is added to 100% by weight of the mixture of nickel and aluminum.
상기한 바와 같이, 상기 고로 슬래그와 니켈 및 알루미늄 이온의 혼합 슬러리에 전착 반응시켜 고로 슬래그 표면에 니켈과 알루미늄 이온이 남아서 열처리 시에 표면에서 활성을 갖도록 하기 위하여 우레아를 첨가하고, 농도(pH)를 조절하여 적정 온도에서 반응을 시킨다. 이때, 농도와 반응 온도가 중요하다.As described above, urea is added to electrodeposit the mixture slurry of the blast furnace slag with nickel and aluminum ions so that nickel and aluminum ions remain on the surface of the blast furnace slag to be active on the surface during heat treatment. It is adjusted to react at a proper temperature. At this time, concentration and reaction temperature are important.
이를 위하여 먼저, 혼합 슬러리의 농도(pH)를 조절하며, 알루미늄 이온의 전착 수율을 고려하여 혼합 슬러리의 농도를 9~10pH로 조절한다. 이때, 혼합 슬러리의 농도가 9pH 미만일 경우, 알루미늄 이온이 용해되어 수용액에 포함되어 있는 상태이기 때문에 전착 반응의 효율이 저하되고, 혼합 슬러리의 농도가 10pH 이상일 경우, 알루미늄 이온의 전착 반응 효율이 저하되기 때문에 혼합 슬러리의 농도는 9~10pH으로 이루어진다.To this end, first, the concentration (pH) of the mixed slurry is adjusted, and the concentration of the mixed slurry is adjusted to 9-10 pH in consideration of the electrodeposition yield of aluminum ions. At this time, when the concentration of the mixed slurry is less than 9pH, since the aluminum ions are dissolved and contained in the aqueous solution, the efficiency of the electrodeposition reaction is lowered, and when the concentration of the mixed slurry is 10pH or higher, the electrodeposition reaction efficiency of the aluminum ions is lowered. Therefore, the concentration of the mixed slurry is 9 to 10pH.
여기서, 상기 혼합 슬러리의 농도(pH) 조절은 암모니아수를 이용하는 것이 바람직하며, 이는 암모니아수의 암모늄 이온이 농도(pH)의 조절뿐 아니라, 알루미늄 이온과 반응하여 고로 슬래그 표면에 알루미늄 이온을 균일한 분포로 결합시킬 수 있다.Here, the concentration (pH) of the mixed slurry is preferably used ammonia water, which is not only the control of the concentration (pH) of the ammonium ions of the ammonia water, but also reacts with the aluminum ions in a uniform distribution of aluminum ions on the blast furnace slag surface Can be combined.
여기서, 니켈 및 알루미늄 이온으로 이루어지는 활성조제에 철(Fe)이나 텅스텐(W), 몰리브덴(Mo) 등이 함유될 수 있다. 이때, 철(Fe) 성분은 고로 슬래그에 기본적으로 조성이 확보되어 활성조제로 니켈과 알루미늄 이온 외에는 고로 슬래그 성분에서 제공되므로 다른 첨가방법을 사용하지 않는 것도 가능하다.Here, the active aid made of nickel and aluminum ions may contain iron (Fe), tungsten (W), molybdenum (Mo) and the like. At this time, the iron (Fe) component is basically ensured in the blast furnace slag is provided in the blast furnace slag components other than nickel and aluminum ions as an active aid, it is also possible not to use other addition methods.
한편, 다른 조제의 경우, 고로 슬래그 성분에서 제공되므로 니켈과 알루미늄 이온을 고로 슬래그 표면에 전착시키고, 열처리를 통하여 일부는 니켈 알루미네이트 결정과 일부 감마 알루미나 결정상을 유지하여 탈황 수율을 증진시키는 역할을 하며, 이는 본 발명에서의 실시예와 기존의 개발된 화학성분과 일치하는 결과를 근거로 설정된 것이다.On the other hand, in the other preparations, since it is provided in the blast furnace slag component, electrodeposits nickel and aluminum ions on the surface of the blast furnace slag, and serves to enhance the desulfurization yield by maintaining some nickel aluminate crystals and some gamma alumina crystal phases through heat treatment. , This is set based on the results in accordance with the embodiment of the present invention and the conventionally developed chemical composition.
상기한 바와 같이, 혼합 슬러리의 농도를 조절한 후 혼합 슬러리의 반응 온도를 80℃로 유지하여 전착 반응을 진행한다(S40). 여기서, 전착 반응 온도가 80℃ 이하일 경우, 반응 속도가 느려져 3시간 이상이 소요되고, 전착 반응 온도가 80℃ 이상일 경우, 반응 속도가 1시간 이내로 조속하게 전착 반응이 진행된다.As described above, after adjusting the concentration of the mixed slurry, the electrodeposition reaction is performed by maintaining the reaction temperature of the mixed slurry at 80 ° C (S40). Here, when electrodeposition reaction temperature is 80 degrees C or less, reaction rate becomes slow and it takes 3 hours or more, and when electrodeposition reaction temperature is 80 degreeC or more, reaction rate advances rapidly within 1 hour.
상기한 바와 같이 전착 반응으로 제작된 전착 탈황용 촉매를 수세 후 여과 및 건조하고(S50), 건조된 전착 탈황용 촉매를 900℃ 이상에서 열처리하여(S60) 니켈과 알루미늄 이온이 첨가된 고온 탈황용 촉매를 제조한다.As described above, the electrodeposition desulfurization catalyst produced by the electrodeposition reaction was washed with water after filtration and drying (S50), and the dried electrodeposition desulfurization catalyst was heat treated at 900 ° C. or higher (S60) for high temperature desulfurization in which nickel and aluminum ions were added. Prepare a catalyst.
이때, 상기 전착 탈황용 촉매의 열처리 시 열처리 온도가 900℃ 이하일 경우, 일부 비분해 상태 및 촉매 활성을 저해하는 정상적인 고온 탈황용 촉매가 제조되지 못하고, 니켈 알루미네이트 결정 구조와 감마 알루미나 결정 구조가 일부 발달하여 촉매 효율을 높이게 된다.At this time, when the heat treatment temperature during the heat treatment of the electrodeposition desulfurization catalyst is 900 ° C or less, a normal high temperature desulfurization catalyst that inhibits some non-decomposition state and catalyst activity is not manufactured, and the nickel aluminate crystal structure and the gamma alumina crystal structure are partially. To develop the catalyst efficiency.
이하, 실시예를 통하여 본 발명에 의한 고로 슬래그를 이용한 고온 탈황용 촉매 제조방법을 상세하게 설명한다.Hereinafter, a method for preparing a catalyst for high temperature desulfurization using blast furnace slag according to the present invention will be described in detail through examples.
[실시예 1]Example 1
본 실시예에서는 고로 슬래그 미분말과 니켈 및 알루미늄 이온을 일대일 3mol% 혼합 슬러리에 전착 반응시켜 슬래그 표면에 니켈과 알루미늄 이온이 남은 양, 즉 전착량을 시험한 내용으로 반응 온도와 농도(pH)의 조건을 변화시키면서 시시한 것이다.In this embodiment, the blast furnace slag fine powder and nickel and aluminum ions are electrodeposited to a one-to-one 3 mol% mixed slurry to test the amount of nickel and aluminum ions remaining on the surface of the slag, that is, the amount of electrodeposition. It is fluttering while changing.
여기서, 고온 슬래그 분말 325메쉬(mesh)에 니켈 및 알루미늄 이온이 각각 3mol% 첨가되도록 하여 혼합 슬러리를 제조하였다.Here, a mixture slurry was prepared by adding 3 mol% of nickel and aluminum ions to the hot slag powder 325 mesh.
상기 니켈 및 알루미늄이 혼합된 혼합물에 1중량% 내지 5중량%의 우레아를 첨가하고, 암모니아를 사용하여 농도(pH)를 8.5pH, 9.0pH, 9.5pH, 10.0pH, 10.5pH로 조절한 다음에 각각의 조건에 따른 반응 온도를 80℃로 하여 전착 반응을 실시하였다.1% to 5% by weight of urea is added to the mixture of nickel and aluminum, and the concentration (pH) is adjusted to 8.5pH, 9.0pH, 9.5pH, 10.0pH, 10.5pH using ammonia. Electrodeposition reaction was performed by making reaction temperature according to each condition into 80 degreeC.
수세 및 여과한 전착 고로 슬래그를 건조한 후에 전착된 량을 측정하기 위하여 시료 각각에 대하여 알루미늄 이온 및 니켈의 량을 분석하고자 ICP(Inductively coupled plasma)분석기로 분석하였다. In order to measure the amount of electrodeposited after washing and filtering the electrodeposited blast furnace slag, the amount of aluminum ions and nickel was analyzed with an inductively coupled plasma (ICP) analyzer.
그 결과를 니켈 및 알루미늄량을 mol%로 환산하여 표 2에 나타내었다.The results are shown in Table 2 in terms of mol% of nickel and aluminum.
[표 2]에서 나타내고 있는 바와 같이, 전착 반응 온도는 80℃로 일정한 상태에서 농도(pH) 조건이 다를 경우에 전착 반응에 의한 니켈 및 알루미늄 이온의 표면 부착상태가 다르게 되며, 그 결과로 전착되는 양이 차이가 발생된다. As shown in [Table 2], the electrodeposition reaction temperature is 80 ℃ ℃ when the concentration (pH) conditions are different, the surface adhesion state of the nickel and aluminum ions due to the electrodeposition reaction is different, resulting in electrodeposition The amount difference is caused.
또한, 니켈과 알루미늄 이온을 각각 3mol%를 첨가하여 제조하였지만, 실제 수율에 있어서는 그 보다 못 미치는 것을 알 수 있다. In addition, it was prepared by adding 3 mol% of nickel and aluminum ions, respectively, but it can be seen that the actual yield is less than that.
그리고, 8.5pH 이하와 10.5pH 이상에서는 전착된 양에 실제 포함되어야 할 3mol% 대비 90%이하를 유지하고 있으며, 9.0pH과 10.0pH에서는 94%이상의 전착이 일어나는 결과를 나타내고 있어서 본 발명의 농도(pH) 조건은 9pH와 10pH사이에서 반응시키는 것이 바람직한 조건이 된다.In addition, at 8.5pH or less and 10.5pH or more, 90% or less of 3mol% to be actually included in the electrodeposited amount is maintained, and at 9.0pH and 10.0pH, 94% or more of electrodeposition occurs, resulting in the concentration of the present invention ( pH) conditions are preferred to react between 9pH and 10pH.
[실시예 2]Example 2
[실시예 1]의 결과에서 가장 양호한 농도(pH)인 9.5pH를 유지하면서 온도를 70℃에서 90℃까지 10℃간격으로 [실시예 1]과 같은 방법으로 전착 반응을 실시하였다. In the results of [Example 1], the electrodeposition reaction was carried out in the same manner as in [Example 1] at a temperature of 10 ° C. from 70 ° C. to 90 ° C. while maintaining the best concentration (pH) of 9.5 pH.
각각 온도에 따라 전착 반응이 종결되는 시간을 ORP(산화환원전위)측정하여 종결시간을 알 수 있으며, 반응이 종결 시에 급격하게 산화환원 전위가 감소하는 결과를 나타내며, 그 결과를 토대로 반응 종결시간을 결정하고 [표 3]에 반응종결시간을 나타내었다. The termination time can be known by measuring the time at which the electrodeposition reaction is terminated according to the temperature, and the redox potential decreases rapidly when the reaction is terminated. The reaction termination time is based on the result. Was determined and the reaction termination time is shown in [Table 3].
[표 3]에서 나타내고 있는 바와 같이, 전착 반응 온도가 상승함에 따라서 반응 종결 시간은 급격히 감소하는 것을 알 수 있으며, 전착 반응 속도가 빠르면 빠를수록 반응 종결 시간은 조속하게 종료되며, 생산 공정에서는 중요한 요인이 된다. As shown in [Table 3], it can be seen that the reaction termination time decreases rapidly as the electrodeposition reaction temperature increases. The faster the electrodeposition reaction rate, the faster the reaction termination time ends, and is an important factor in the production process. Becomes
80℃이상에서는 60분 이내인 51분으로 반응이 종결되는 반면에 70℃이하에서는 2시간 이상인 154분이 소요됨을 알 수 있다. It can be seen that the reaction is terminated in 51 minutes or less within 60 minutes at 80 ℃ or more, while 154 minutes in more than 2 hours is required below 70 ℃.
공정상 반응 속도와 반응 종결 시간은 생산성에 지대한 영향을 미치므로 80℃이상에서 전착 반응을 실시하는 것이 바람직하다고 할 수 있다.Since the reaction rate and reaction termination time in the process have a great influence on the productivity, it can be said that the electrodeposition reaction is preferably performed at 80 ° C or higher.
[실시예 3]Example 3
[실시예 2]에서 80℃로 전착 반응시킨 시료를 수세 및 여과하여 건조한 다음에 열처리 온도를 600℃에서 1000℃까지 100℃간격으로 각각 1시간 열처리하여 탈황용 안정화 촉매를 제조하였다. In Example 2, the sample subjected to electrodeposition reaction at 80 ° C. was washed with water, filtered and dried, and then heat treated at 600 ° C. to 1000 ° C. for 1 hour at 100 ° C. to prepare a stabilizer catalyst for desulfurization.
각각의 시료를 열중량법으로 시험하여 중량 감소율(%)를 측정하고, 시료를 XRD분석을 통하여 결정구조를 함께 정리하여 그 결과를 [표 4]에 나타내었다.Each sample was tested by thermogravimetric method to measure the weight loss rate (%), and the samples were arranged together with the crystal structure through XRD analysis, and the results are shown in [Table 4].
[표 4]에서는 열처리 온도에 따라 열중량 변화가 있는 것을 알 수 있는데, 이는 열처리 조건에 따라 미분해 반응물이 존재하는 정도가 변한다는 것을 의미한다. In Table 4, it can be seen that there is a change in thermogravimetry depending on the heat treatment temperature, which means that the degree of the presence of undecomposed reactants varies depending on the heat treatment conditions.
즉, 미분해 반응물이 존재하면 열적인 안정성의 저하로 촉매역할을 저해하므로 열중량 감소율(%)이 미소한 조건이 되는 열처리온도가 좋다. In other words, the presence of undecomposed reactants inhibits the catalytic role due to a decrease in thermal stability, so that the heat treatment temperature at which the thermal weight loss rate (%) becomes a small condition is good.
따라서, 900℃이상의 조건에서는 열중량 변화가 0.05%이하이므로 900℃이상의 온도 조건에서 열처리하는 것이 바람직함을 알 수 있다. Therefore, it can be seen that heat treatment at a temperature of 900 ° C or more is preferable because the change in thermogravimetry is 0.05% or less under conditions of 900 ° C or more.
또한, XRD 분석결과 니켈 알루미네이트 결정상이 존재하는 온도가 900℃이상이며, 니켈 알루미네이트의 결정상은 고온 안정성이 우수한 것으로 알려져 있다.In addition, as a result of XRD analysis, the temperature at which the nickel aluminate crystal phase is present is 900 ° C. or higher, and the crystal phase of nickel aluminate is known to have excellent high temperature stability.
따라서 본 발명의 전착 반응하고, 수세 및 여과 후 건조시료를 열처리 시에 900℃이상에서 열처리 하는 것이 바람직함을 알 수있다.Therefore, it can be seen that the electrodeposition reaction of the present invention, and after the washing and filtration, the dried sample is preferably heat treated at 900 ℃ or more during the heat treatment.
[실시예 4] Example 4
본 실시예에서는 니켈 및 알루미늄을 고로 슬래그에 전착시키기 위해서 수용성염을 이용하여 니켈 및 알루미늄을 2mol%에서 6mol%까지 변화시켜 첨가하고, 수용액에서 전착 반응을 시키기 위해서 암모니아수를 이용하여 전착 반응 조건의 농도(pH)를 9.5pH로 조정하고, 전착 반응 온도 80℃로 하여 제조한 니켈 및 알루미늄이 전착된 고로 슬래그를 수세 및 여과한 다음 900℃에서 1시간 동안 열처리하여 고온 탈황용 촉매를 제조하였다. In this embodiment, nickel and aluminum are added by changing from 2 mol% to 6 mol% by using a water-soluble salt to electrodeposit nickel and aluminum to blast furnace slag, and the concentration of electrodeposition reaction conditions using ammonia water to perform electrodeposition in an aqueous solution. (pH) was adjusted to 9.5 pH, the blast furnace slag electrodeposited nickel and aluminum electrodeposited at an electrodeposition reaction temperature of 80 ° C. was washed with water and filtered, and then heat-treated at 900 ° C. for 1 hour to prepare a catalyst for high temperature desulfurization.
제조된 시료 각각을 탈황 성능 시험을 하기 위하여 제조된 탈황용 촉매 튜브에 50g씩 각각을 장착시키고, H2S가스와 SO2가스 mol비로 2:1로 투입한 후 배기가스의 성분을 가스크로마토그래피로 분석하여 탈황 전환율을 계산하고 그 결과를 도 1에 나타내었다.50 g of each of the prepared samples was installed in a catalyst tube for desulfurization in order to perform desulfurization performance test, and 2: 2 was added in a ratio of H 2 S gas and SO 2 gas, and the components of the exhaust gas were gas chromatographed. The desulfurization conversion was calculated by analyzing with and the results are shown in FIG. 1.
도1에 도시하고 있는 바와 같이, 탈황 전환율은 니켈 및 알루미늄 함량이 각각 3mol%에서 6mol% 사이에서 탈황 전환율이 90%이상을 나타내고 있으며, 2mol% 이하에서는 85.2%이하를 나타내고, 6mol%에서는 89.6%로 적정 전환율 90%이상을 유지하지 못하는 경향을 나타내었다. As shown in Fig. 1, the desulfurization conversion rate is 90% or more in the desulfurization conversion rate between 3 mol% and 6 mol%, respectively, in the nickel and aluminum contents, 85.2% or less in the 2mol% or less, and 89.6% in the 6mol% or less. As a result, it did not maintain a proper conversion rate of more than 90%.
따라서, 90%이상의 탈황율을 유지하기 위해서는 3~5mol%의 니켈 및 알루미늄이 포함되는 것이 바람직함을 나타낸다.Therefore, in order to maintain the desulfurization rate of 90% or more, it is preferable that 3 to 5 mol% of nickel and aluminum are included.
본 발명은 특정의 실시예와 관련하여 도시 및 설명하였지만, 첨부 특허청구의 범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것을 당업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.While the invention has been shown and described with respect to particular embodiments, it will be understood by those skilled in the art that various modifications and changes can be made without departing from the spirit and scope of the invention as indicated by the appended claims. Anyone can grow up easily.
도 1은 본 발명에 의한 고로 슬래그를 이용한 고온 탈황용 촉매의 제조방법에 따른 니켈 및 알루미늄 이온의 탈황전환율을 나타내는 그래프,1 is a graph showing the desulfurization conversion rate of nickel and aluminum ions according to the method for preparing a catalyst for high temperature desulfurization using blast furnace slag according to the present invention;
도 2는 본 발명에 의한 고로 슬래그를 이용한 고온 탈황용 촉매의 제조방법을 나타내는 흐름도. 2 is a flow chart showing a method for producing a catalyst for high temperature desulfurization using blast furnace slag according to the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070107186A KR100880513B1 (en) | 2007-10-24 | 2007-10-24 | Method for producing catalyst for high temperature desulfurization using blast furnace slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070107186A KR100880513B1 (en) | 2007-10-24 | 2007-10-24 | Method for producing catalyst for high temperature desulfurization using blast furnace slag |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100880513B1 true KR100880513B1 (en) | 2009-01-28 |
Family
ID=40483161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070107186A Expired - Fee Related KR100880513B1 (en) | 2007-10-24 | 2007-10-24 | Method for producing catalyst for high temperature desulfurization using blast furnace slag |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100880513B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101137122B1 (en) | 2009-12-29 | 2012-04-19 | 재단법인 포항산업과학연구원 | Manufacturing Method Of High Temperature Desulfuring Catalyst Used By Steelmaking Slag And The Same |
CN105413754A (en) * | 2015-12-12 | 2016-03-23 | 常州大学 | Method for preparing bone carrier catalyst |
US11401163B2 (en) * | 2020-10-19 | 2022-08-02 | Xenophon Verykios | Catalytic materials for pyrolysis of methane and production of hydrogen and solid carbon with substantially zero atmospheric carbon emissions |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5531401A (en) | 1978-07-26 | 1980-03-05 | Agency Of Ind Science & Technol | Preparing adsorbent |
KR20060109212A (en) * | 2005-04-15 | 2006-10-19 | 고등기술연구원연구조합 | Adsorbent using slag generated in waste melting process and its manufacturing method |
KR100750373B1 (en) | 2006-05-19 | 2007-08-17 | 서울산업대학교 산학협력단 | Oxidation catalyst using steel slag and wastewater treatment device using the same |
-
2007
- 2007-10-24 KR KR1020070107186A patent/KR100880513B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5531401A (en) | 1978-07-26 | 1980-03-05 | Agency Of Ind Science & Technol | Preparing adsorbent |
KR20060109212A (en) * | 2005-04-15 | 2006-10-19 | 고등기술연구원연구조합 | Adsorbent using slag generated in waste melting process and its manufacturing method |
KR100750373B1 (en) | 2006-05-19 | 2007-08-17 | 서울산업대학교 산학협력단 | Oxidation catalyst using steel slag and wastewater treatment device using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101137122B1 (en) | 2009-12-29 | 2012-04-19 | 재단법인 포항산업과학연구원 | Manufacturing Method Of High Temperature Desulfuring Catalyst Used By Steelmaking Slag And The Same |
CN105413754A (en) * | 2015-12-12 | 2016-03-23 | 常州大学 | Method for preparing bone carrier catalyst |
US11401163B2 (en) * | 2020-10-19 | 2022-08-02 | Xenophon Verykios | Catalytic materials for pyrolysis of methane and production of hydrogen and solid carbon with substantially zero atmospheric carbon emissions |
US11673803B2 (en) | 2020-10-19 | 2023-06-13 | Xenophon Verykios | Catalytic materials for pyrolysis of methane and production of hydrogen and solid carbon with substantially zero atmospheric carbon emissions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6276257B2 (en) | Y-type zeolite containing rare earth and method for producing the same | |
CN109395734B (en) | Preparation method of high-activity cobalt-based catalyst for propane low-temperature catalytic combustion, product and application thereof | |
US6171566B1 (en) | Selective catalytic reduction for the removal of nitrogen oxides and catalyst body thereof | |
WO2016170995A1 (en) | Hydrogenation catalyst for hydrocarbon oil, method for manufacturing same, and hydrogenation method | |
KR100880513B1 (en) | Method for producing catalyst for high temperature desulfurization using blast furnace slag | |
CN112742387A (en) | Noble metal catalyst and preparation method and application thereof | |
CN118045581B (en) | Catalyst carrier with porous structure and preparation method thereof | |
CN107597138A (en) | Oxide-reduction method of cobalt manganese composite oxide applied to low concentration propane combustion reaction and products thereof and application | |
KR101137122B1 (en) | Manufacturing Method Of High Temperature Desulfuring Catalyst Used By Steelmaking Slag And The Same | |
KR101350598B1 (en) | Method for producing cobalt-ferritic desulfurization catalyst | |
KR100467769B1 (en) | Method of preparing gammma-alumina catalyst for high temperature desulfurization | |
KR100891794B1 (en) | Method for preparing stabilization maghemite catalyst for desulfurization | |
KR100482426B1 (en) | Preparation of gamma-alumina for heat -resist | |
KR100804942B1 (en) | Method for preparing gamma alumina catalyst for desulfurization | |
KR101889192B1 (en) | Hydrodesulfurization catalyst and method for preparing the same | |
KR101286556B1 (en) | Catalyst for Fixation of Carbon dioxide and method for Manufacturing thereof | |
KR100971246B1 (en) | Method for preparing perovskite catalyst for desulfurization | |
CN102442684A (en) | In-situ Y zeolite modifying method | |
KR101236643B1 (en) | Preparation method of catalysts for Sulfur production | |
KR101058680B1 (en) | The process adding medium temperature sulfur Reactor in the process of Claus plant and the manufacturing method | |
CN112169786A (en) | SCR denitration catalyst and preparation method thereof | |
KR101353220B1 (en) | Catalyst for promoting formation of element sulfur in high temperature and method for producing the same | |
CN115283003B (en) | Method for preparing ozone catalyst by microwave method | |
KR101806284B1 (en) | A Method for Manufacturing Catalyst for Desulfurization in High Temperature Using Waste Magnesia | |
KR100388030B1 (en) | Method for preparing lanthanum-containing thermal stabilized alumina by electrodeposition precipitation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20071024 |
|
PA0201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20081224 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20090119 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20090116 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20120113 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20130116 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20130116 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140114 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20140114 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150119 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20150119 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20170118 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20170118 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20180122 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20180122 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20200117 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20200117 Start annual number: 12 End annual number: 12 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20211030 |