KR100873578B1 - High Capacity Cathode Active Materials for Secondary Batteries - Google Patents
High Capacity Cathode Active Materials for Secondary Batteries Download PDFInfo
- Publication number
- KR100873578B1 KR100873578B1 KR1020050118179A KR20050118179A KR100873578B1 KR 100873578 B1 KR100873578 B1 KR 100873578B1 KR 1020050118179 A KR1020050118179 A KR 1020050118179A KR 20050118179 A KR20050118179 A KR 20050118179A KR 100873578 B1 KR100873578 B1 KR 100873578B1
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- negative electrode
- electrode active
- metal
- metalloid
- Prior art date
Links
- 239000006182 cathode active material Substances 0.000 title claims abstract 4
- 239000007773 negative electrode material Substances 0.000 claims abstract description 44
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 41
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000010410 layer Substances 0.000 claims abstract description 35
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- 239000012792 core layer Substances 0.000 claims abstract description 27
- 229910052752 metalloid Inorganic materials 0.000 claims abstract description 23
- 150000002738 metalloids Chemical class 0.000 claims abstract description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 22
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 12
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 239000011229 interlayer Substances 0.000 claims description 5
- 238000005551 mechanical alloying Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 230000004927 fusion Effects 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 239000006183 anode active material Substances 0.000 claims 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 238000007599 discharging Methods 0.000 abstract description 8
- 239000007772 electrode material Substances 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 10
- 239000002904 solvent Substances 0.000 description 9
- -1 and less than that Chemical compound 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000011149 active material Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 239000002931 mesocarbon microbead Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- VUAXHMVRKOTJKP-UHFFFAOYSA-M 2,2-dimethylbutanoate Chemical compound CCC(C)(C)C([O-])=O VUAXHMVRKOTJKP-UHFFFAOYSA-M 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910015644 LiMn 2 - z Ni Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N methyl acetate Chemical compound COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 229920005735 poly(methyl vinyl ketone) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/041—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 리튬과 반복적으로 충방전 가능한 금속 또는 준금속 성분과 철(Fe) 성분을 포함하는 코어층; 및 결정질 탄소층을 순차적으로 포함하는 음극활물질 및 이를 사용한 이차 전지에 관한 것이다. 또한 상기 코어층과 결정질 탄소층 사이에 비정질 탄소층을 포함하는 것을 특징으로 하는 전극활물질 및 이를 사용한 이차 전지에 관한 것이다.The present invention includes a core layer comprising a lithium or a metal or metalloid capable of repeatedly charging and discharging and an iron (Fe) component; And it relates to a negative electrode active material comprising a crystalline carbon layer sequentially and a secondary battery using the same. In addition, the present invention relates to an electrode active material and a secondary battery using the same, comprising an amorphous carbon layer between the core layer and the crystalline carbon layer.
본 발명의 음극활물질은 금속 또는 준금속 음극활물질의 장점인 높은 충방전 용량을 유지하면서, 비정질 탄소층과 결정질 탄소층에 의해 리튬의 충방전 시 발생 가능한 코어층의 체적변화를 억제할 수 있다. 그리고 코어층에 철(Fe)이 포함됨으로써 리튬의 충방전 시 발생 가능한 코어층의 체적변화를 억제하고, 이로 인해 전지의 사이클 수명특성을 향상시킬 수 있다.The negative electrode active material of the present invention can suppress the volume change of the core layer generated during charge and discharge of lithium by the amorphous carbon layer and the crystalline carbon layer while maintaining a high charge and discharge capacity which is an advantage of the metal or metalloid negative electrode active material. In addition, since iron (Fe) is included in the core layer, volume change of the core layer that may occur during charging and discharging of lithium may be suppressed, thereby improving cycle life characteristics of the battery.
음극활물질, 고용량 Cathode active material, high capacity
Description
도 1은 본 발명의 일실시예에 따라 제조된 음극활물질의 단면도이다.1 is a cross-sectional view of a negative electrode active material prepared according to an embodiment of the present invention.
도 2는 비교예 2에서 제조된 음극활물질의 SEM 사진이다.2 is a SEM photograph of the negative electrode active material prepared in Comparative Example 2.
본 발명은 이차 전지용 음극활물질 및 상기 음극활물질을 사용한 이차 전지에 관한 것이다.The present invention relates to a negative electrode active material for a secondary battery and a secondary battery using the negative electrode active material.
리튬 이차 전지는 리튬 이온의 삽입 및 탈리가 가능한 물질을 음극 및 양극으로 사용하고, 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조하며, 리튬 이온이 양극 및 음극에서 삽입 및 탈리될 때의 산화반응, 환원반응에 의하여 전기적 에너지를 생성한다. Lithium secondary batteries are manufactured by using a material capable of inserting and desorbing lithium ions as a negative electrode and a positive electrode, and filling an organic or polymer electrolyte between a positive electrode and a negative electrode, and when lithium ions are inserted and desorbed from a positive electrode and a negative electrode. Electrical energy is generated by oxidation and reduction.
현재 리튬 이차 전지의 음극을 구성하는 음극활물질로는 탄소질 재료가 주로 사용되고 있다. 그러나, 리튬 이차 전지의 용량을 더욱 향상시키기 위해서는 고용량의 음극활물질 사용이 필요하다.Currently, carbonaceous materials are mainly used as a negative electrode active material constituting the negative electrode of a lithium secondary battery. However, in order to further improve the capacity of the lithium secondary battery, it is necessary to use a high capacity negative electrode active material.
이러한 요구를 충족하기 위하여 탄소질 재료보다 높은 충방전 용량을 나타내 고, 리튬과 전기 화학적으로 합금화 가능한 금속인 Si, Al 등을 음극활물질로 이용하는 예가 있다. 그러나, 이러한 금속계 음극활물질은 리튬의 충방전에 수반된 체적의 변화가 심하여 균열이 생기고 미분화되며, 따라서 이러한 금속계 음극활물질을 사용한 이차 전지는 충방전 사이클이 진행됨에 따라 용량이 급격하게 저하되고, 사이클 수명이 짧게 된다.In order to satisfy this demand, there is an example of using a Si, Al, etc., a metal having a higher charge / discharge capacity than the carbonaceous material, and a metal capable of being electrochemically alloyed with lithium. However, the metal-based negative electrode active material is cracked and micronized due to a large volume change associated with charging and discharging of lithium. Therefore, the capacity of the secondary battery using the metal-based negative electrode active material decreases rapidly as the charge and discharge cycle progresses, and the cycle Life is shortened.
일본공개특허공보 제2001-297757호에서는 리튬과 충방전 가능한 원소로 구성된 α상(예, Si)과 이 원소와 다른 원소 b와의 금속간 화합물 또는 고용체인 β상이 주가 되는 조직을 갖는 전극활물질을 제안하였다.Japanese Patent Application Laid-Open No. 2001-297757 proposes an electrode active material having a structure mainly composed of an α phase (for example, Si) composed of lithium and a chargeable and dischargeable element, and a β phase, which is an intermetallic compound or solid solution of this element with another element b. It was.
그러나, 상기한 종래의 방법에 의해서도 충분하고 양호한 사이클 수명 특성을 얻을 수 없어서 실용적인 리튬 이차 전지용 음극활물질로 사용할 수 없다는 문제점이 있다.However, there is a problem in that the conventional method described above cannot obtain sufficient and good cycle life characteristics and thus cannot be used as a practical negative electrode active material for lithium secondary batteries.
본 발명은 리튬과 반복적으로 충방전이 가능한 금속 또는 준금속 성분과 철(Fe) 성분을 포함하는 코어층의 표면에, 선택적으로 비정질 탄소층, 결정질 탄소층을 순차적으로 포함하는 음극활물질을 사용함으로써, 리튬의 충방전시에 발생 가능한 코어층의 체적 변화를 억제하고 음극활물질 입자 간의 높은 전도도 및 전도 경로를 유지하여 높은 충방전 용량과 우수한 사이클 수명 특성을 갖는 이차 전지용 음극활물질 및 이를 이용한 이차 전지를 제공하고자 한다. 또한, 상기 음극활물질의 제조방법을 제공하고자 한다.The present invention uses a negative electrode active material that sequentially includes an amorphous carbon layer and a crystalline carbon layer on the surface of a core layer including lithium, a metal or metalloid capable of repeatedly charging and discharging, and an iron (Fe) component. , The negative electrode active material for secondary battery having a high charge and discharge capacity and excellent cycle life characteristics by suppressing the volume change of the core layer that can occur during charging and discharging of lithium, and maintaining the high conductivity and conduction path between the particles of the negative electrode active material and the secondary battery using the same To provide. In addition, to provide a method for producing the negative electrode active material.
본 발명은 리튬과 반복적으로 충방전 가능한 금속 또는 준금속 성분과 철(Fe) 성분을 포함하는 코어층; 및 결정질 탄소층을 순차적으로 포함하는 음극활물질 및 이를 사용한 이차 전지를 제공한다.The present invention includes a core layer comprising a lithium or a metal or metalloid capable of repeatedly charging and discharging and an iron (Fe) component; And it provides a negative electrode active material comprising a crystalline carbon layer sequentially and a secondary battery using the same.
선택적으로 상기 코어층과 결정질 탄소층 사이에 비정질 탄소층이 개재될 수 있다.Optionally, an amorphous carbon layer may be interposed between the core layer and the crystalline carbon layer.
또한, 본 발명은 철(Fe)이 함유된 금속 또는 준금속과 결정질 탄소를 혼합하는 제1단계; 및 상기 혼합물을 Mechano Fusion 장치에서 기계적 합금(Mechanical Alloying)하는 제2단계를 포함하는 상기 음극활물질의 제조방법을 제공한다.In addition, the present invention comprises a first step of mixing crystalline carbon with a metal or metalloid containing iron (Fe); And a second step of mechanically alloying the mixture in a Mechano Fusion apparatus.
이하, 본 발명을 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.
철(Fe)은 리튬과의 충방전 용량이 작은 성분이므로, 코어층에 철이 포함됨으로써 리튬의 충방전 시 발생 가능한 코어층의 체적변화를 억제할 수 있다. Since iron (Fe) is a component having a small charge / discharge capacity with lithium, since iron is included in the core layer, it is possible to suppress a volume change of the core layer that may occur during charge / discharge of lithium.
본 발명에 있어서 상기 금속 또는 준금속 성분은 Si, Al, Sn, Sb, Bi, As, Ge, Pb 중에서 선택된 1종 이상의 금속 또는 준금속 또는 이의 합금을 들 수 있으나, 전기 화학적으로 리튬을 가역적으로 충방전시킬 수 있다면 특별히 제한하지는 않는다.In the present invention, the metal or metalloid component may include at least one metal or metalloid or an alloy thereof selected from Si, Al, Sn, Sb, Bi, As, Ge, and Pb. If it can charge and discharge, it will not limit in particular.
상기 코어층에 포함된 철(Fe) 성분은 20ppm 이상 10000ppm 이하인 것이 바람직하다. 철(Fe) 성분이 20ppm 미만으로 포함된 코어 물질은 매우 고순도 처리를 하여야 하므로 물질의 원재료 가격이 비싸지는 단점이 있고, 10000ppm 초과이면 철(Fe) 성분이 활물질 표면에 노출되면서 전해액 분해의 촉매 작용을 일으킬 수 있다.The iron (Fe) component contained in the core layer is preferably 20 ppm or more and 10000 ppm or less. Core material containing less than 20ppm of iron (Fe) component has to be very high-purity, so the raw material price of the material is expensive. If it exceeds 10000ppm, iron (Fe) component is exposed to the surface of the active material to catalyze the decomposition of electrolyte solution. Can cause.
결정질 탄소로는 흑연화도가 큰 천연 흑연, 인조 흑연 등이 있으며, 흑연계 재료의 예로는 MCMB(MesoCarbon MicroBead), 탄소 섬유(Carbon fiber), 천연 흑연(Natural graphite) 등이 있다.Crystalline carbon includes natural graphite and artificial graphite having a high degree of graphitization. Examples of the graphite-based material include MCMB (MesoCarbon MicroBead), carbon fiber, and natural graphite.
비정질 탄소로는 석탄 타르 피치(coal tar pitch), 석유계 피치(petroleum pitch), 각종 유기 재료(organic material)를 원료로 하여 열처리하여 만든 탄소계 물질 등이 있다.Examples of amorphous carbon include a coal tar pitch, a petroleum pitch, and a carbon-based material made by heat treatment using various organic materials as raw materials.
코어층 및 결정질 탄소층을 순차적으로 포함하는 음극활물질에 있어서, 코어층: 결정질 탄소층 = 90~10 중량부: 10~90 중량부로 사용하는 것이 바람직하다.In the negative electrode active material sequentially comprising a core layer and a crystalline carbon layer, it is preferable to use a core layer: crystalline carbon layer = 90 to 10 parts by weight: 10 to 90 parts by weight.
또한, 코어층, 비정질 탄소층 및 결정질 탄소층을 순차적으로 포함하는 음극활물질에 있어서는 코어층: 비정질 탄소층: 결정질 탄소층 = 90~10 중량부: 0.1~50 중량부: 9~90 중량부로 사용하는 것이 바람직하다. In addition, in the negative electrode active material including a core layer, an amorphous carbon layer and a crystalline carbon layer sequentially, the core layer: amorphous carbon layer: crystalline carbon layer = 90 to 10 parts by weight: 0.1 to 50 parts by weight: 9 to 90 parts by weight It is desirable to.
금속 또는 준금속 성분과 철(Fe) 성분을 포함하는 코어층이 10 중량부 미만이면 가역용량이 작아 고용량 음극활물질로서의 의미가 없어지고, 결정질 탄소층이 9 중량부 미만이면 충분한 전도성을 확보하기 어려우며, 비정질 탄소층이 0.1 중량부 미만이면 팽창억제에 충분한 역할을 하지 못하고 50 중량부 초과되면 용량저하 및 전도성 저하의 염려가 있기 때문이다.If the core layer containing the metal or metalloid component and the iron (Fe) component is less than 10 parts by weight, the reversible capacity is small, meaning as a high capacity negative electrode active material, and if the crystalline carbon layer is less than 9 parts by weight, it is difficult to secure sufficient conductivity. If the amorphous carbon layer is less than 0.1 part by weight, it may not play a sufficient role in inhibiting expansion, and if it is more than 50 parts by weight, there is a fear of capacity loss and conductivity deterioration.
상기 결정질 탄소층은 탄소의 층간거리 d002가 0.3354 nm 이상 0.35 nm 이하인 것이 바람직하다. 상기 하한값은 이론적으로 가능한 흑연의 최저 층간 거리로 그 미만은 실존하지 않으며, 상한값을 초과하는 층간 거리를 갖는 탄소는 전도성이 좋지 않아 피복층의 전도성도 낮아짐으로써 원활한 리튬 충방전 특성을 얻을 수 없 다.The crystalline carbon layer preferably has an interlayer distance d002 of carbon of 0.3354 nm or more and 0.35 nm or less. The lower limit is theoretically the lowest possible interlayer distance of graphite, and less than that, and carbon having an interlayer distance exceeding the upper limit is poor in conductivity, thereby lowering the conductivity of the coating layer, thereby preventing smooth lithium charge and discharge characteristics.
또한, 결정질 탄소층의 두께는 특별히 제한하지는 않으나 1 미크론 이상 10 미크론 이하가 좋다. 층의 두께가 1 미크론 미만인 경우에는 입자간의 충분한 전도성을 확보하기 어렵고, 15 미크론 초과인 경우에는 음극활물질 중에 함유된 탄소질의 비율이 높아져 높은 충방전 용량을 얻을 수 없다.The thickness of the crystalline carbon layer is not particularly limited but is preferably 1 micron or more and 10 microns or less. If the thickness of the layer is less than 1 micron, it is difficult to secure sufficient conductivity between the particles. If the thickness is more than 15 microns, the proportion of carbonaceous contained in the negative electrode active material becomes high, and thus high charge and discharge capacity cannot be obtained.
상기 비정질 탄소층은 탄소의 층간 거리 d002가 0.34 nm이상이고 두께가 5nm 이상인 것이 바람직하다. 만일 두께가 5 nm 미만이면 부피변화의 억제효과가 충분하지 않다. 층간 거리가 0.34nm 미만인 경우는 충방전에 따른 코팅층 자체의 부피 변화가 심하여 코어층의 부피변화 억제 효과가 저하되어 사이클 성능이 저하된다.The amorphous carbon layer preferably has an interlayer distance d002 of carbon of 0.34 nm or more and a thickness of 5 nm or more. If the thickness is less than 5 nm, the effect of suppressing volume change is not sufficient. If the distance between the layers is less than 0.34nm, the volume change of the coating layer itself due to the charge and discharge is severe, the effect of suppressing the volume change of the core layer is lowered and the cycle performance is lowered.
본 발명의 음극활물질은, 철(Fe)이 함유된 금속 또는 준금속과 결정질 탄소를 혼합하는 제1단계; 및 상기 혼합물을 Mechano Fusion 장치에서 기계적 합금(Mechanical Alloying)하는 제2단계를 포함하여 제조할 수 있다. 이때 기계적 합금(Mechanical Alloying)은 기계적인 힘을 가해서 균일한 조성의 합금을 만드는 것이다.The negative electrode active material of the present invention, the first step of mixing a metal or metalloid containing iron (Fe) and crystalline carbon; And a second step of mechanical alloying the mixture in a Mechano Fusion device. Mechanical alloying (Mechanical Alloying) is to create an alloy of uniform composition by applying a mechanical force.
상기 제1단계의 철(Fe)이 함유된 금속 또는 준금속은 철의 함량이 20~10000ppm이 되도록 금속 또는 준금속과 철을 혼합할 수 있다.The metal or metalloid containing iron (Fe) of the first step may be mixed with metal or metalloid and iron such that the iron content is 20-10000ppm.
상기 제1단계의 철(Fe)이 함유된 금속 또는 준금속과 결정질 탄소의 혼합은 금속 또는 준금속: 결정질 탄소 = 90~10 중량부: 10~90 중량부의 비로 혼합할 수 있다. The metal or metalloid containing iron (Fe) of the first step and the crystalline carbon may be mixed in a ratio of metal or metalloid: crystalline carbon = 90 to 10 parts by weight: 10 to 90 parts by weight.
본 발명에서 음극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있 다. 예를 들면, 본 발명의 음극활물질에 바인더와 용매, 필요에 따라 도전제, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포하고 압축한 뒤 건조하여 음극을 제조할 수 있다.The negative electrode in the present invention can be prepared by conventional methods known in the art. For example, a slurry may be prepared by mixing and stirring a binder and a solvent, a conducting agent, and a dispersant in the negative electrode active material of the present invention, and then applying the same to a current collector of a metal material, compressing it, and drying to prepare a negative electrode. have.
음극활물질에 대하여 바인더는 1~10 중량비로, 도전제는 1~30 중량비로 적절히 사용할 수 있다.The binder may be suitably used in a 1 to 10 weight ratio and the conductive agent in a 1 to 30 weight ratio with respect to the negative electrode active material.
사용 가능한 바인더의 예로는 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴 플루오라이드(PVdF) 등이 있다.Examples of binders that can be used include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and the like.
도전제로는 일반적으로 카본블랙 (carbon black)을 사용할 수 있고, 현재 도전제로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니 (Gulf Oil Company) 제품 등), 케트젠블랙 (Ketjen Black) EC 계열(아르막 컴퍼니 (Armak Company) 제품), 불칸 (Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼 P (엠엠엠(MMM)사 제품)등이 있다.Generally, carbon black may be used as the conductive agent, and acetylene black series (such as a Chevron Chemical Company or Gulf Oil Company) may be used as a commercially available product. Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) and Super P (MMM) There is this.
금속 재료의 집전체는 전도성이 높은 금속으로, 상기 음극활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 대표적인 예로, 알루미늄, 구리, 금, 니켈 혹은 알루미늄 합금 혹은 이들의 조합에 의해서 제조되는 메쉬 (mesh), 호일 (foil)등이 있다.The current collector of the metal material is a metal having high conductivity, and any metal can be used as long as the slurry of the negative electrode active material can easily adhere to the metal. Representative examples include meshes, foils, and the like, which are manufactured by aluminum, copper, gold, nickel or an aluminum alloy or a combination thereof.
슬러리를 집전체에 도포하는 방법도 특별히 제한하지 않는다. 예컨대, 닥터블레이드, 침지, 솔칠 등의 방법으로 도포할 수 있으며, 도포량도 특별히 제한하지 않지만, 용매나 분산매를 제거한 후에 형성되는 활물질 층의 두께가 보통 0.005~5㎜, 바람직하게는 0.05~2㎜ 범위가 되는 정도의 양이 바람직하다. The method of applying the slurry to the current collector is also not particularly limited. For example, it can be applied by a method such as doctor blade, dipping, brushing, and the like, but the coating amount is not particularly limited, but the thickness of the active material layer formed after removing the solvent or the dispersion medium is usually 0.005-5 mm, preferably 0.05-2 mm. The amount of the range which becomes a range is preferable.
용매 또는 분산매를 제거하는 방법도 특별히 제한하지 않지만, 응력집중이 발생하여 활물질 층에 균열이 발생하거나, 활물질층이 집전체로부터 박리되지 않는 정도의 속도범위 내에서, 가능하면 신속하게 용매 또는 분산매가 휘발되도록 조정하여 제거하는 방법을 사용하는 것이 바람직하다. 비제한적인 예로 50~200℃의 진공오븐에서 0.5~3일 동안 건조할 수 있다.The method of removing the solvent or the dispersion medium is not particularly limited, but the solvent or the dispersion medium may be used as quickly as possible within the speed range in which stress concentration occurs and cracks occur in the active material layer or the active material layer does not peel off from the current collector. It is preferable to use a method of adjusting to remove to volatilize. As a non-limiting example it may be dried for 0.5 to 3 days in a vacuum oven at 50 ~ 200 ℃.
본 발명의 이차 전지는 본 발명의 음극활물질을 사용하여 제조한 음극을 포함하여 당 기술 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극과 음극 사이에 다공성의 분리막을 넣고 전해액을 투입하여 제조할 수 있다. 이차 전지는 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함한다.The secondary battery of the present invention can be prepared by conventional methods known in the art, including a negative electrode prepared using the negative electrode active material of the present invention. For example, a porous separator may be inserted between the positive electrode and the negative electrode to add an electrolyte solution. Secondary batteries include lithium ion secondary batteries, lithium polymer secondary batteries or lithium ion polymer secondary batteries.
본 발명에 따른 이차 전지의 양극에 사용 가능한 양극활물질로는 리튬 함유 전이금속 산화물이 있으며, 구체적으로 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2 (0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2 (여기에서, 0≤Y<1), Li(NiaCobMnc)O4 (0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-ZCoZO4 (여기에서, 0<Z<2), LiCoPO4, 및 LiFePO4로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.The positive electrode active material which can be used for the positive electrode of the secondary battery according to the present invention includes a lithium-containing transition metal oxide, specifically, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1-Y Co Y O 2 , LiCo 1-Y Mn Y O 2 , LiNi 1-Y Mn Y O 2 (where 0 ≦ Y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z O 4 , LiMn 2-Z Co Z O 4 (here, 0 <Z <2), LiCoPO 4 , and at least one selected from the group consisting of LiFePO 4 may be used. have.
전해액은 비수 용매와 전해질 염을 포함할 수 있다. The electrolyte may include a nonaqueous solvent and an electrolyte salt.
비수 용매는 통상 비수 전해액용 비수 용매로 사용하고 있는 것이면 특별히 제한하지 않으며, 환형 카보네이트, 선형 카보네이트, 락톤, 에테르, 에스테르, 또는 케톤을 사용할 수 있다.The nonaqueous solvent is not particularly limited as long as it is normally used as a nonaqueous solvent for nonaqueous electrolyte, and cyclic carbonate, linear carbonate, lactone, ether, ester or ketone can be used.
상기 환형 카보네이트의 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 있고, 상기 선형 카보네이트의 예로는 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 및 메틸 프로필 카보네이트(MPC) 등이 있다. 상기 락톤의 예로는 감마부티로락톤(GBL)이 있으며, 상기 에테르의 예로는 디부틸에테르, 테트라히드로푸란, 2-메틸테트라히드로푸란, 1,4-디옥산, 1,2-디메톡시에탄 등이 있다. 또한 상기 에스테르의 예로는 n-메틸 아세테이트, n-에틸 아세테이트, 메틸 프로피오네이트, 메틸 피발레이트 등이 있으며, 상기 케톤으로는 폴리메틸비닐 케톤이 있다. 이들 비수 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like. Examples of the linear carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC) and dipropyl carbonate. (DPC), ethylmethyl carbonate (EMC), methyl propyl carbonate (MPC), and the like. Examples of the lactone include gamma butyrolactone (GBL), and examples of the ether include dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, and the like. There is this. In addition, examples of the ester include n-methyl acetate, n-ethyl acetate, methyl propionate, methyl pivalate, and the like. The ketone includes polymethylvinyl ketone. These nonaqueous solvents can be used individually or in mixture of 2 or more types.
전해질 염은 통상 비수 전해액용 전해질 염으로 사용하고 있는 것이면 특별히 제한하지 않는다. 전해질 염의 비제한적인 예는 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, ASF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이다. 특히, 리튬 염이 바람직하다. 이들 전해질 염은 단독으로 또는 2종 이상을 혼 합하여 사용할 수 있다.The electrolyte salt is not particularly limited as long as it is usually used as an electrolyte salt for nonaqueous electrolyte. Electrolytic salt, non-limiting example, A + B - A salt of the structure, such as, A + comprises a Li +, Na +, an alkali metal cation or an ion composed of a combination thereof, such as K + B - is PF 6 - , BF 4 -, Cl -, Br -, I -, ClO 4 -, ASF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 ) 3 - and a salt containing the same anion ion or a combination thereof. In particular, lithium salts are preferred. These electrolyte salts can be used individually or in mixture of 2 or more types.
본 발명의 이차 전지는 분리막을 포함할 수 있다. 사용 가능한 분리막은 특별한 제한이 없으나, 다공성 분리막을 사용하는 것이 바람직하며, 비제한적인 예로는 폴리프로필렌계, 폴리에틸렌계, 또는 폴리올레핀계 다공성 분리막 등이 있다.The secondary battery of the present invention may include a separator. The separator can be used is not particularly limited, it is preferable to use a porous separator, non-limiting examples include a polypropylene-based, polyethylene, or polyolefin-based porous separator.
본 발명의 이차 전지는 외형에 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The secondary battery of the present invention is not limited in appearance, but may be cylindrical, square, pouch type, or coin type using a can.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples. However, the following examples are merely to illustrate the present invention and the present invention is not limited by the following examples.
(실시예 1)(Example 1)
Si과 Fe를 99 중량부: 1 중량부로 혼합하고 볼 밀링하여 10000ppm의 철이 함유된 Si를 준비하였다.Si and Fe were mixed at 99 parts by weight: 1 part by weight and ball milled to prepare Si containing 10000 ppm of iron.
상기 10000ppm의 철이 함유된 Si과 천연 흑연을 50 중량부: 50 중량부로 혼합한 후 Hosokawa Micron사의 Mechano Fusion장치를 이용하여 분당 600회의 회전속도로 30분간 Mechanical Alloying을 수행하여 음극활물질을 제조하였다. 제조된 음극활물질의 ICP 분석 결과 4000ppm의 Fe가 함유되어 있었다.After mixing 10000ppm of iron containing Si and natural graphite at 50 parts by weight: 50 parts by weight, a negative electrode active material was prepared by performing mechanical alloying for 30 minutes at a rotation speed of 600 times per minute using a Mechano Fusion device manufactured by Hosokawa Micron. ICP analysis of the prepared negative electrode active material contained 4000ppm of Fe.
상기 제조된 음극활물질 분말 100 중량부에 바인더로서 PVDF를 10 중량부, 도전제로서 아세틸렌블랙을 10 중량부의 비율로 혼합하고, 용매로서 NMP를 넣어 혼합하여 균일한 슬러리를 제조하였다. 그리고 상기 슬러리를 20마이크로의 동박에 코팅, 건조 및 압연한 후 필요한 크기로 펀칭(punching)하여 음극을 제조하였다. 10 parts by weight of PVDF as a binder and 10 parts by weight of acetylene black as a conductive agent were mixed to 100 parts by weight of the prepared negative electrode active material powder, and NMP was added as a solvent to prepare a uniform slurry. The slurry was coated on 20 micron copper foil, dried and rolled, and then punched to a required size to prepare a negative electrode.
전해액은 에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=1:2(v:v)의 조성을 갖는 비수 용매에 LiPF6를 1M 농도가 되도록 용해하여 제조하였다.The electrolyte was prepared by dissolving LiPF 6 in a non-aqueous solvent having a composition of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 2 (v: v) to a concentration of 1 M.
상기 음극과 counter 전극으로 금속 리튬을 사용하였으며, 양 전극 사이에 폴리올레핀계 분리막을 개재시킨 후 상기 전해액을 주입하여 본 발명의 코인형 전지를 제조하였다.Metal lithium was used as the negative electrode and the counter electrode, and a coin-type battery of the present invention was prepared by injecting the electrolyte after interposing a polyolefin-based separator between both electrodes.
(비교예 1)(Comparative Example 1)
10ppm의 철(Fe)이 함유된 고순도 Si를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극활물질 및 전지를 제조하였다. 제조된 음극활물질의 ICP 분석 결과 7ppm의 Fe가 함유되었다.A negative electrode active material and a battery were manufactured in the same manner as in Example 1, except that high purity Si containing 10 ppm of iron (Fe) was used. ICP analysis of the prepared negative electrode active material contained 7ppm of Fe.
(비교예 2)(Comparative Example 2)
18000ppm의 철(Fe)이 함유된 Si를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극활물질 및 전지를 제조하였다. 제조된 음극활물질의 ICP 분석 결과 11000ppm의 Fe가 함유되었다.A negative electrode active material and a battery were manufactured in the same manner as in Example 1, except that Si containing 18000 ppm of iron (Fe) was used. ICP analysis of the prepared negative electrode active material contained 11000ppm Fe.
(전지 성능 실험)(Battery performance experiment)
실시예 1, 비교예 1 및 비교예 2에서 제조된 전지의 3회 충방전 후 충방전에 따른 부피 변화를 살펴보면, 하기 표 1에서와 같이 실시예 1의 경우에는 약 51 %(33㎛ → 50㎛) 정도의 전극의 두께 변화가 관찰 되었으나, 비교예 1의 경우에는 약 150% (30㎛ → 74㎛)의 두께 변화가 관찰되어, 본 발명의 음극활물질은 부피팽창 억제 효과가 있음을 알 수 있었다.Looking at the volume change according to the charge and discharge after the three charge and discharge of the batteries prepared in Example 1, Comparative Example 1 and Comparative Example 2, in the case of Example 1, as shown in Table 1, about 51% (33㎛ → 50 Thickness change of the electrode was observed, but in the case of Comparative Example 1, a thickness change of about 150% (30 μm → 74 μm) was observed, indicating that the negative electrode active material of the present invention had a volume expansion inhibiting effect. there was.
또한, 실시예 1에서 얻어진 음극활물질을 사용하여 제조된 전지의 경우, 충방전 전후에도 코어층의 부피변화가 거의 없어서 하기 표 1에서와 같이 50사이클까지 초기 용량을 99.3% 정도로 유지하고 있었다. 반면, 비교예 2에서 얻어진 음극활물질을 사용하여 제조된 전지의 경우, 활물질의 표면에 Fe가 노출되어 사이클 수명 특성이 현저히 떨어졌다. 도 2는 비교예 2에서 제조된 음극활물질의 SEM 사진으로서, 표면에 Fe가 노출되어 있음을 볼 수 있다. In addition, in the battery manufactured using the negative electrode active material obtained in Example 1, there was almost no volume change of the core layer before and after charging and discharging, so that the initial capacity was maintained at about 99.3% until 50 cycles as shown in Table 1 below. On the other hand, in the battery manufactured using the negative electrode active material obtained in Comparative Example 2, Fe exposed to the surface of the active material, the cycle life characteristics were significantly reduced. 2 is a SEM photograph of the negative electrode active material prepared in Comparative Example 2, it can be seen that Fe is exposed on the surface.
본 발명의 음극활물질은 금속 또는 준금속 음극활물질의 장점인 높은 충방전 용량을 유지하면서, 비정질 탄소층과 결정질 탄소층에 의해 리튬의 충방전 시 발생 가능한 코어층의 체적변화를 억제할 수 있다. 그리고 코어층에 철(Fe)이 포함됨으로써 리튬의 충방전 시 발생 가능한 코어층의 체적변화를 억제하고, 이로 인해 전지의 사이클 수명특성을 향상시킬 수 있다.The negative electrode active material of the present invention can suppress the volume change of the core layer generated during charge and discharge of lithium by the amorphous carbon layer and the crystalline carbon layer while maintaining a high charge and discharge capacity which is an advantage of the metal or metalloid negative electrode active material. In addition, since iron (Fe) is included in the core layer, volume change of the core layer that may occur during charging and discharging of lithium may be suppressed, thereby improving cycle life characteristics of the battery.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050118179A KR100873578B1 (en) | 2005-12-06 | 2005-12-06 | High Capacity Cathode Active Materials for Secondary Batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050118179A KR100873578B1 (en) | 2005-12-06 | 2005-12-06 | High Capacity Cathode Active Materials for Secondary Batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070059389A KR20070059389A (en) | 2007-06-12 |
KR100873578B1 true KR100873578B1 (en) | 2008-12-12 |
Family
ID=38355701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050118179A KR100873578B1 (en) | 2005-12-06 | 2005-12-06 | High Capacity Cathode Active Materials for Secondary Batteries |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100873578B1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100828879B1 (en) * | 2006-02-17 | 2008-05-09 | 주식회사 엘지화학 | Electrode active material and secondary battery using same |
EP2416410B1 (en) * | 2009-03-30 | 2018-10-24 | LG Chem, Ltd. | Composite for electrode active material and secondary battery comprising the same |
KR101049829B1 (en) * | 2009-10-28 | 2011-07-15 | 삼성에스디아이 주식회사 | Anode active material for lithium secondary battery and lithium secondary battery comprising same |
KR20120029314A (en) * | 2010-09-16 | 2012-03-26 | 전자부품연구원 | Anode active material, lithium secondary battery having the anode active material and manufacturing method thereof |
WO2012036385A2 (en) * | 2010-09-16 | 2012-03-22 | 전자부품연구원 | Anode active material, nonaqueous lithium secondary battery containing same, and preparation method thereof |
KR102553635B1 (en) * | 2022-09-27 | 2023-07-10 | 주식회사 케이켐비즈 | Positive electrode active material, positive electrode and secondary battery comprising the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024A (en) * | 1987-02-04 | 1990-01-05 | Asahi Optical Co Ltd | Automatic focus detecting device for camera |
KR100280997B1 (en) | 1998-11-25 | 2001-03-02 | 김순택 | Anode active material for lithium ion battery and manufacturing method thereof |
JP2004185991A (en) * | 2002-12-03 | 2004-07-02 | Mitsubishi Materials Corp | Negative electrode material for lithium secondary battery, lithium secondary battery using the same, and negative electrode material manufcturing method |
KR20050001404A (en) * | 2003-06-25 | 2005-01-06 | 주식회사 엘지화학 | Anode material for lithium secondary cell with high capacity |
-
2005
- 2005-12-06 KR KR1020050118179A patent/KR100873578B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024A (en) * | 1987-02-04 | 1990-01-05 | Asahi Optical Co Ltd | Automatic focus detecting device for camera |
KR100280997B1 (en) | 1998-11-25 | 2001-03-02 | 김순택 | Anode active material for lithium ion battery and manufacturing method thereof |
JP2004185991A (en) * | 2002-12-03 | 2004-07-02 | Mitsubishi Materials Corp | Negative electrode material for lithium secondary battery, lithium secondary battery using the same, and negative electrode material manufcturing method |
KR20050001404A (en) * | 2003-06-25 | 2005-01-06 | 주식회사 엘지화학 | Anode material for lithium secondary cell with high capacity |
Non-Patent Citations (1)
Title |
---|
강용묵, 한국과학기술원 박사학위 논문 (2004) |
Also Published As
Publication number | Publication date |
---|---|
KR20070059389A (en) | 2007-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1711971B1 (en) | Electrode additives coated with electro conductive material and lithium secondary comprising the same | |
KR100814617B1 (en) | Electrode active material for secondary battery | |
JP4629027B2 (en) | High capacity anode material for lithium secondary battery | |
KR100814618B1 (en) | Electrode active material for secondary battery | |
KR100789093B1 (en) | High-capacity electrode active material for secondary battery | |
TWI431841B (en) | Electrode active material with high capacity | |
KR101211327B1 (en) | Anode active material for secondary battery and method for preparing the same | |
JPWO2012144177A1 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode | |
WO2020003595A1 (en) | Nonaqueous electrolyte secondary battery | |
KR101225882B1 (en) | Anode for secondary battery | |
KR20070066942A (en) | Lithium secondary battery, and manufacturing method thereof | |
EP3793009A1 (en) | Lithium composite negative electrode active material, negative electrode comprising same and methods for manufacturing same | |
KR102206590B1 (en) | Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same | |
JP2005302300A (en) | Nonaqueous electrolyte battery | |
KR100847218B1 (en) | Electrode Active Material for Secondary Battery | |
KR100873578B1 (en) | High Capacity Cathode Active Materials for Secondary Batteries | |
KR100828879B1 (en) | Electrode active material and secondary battery using same | |
KR100826074B1 (en) | Overcharge prevention electrode additive and its manufacturing method | |
JP2021136172A (en) | Lithium secondary battery and manufacturing method of lithium secondary battery | |
US20180337423A1 (en) | Negative-electrode active material for non-aqueous secondary battery and non-aqueous secondary battery | |
KR20120139631A (en) | Electrode active material with high capacity | |
KR20140018717A (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR102210219B1 (en) | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same | |
EP3965204A1 (en) | Nonaqueous electrolyte solution | |
EP3965205A1 (en) | Non-aqueous electrolyte solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20051206 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20070327 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20051206 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20080128 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20081201 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20081204 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20081204 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20111007 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20121011 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20121011 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20131018 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20131018 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20141017 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20141017 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20150923 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20150923 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20160928 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20160928 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170919 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20170919 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20181016 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20181016 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20200928 Start annual number: 13 End annual number: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20210927 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20220926 Start annual number: 15 End annual number: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20230925 Start annual number: 16 End annual number: 16 |