KR100845425B1 - Optical sensor probe and detection method using the same - Google Patents
Optical sensor probe and detection method using the same Download PDFInfo
- Publication number
- KR100845425B1 KR100845425B1 KR1020070001320A KR20070001320A KR100845425B1 KR 100845425 B1 KR100845425 B1 KR 100845425B1 KR 1020070001320 A KR1020070001320 A KR 1020070001320A KR 20070001320 A KR20070001320 A KR 20070001320A KR 100845425 B1 KR100845425 B1 KR 100845425B1
- Authority
- KR
- South Korea
- Prior art keywords
- light
- fluorescent dye
- light emitting
- emitting diode
- photodiode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000523 sample Substances 0.000 title claims abstract description 41
- 230000003287 optical effect Effects 0.000 title claims abstract description 39
- 238000001514 detection method Methods 0.000 title description 8
- 239000007850 fluorescent dye Substances 0.000 claims abstract description 41
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000013307 optical fiber Substances 0.000 claims abstract description 34
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 18
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 16
- 239000001301 oxygen Substances 0.000 claims abstract description 16
- 230000005284 excitation Effects 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 11
- 238000011065 in-situ storage Methods 0.000 claims abstract description 9
- KXXXUIKPSVVSAW-UHFFFAOYSA-K pyranine Chemical compound [Na+].[Na+].[Na+].C1=C2C(O)=CC(S([O-])(=O)=O)=C(C=C3)C2=C2C3=C(S([O-])(=O)=O)C=C(S([O-])(=O)=O)C2=C1 KXXXUIKPSVVSAW-UHFFFAOYSA-K 0.000 claims description 12
- 239000012327 Ruthenium complex Substances 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- -1 in-situ Substances 0.000 abstract description 7
- 239000012528 membrane Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- 239000010453 quartz Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 5
- 238000003980 solgel method Methods 0.000 description 5
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- GZAJOEGTZDUSKS-UHFFFAOYSA-N 5-aminofluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(N)=CC=C21 GZAJOEGTZDUSKS-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 229920001600 hydrophobic polymer Polymers 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 2
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000010364 biochemical engineering Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
본 발명은 a) 표면에 형광염료가 고정화된 센서막; b) 일정한 파장의 빛을 발산하는 발광다이오드; c) 발산되는 빛을 검출하는 포토다이오드; d) 발광다이오드나 형광염료에 의해 발산되는 빛을 통과시키는, 센서막과 발광다이오드 및 포토다이오드, 또는 센서막과 포토다이오드를 연결하는 광섬유; e) 발광다이오드로부터 발산되는 빛 중 형광염료가 감응할 수 있는 여기광만을 선택적으로 투과시키는, 발광다이오드 앞에 위치하는 여기 필터; 및 f) 형광염료에 의해 발산되는 형광만을 선택적으로 투과시키는, 포토다이오드 앞에 위치하는 발산 필터: 를 포함하는, 광센서 프로브(optical sensor probes) 및 이를 이용하여 생물반응기에서 인시투(in-situ) 방식으로 용존 산소, 용존 이산화탄소, pH 등을 검출하는 방법에 관한 것이다.The present invention a) a sensor membrane is fixed a fluorescent dye on the surface; b) light emitting diodes emitting light of a constant wavelength; c) a photodiode for detecting emitted light; d) an optical fiber connecting the sensor film and the light emitting diode and the photodiode, or the sensor film and the photodiode, which pass light emitted by the light emitting diode or the fluorescent dye; e) an excitation filter positioned in front of the light emitting diode, which selectively transmits only excitation light which can be sensitive by a fluorescent dye among light emitted from the light emitting diode; And f) divergence filters located in front of the photodiode, which selectively transmit only fluorescence emitted by the fluorescent dye, including optical sensor probes and using them in-situ in a bioreactor. Method for detecting dissolved oxygen, dissolved carbon dioxide, pH, and the like.
광섬유, 발광다이오드, 센서 프로브, 인시투, 형광염료 Optical fiber, light emitting diode, sensor probe, in-situ, fluorescent dye
Description
도 1은 두 가닥의 광섬유를 이용하여 형광을 검출하는 광센서 프로브의 구조를 나타낸 도면이고;1 is a view showing the structure of an optical sensor probe for detecting fluorescence using two optical fibers;
도 2는 한 가닥의 광섬유를 이용하여 형광을 검출하는 광센서 프로브의 구조를 나타낸 도면이며;2 is a diagram showing the structure of an optical sensor probe for detecting fluorescence using one strand of optical fiber;
도 3 내지 5는 광센서 프로브의 본체를 나타낸 도면이고;3 to 5 show the main body of the optical sensor probe;
도 6은 졸-겔 법을 이용하여 석영판에 형광염료를 스핀 코팅하여 제작된 센서막을 나타낸 도면이고;6 is a view showing a sensor film prepared by spin coating a fluorescent dye on a quartz plate using a sol-gel method;
도 7은 실리콘을 이용하여 석영판에 형광염료를 코팅하여 제작된 센서막을 나타낸 도면이다.7 is a view showing a sensor film produced by coating a fluorescent dye on a quartz plate using silicon.
본 발명은 광센서 프로브(optical sensor probes) 및 이를 이용한 검출방법에 관한 것으로서, 보다 상세하게는, 용존 산소, 용존 이산화탄소 또는 pH 검출용 형광염료, 발광다이오드(LED: Light Emitting Diode) 및 광섬유를 이용하여 제작되 는 광센서 프로브 및 이를 이용하여 용존 산소, 용존 이산화탄소 또는 pH를 검출하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical sensor probes and a detection method using the same, and more particularly, using a fluorescent dye, a light emitting diode (LED) and an optical fiber for detecting dissolved oxygen, dissolved carbon dioxide or pH. The present invention relates to an optical sensor probe manufactured by using the same, and a method for detecting dissolved oxygen, dissolved carbon dioxide, or pH using the same.
생물공정에서 용존 산소, 용존 이산화탄소 및 pH는 미생물 생장과 밀접한 관계를 지니고 있다. 따라서 최근 배양기 내 용존 산소, 용존 이산화탄소 또는 pH를 모니터링하기 위한 기술개발이 활발히 이루어지고 있다. 특히 광학 검출기술을 이용하여 광섬유 이산화탄소 센서, pH 및 용존 산소 센서의 개발이 많이 이루어지고 있다. 광학기술을 이용한 분석 및 온라인 모니터링 기술은 기존의 전기화학적 방법을 이용한 시스템 보다 구성이 간단하고 전자기적 잡음을 일으키지 않으며, 특히 소형으로 제작이 용이하다. 최근에는 용존산소, pH 및 이산화탄소를 감응할 수 있는 형광염료를 고정화시킨 졸-겔(sol-gel) 기술이 연구되고 있다. 졸-겔 기술은 다른 고정화기술에 비하여 간단하고 결합력이 강하며 다른 환경 인자에 대한 저항성이 크다는 장점을 가지고 있다. 또한 투명한 결정을 이루기 때문에 광학 검출 시스템으로의 적용성이 뛰어나다.In bioprocessing, dissolved oxygen, dissolved carbon dioxide and pH are closely related to microbial growth. Therefore, in recent years, technology development for monitoring dissolved oxygen, dissolved carbon dioxide or pH in the incubator has been actively made. In particular, the development of optical fiber carbon dioxide sensor, pH and dissolved oxygen sensor using optical detection technology. Optical analysis and online monitoring technology are simpler to construct and produce no electromagnetic noise than conventional electrochemical systems, and are particularly compact and easy to manufacture. Recently, a sol-gel technique in which a fluorescent dye capable of reacting dissolved oxygen, pH and carbon dioxide is immobilized has been studied. The sol-gel technology has the advantages of being simple, strong and resistant to other environmental factors compared to other immobilization techniques. In addition, because of the transparent crystals, the applicability of the optical detection system is excellent.
한편, 용존 산소, pH 및 이산화탄소를 감응할 수 있는 형광염료로는 루테니움(ruthenium) 복합체, HPTS(8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염), 플루오르세인아민(fluoreceinamine)을 들 수 있다. 루테니움을 이용한 복합체들은 특정 파장에서 형광 특성을 갖는데, 대표적으로 RuDPP(트리스(4,7-디페닐-1,10-페난트롤린)루테니움 (Ⅱ) 복합체)는 470 ㎚의 여기광을 입사시켰을 때 580 ㎚의 형광을 방출하는 특성을 지니고 있으며, 산소의 농도에 반비례하여 형광을 발생시킨 다. 또한, HPTS는 이산화탄소 검출용 형광염료로 사용되며, 플루오르세인아민은 pH 검출용 형광염료로 사용되는 물질이다.Fluorescent dyes capable of reacting dissolved oxygen, pH and carbon dioxide include ruthenium complex, HPTS (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt), and fluoresceamine (fluoreceinamine). Ruthenium-based complexes have fluorescence at specific wavelengths, typically RuDPP (tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) complex) has an excitation light of 470 nm. It has a characteristic of emitting 580 nm fluorescence when it is incident, and generates fluorescence in inverse proportion to the concentration of oxygen. In addition, HPTS is used as a fluorescent dye for detecting carbon dioxide, and fluorine amine is a substance used as a fluorescent dye for pH detection.
그러나 지금까지 개발된 광섬유 센서는 플라스틱 재질로서, 고온고압 멸균이 불가능하여 생물반응기에 인시투(in-situ) 방식으로 적용할 수 없다는 단점이 있었으며, 용존 산소, 이산화탄소, pH 중 어느 한 가지만을 검출 모니터링할 수 있는 것이었다.However, the optical fiber sensor developed so far is a plastic material, which cannot be applied to a bioreactor in-situ because it is impossible to sterilize at high temperature and pressure, and detects only one of dissolved oxygen, carbon dioxide, and pH. It could be monitored.
본 발명자들은 고온고압 멸균이 가능하여 생물반응기에 인시투 방식으로 적용할 수 있을 뿐만 아니라, 용존 산소, 이산화탄소, pH 등과 같은 다양한 분석물질을 검출할 수 있는, 형광염료를 이용한 광센서 프로브를 개발해내기 위하여 지속적인 연구를 수행해왔다. 그 결과, 용존 산소, 용존 이산화탄소 또는 pH 검출용 형광염료, 발광다이오드 및 광섬유를 이용하여 광센서 프로브를 제작함으로써 상기 목적을 달성할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.The inventors of the present invention can develop an optical sensor probe using a fluorescent dye that can be applied to a bioreactor in an in-situ manner and capable of detecting various analytes such as dissolved oxygen, carbon dioxide, and pH by being capable of high temperature and high pressure sterilization. We have been conducting continuous research. As a result, it was confirmed that the above object can be achieved by manufacturing an optical sensor probe using dissolved oxygen, dissolved carbon dioxide or a fluorescent dye for detecting pH, a light emitting diode, and an optical fiber, and have completed the present invention.
따라서, 본 발명의 목적은 고온고압 멸균이 가능하여 생물반응기에 인시투 방식으로 적용할 수 있을 뿐만 아니라, 용존 산소, 이산화탄소, pH 등과 같은 여러 분석물질을 동시에 검출할 수 있는, 형광염료를 이용한 광센서 프로브를 제공하기 위한 것이다.Accordingly, an object of the present invention is not only can be applied to the bioreactor in-situ method at high temperature and high pressure sterilization, but also can detect a variety of analytes such as dissolved oxygen, carbon dioxide, pH, etc. To provide a sensor probe.
본 발명의 다른 목적은 상기 광센서 프로브를 이용하여 생물반응기에서 인시투 방식으로 여러 분석물질을 검출하는 방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for detecting various analytes in-situ in a bioreactor using the optical sensor probe.
본 발명의 제1면은The first aspect of the present invention
a) 표면에 형광염료가 고정화된 센서막;a) a sensor film in which a fluorescent dye is immobilized on the surface;
b) 일정한 파장의 빛을 발산하는 발광다이오드;b) light emitting diodes emitting light of a constant wavelength;
c) 발산되는 빛을 검출하는 포토다이오드;c) a photodiode for detecting emitted light;
d) 발광다이오드나 형광염료에 의해 발산되는 빛을 통과시키는, 센서막과 발광다이오드 및 포토다이오드, 또는 센서막과 포토다이오드를 연결하는 광섬유;d) an optical fiber connecting the sensor film and the light emitting diode and the photodiode, or the sensor film and the photodiode, which pass light emitted by the light emitting diode or the fluorescent dye;
e) 발광다이오드로부터 발산되는 빛 중 형광염료가 감응할 수 있는 여기광만을 선택적으로 투과시키는, 발광다이오드 앞에 위치하는 여기 필터; 및e) an excitation filter positioned in front of the light emitting diode, which selectively transmits only excitation light which can be sensitive by a fluorescent dye among light emitted from the light emitting diode; And
f) 형광염료에 의해 발산되는 형광만을 선택적으로 투과시키는, 포토다이오드 앞에 위치하는 발산 필터:f) an emission filter located in front of the photodiode, which selectively transmits only fluorescence emitted by the fluorescent dye:
를 포함하는, 광센서 프로브에 관한 것이다.It relates to an optical sensor probe, including.
본 발명에 따른 광센서 프로브에서, 광섬유는 발광다이오드로부터 발산되는 빛을 통과시키고 센서막과 발광다이오드를 연결하는 제1광섬유와, 형광염료로부터 발산되는 빛을 통과시키고 센서막과 포토다이오드를 연결하는 제2광섬유로 이루어지거나, 발광다이오드로부터 발산되는 빛과 형광염료로부터 발산되는 빛을 통과시키고 센서막과 포토다이오드를 연결하는 한 가닥의 광섬유로 이루어질 수 있다. 한 가닥의 광섬유를 이용하는 경우에는, 발광다이오드와 포토다이오드가 직각으로 위치하며, 그 중간에 45°에서 여기광을 반사시키고 180°에서 입사광을 투과시키는 다이크로익 필터(dichroic filter)를 위치시킬 수 있다. 또한, 형광염료는 루테니움 복합체, HPTS 및 플루오르세인아민으로 구성된 그룹으로부터 선택될 수 있 으며, 졸-겔(sol-gel) 법 또는 실리콘을 이용하여 센서막의 표면에 고정화될 수 있다. 본 발명에 따른 광센서 프로브는 스테인레스 스틸 재질의 외부 용기 및/또는 포토다이오드로 들어오는 신호를 증폭시키는 증폭기를 추가로 포함하는 것이 바람직하며, 센서막과 광섬유가 광센서 프로브로부터 탈착가능한 형태인 것이 보다 바람직하다.In the optical sensor probe according to the present invention, the optical fiber passes through the light emitted from the light emitting diode and connects the first optical fiber connecting the sensor film and the light emitting diode, and the light emitted from the fluorescent dye to connect the sensor film and the photodiode. It may be made of a second optical fiber, or may be made of one strand of optical fiber that passes the light emitted from the light emitting diode and the light emitted from the fluorescent dye and connects the sensor film and the photodiode. In the case of using one strand of optical fiber, the light emitting diode and the photodiode are positioned at right angles, and a dichroic filter which reflects the excitation light at 45 ° and transmits the incident light at 180 ° can be positioned in the middle. have. In addition, the fluorescent dye may be selected from the group consisting of ruthenium complex, HPTS and fluoresceamine, and may be immobilized on the surface of the sensor film using a sol-gel method or silicon. The optical sensor probe according to the present invention preferably further includes an amplifier for amplifying a signal coming into the outer container and / or photodiode of stainless steel, and the sensor film and the optical fiber may be detachable from the optical sensor probe. desirable.
본 발명의 제2면은 상기 광센서 프로브를 이용하여 생물반응기에서 인시투 방식으로 용존 산소, 용존 이산화탄소 또는 pH를 검출하는 방법에 관한 것이다.The second aspect of the present invention relates to a method for detecting dissolved oxygen, dissolved carbon dioxide or pH in-situ in a bioreactor using the optical sensor probe.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 광센서 프로브는 하기 구성요소를 포함하는 것이다:The optical sensor probe according to the invention comprises the following components:
a) 표면에 형광염료가 고정화된 센서막;a) a sensor film in which a fluorescent dye is immobilized on the surface;
b) 일정한 파장의 빛을 발산하는 발광다이오드;b) light emitting diodes emitting light of a constant wavelength;
c) 발광다이오드로부터 발산되는 빛 중 형광염료가 감응할 수 있는 여기광만을 선택적으로 투과시키는 여기 필터;c) an excitation filter for selectively transmitting only excitation light that can be sensitive to the fluorescent dye among the light emitted from the light emitting diode;
d) 발산되는 빛을 검출하는 포토다이오드;d) a photodiode for detecting emitted light;
e) 형광염료에 의해 발산되는 형광만을 선택적으로 투과시키는 발산 필터; 및e) an emission filter for selectively transmitting only fluorescence emitted by the fluorescent dye; And
f) 발광다이오드나 형광염료에 의해 발산되는 빛을 통과시키는 광섬유.f) Optical fibers that pass light emitted by light emitting diodes or fluorescent dyes.
본 발명에 따른 광센서 프로브에서, 센서막으로는 석영판을 사용할 수 있는 바, 석영판의 표면에 형광염료를 졸-겔 법을 이용하여 고정화시킬 수 있다. 산소 검출을 위해 사용되는 루테니움 복합체나 pH 검출을 위해 사용되는 플루오르세인아민의 경우, 먼저 테트라에틸오르쏘실리케이트와 3-글리시독시프로필 트리메톡시실란을 혼합한 후 질소 상에서 보관한다. 테트라메틸암모늄 하이드록사이드 용액을 고순도 에탄올과 혼합하여 빙냉시킨 후, 상기 용액과 혼합 교반하여 졸-겔 용액을 제조한다. 얻어진 졸-겔 용액에 고순도 에탄올에 용해시킨 루테니움 복합체 용액을 1:1 비율로 혼합하여 교반하고 센서막 표면에 코팅한 후, 실온에서 공기 건조 후 80 ℃에서 건조하여 고정화한다. 이산화탄소 검출을 위해 사용되는 HPTS를 고정화하기 위해서는, 3-아미노프로필-트리에톡시실란, 3-글리시독시프로필 트리메톡시실란 및 테트라에틸오르쏘실리케이트와 공기 중의 이산화탄소만을 확산시키기 위해 소수성 고분자인 하이드록시-말단 폴리(디메틸실록산)을 사용한다. 먼저 테트라에틸오르쏘실리케이트와 3-글리시독시프로필 트리메톡시실란, 하이드록시-말단 폴리(디메틸실록산) 및 3-아미노프로필-트리에톡시실란, 3-글리시독시프로필 트리메톡시실란을 혼합하여 빙냉시키고 교반하여 졸-겔 용액을 제조한다. 테트라메틸암모니움 하이드록사이드를 고순도 에탄올과 혼합하여 빙냉시키며 교반한 후 상기 졸-겔 용액과 혼합하고 교반하여 졸-겔 용액을 제조한다. 고순도 에탄올에 용해된 HPTS를 졸-겔 용액과 혼합하고 실온에서 교반한 후 센서막 표면에 코팅한 후, 상기와 같이 건조하여 고정화한다. 한편, 실리콘을 이용하여서도 고정화를 수행할 수 있는 바, 센서막 표면에 실리콘과 형광염료를 톨루엔에 용해시킨 용액을 코팅하고 실온에서 공기 건조시킨다.In the optical sensor probe according to the present invention, a quartz plate may be used as the sensor film, and the fluorescent dye may be immobilized on the surface of the quartz plate using the sol-gel method. In the case of the ruthenium complex used for oxygen detection or fluoresceamine used for pH detection, tetraethylorthosilicate and 3-glycidoxypropyl trimethoxysilane are first mixed and stored on nitrogen. The tetramethylammonium hydroxide solution is mixed with high purity ethanol and ice cooled, followed by mixing and stirring the solution to prepare a sol-gel solution. The ruthenium complex solution dissolved in high purity ethanol was mixed with the obtained sol-gel solution in a 1: 1 ratio, stirred, coated on the surface of the sensor film, and then air dried at room temperature and dried at 80 ° C. for immobilization. To immobilize the HPTS used for carbon dioxide detection, 3-aminopropyl-triethoxysilane, 3-glycidoxypropyl trimethoxysilane, and tetraethylorthosilicate and hydrophobic polymer hydride to diffuse only carbon dioxide in the air Roxy-terminated poly (dimethylsiloxane) is used. First mix tetraethylorthosilicate with 3-glycidoxypropyl trimethoxysilane, hydroxy-terminated poly (dimethylsiloxane) and 3-aminopropyl-triethoxysilane, 3-glycidoxypropyl trimethoxysilane Ice-cooled and stirred to prepare a sol-gel solution. Tetramethylammonium hydroxide is mixed with high purity ethanol, ice-cooled and stirred, then mixed with the sol-gel solution and stirred to prepare a sol-gel solution. HPTS dissolved in high purity ethanol is mixed with a sol-gel solution, stirred at room temperature, coated on the surface of the sensor membrane, and then dried and immobilized as described above. On the other hand, immobilization can also be performed using silicon, coating a solution of silicon and fluorescent dye dissolved in toluene on the surface of the sensor film and air dried at room temperature.
본 발명에 따른 광센서 프로브에서, 광섬유는 발광다이오드로부터 발산되는 빛을 통과시키는 제1광섬유와, 형광염료로부터 발산되는 빛을 통과시키는 제2광섬유로 이루어질 수 있다(도 1 참조). 또한, 광섬유는 발광다이오드로부터 발산되는 빛과 형광염료로부터 발산되는 빛을 통과시키는 한 가닥의 광섬유로 이루어질 수 있는 바, 이 경우에는 발광다이오드와 포토다이오드를 직각으로 위치시키며, 그 중간에 45°에서 여기광을 반사시키고 180°에서 입사광을 투과시키는 다이크로익 필터를 위치시킬 수 있다(도 2 참조). 또한, 본 발명에 따른 광센서 프로브는 포토다이오드로 들어오는 신호를 증폭시키는 증폭기를 추가로 포함하는 것이 바람직하다(도 1 및 2 참조). 본 발명에 따른 광센서 프로브의 본체를 도 3 내지 도 5에 나타내었다.In the optical sensor probe according to the present invention, the optical fiber may be composed of a first optical fiber for passing the light emitted from the light emitting diode and a second optical fiber for passing the light emitted from the fluorescent dye (see FIG. 1). In addition, the optical fiber may be composed of one strand of optical fiber passing through the light emitted from the light emitting diode and the light emitted from the fluorescent dye, in which case the light emitting diode and the photodiode are positioned at a right angle, at a 45 ° in the middle A dichroic filter can be placed that reflects the excitation light and transmits incident light at 180 ° (see FIG. 2). In addition, the optical sensor probe according to the present invention preferably further includes an amplifier for amplifying the signal coming into the photodiode (see FIGS. 1 and 2). 3 to 5 show the main body of the optical sensor probe according to the present invention.
본 발명에 따른 센서 프로브는 스테인리스 스틸 재질의 외부용기를 사용하여, 일반 생물반응기에서 적용가능하도록 하는 것이 바람직하다. 또한, 센서막과 광섬유가 광센서 프로브로부터 탈착가능한 형태로, 광섬유 부분을 분리하여 프로브만을 생물반응기에 결합하여 고온고압 멸균이 가능하도록 하고, 분석대상에 따라 센서막을 교환하여 사용함으로써 하나의 센서 프로브로 용존 산소, 용존 이산화탄소, pH 등 다양한 분석물질을 검출 모니터링할 수 있도록 하는 것이 보다 바람직하다.Sensor probe according to the present invention is preferably made of a stainless steel outer container, to be applicable in the general bioreactor. In addition, the sensor film and the optical fiber is detachable from the optical sensor probe, by separating the optical fiber portion to combine the probe only with the bioreactor to enable high temperature and high pressure sterilization, and by using the sensor film exchanged according to the analysis target It is more desirable to be able to detect and monitor various analytes such as dissolved oxygen, dissolved carbon dioxide, and pH.
따라서, 본 발명에 따른 광센서 프로브는 생물반응기에 장착하여 반응기 내 용존 산소, 용존 이산화탄소 및 pH를 인시투 방식으로 온라인 모니터링할 수 있을 뿐만 아니라, 각종 환경 모니터링 및 공정 모니터링에 유용하게 사용될 수 있다. 또한, 하나의 센서 프로브를 사용하여 동시에 여러 가지 분석물질을 모니터링할 수 있으며, 빛을 이용한 분석이므로 특히 전자기장에 민감한 분석 분야에 매우 유용하게 사용될 수 있다.Therefore, the optical sensor probe according to the present invention can be mounted on a bioreactor to monitor online the dissolved oxygen, dissolved carbon dioxide, and pH in the reactor in situ, and can be usefully used for various environmental monitoring and process monitoring. In addition, it is possible to monitor several analytes at the same time using a single sensor probe, and because the analysis using light can be very useful especially in the field of analysis sensitive to electromagnetic fields.
이하, 본 발명을 실시예에 의해 구체적으로 설명하나, 이는 본 발명의 이해를 돕기 위한 것일 뿐 본 발명의 범위를 어떤 식으로든 제한하는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples, which are intended to aid the understanding of the present invention but do not limit the scope of the present invention in any way.
제조예 1: 졸-겔 법을 이용한 루테니움 복합체 및 플루오르세인아민의 고정화Preparation Example 1 Immobilization of Ruthenium Complex and Fluoresceinamine by Sol-Gel Method
루테니움 복합체 또는 플루오르세인아민을 석영판 표면에 고정화하기 위하여, 테트라에틸오르쏘실리케이트(98%) 0.6 ㎖와 3-글리시독시프로필 트리메톡시실란(98%) 0.6 ㎖를 혼합한 후 질소 상에서 보관하였다. 0.4 ㎖의 테트라에틸암모늄 하이드록사이드(25%) 용액을 1.5 ㎖의 고순도 에탄올과 혼합한 후, 이 용액을 빙냉시킨 후 상기 용액과 혼합하고 실온에서 3 시간 동안 교반하여 졸-겔 용액을 얻었다. 얻어진 졸-겔 용액과 고순도 에탄올에 5 ㎎/ℓ의 농도로 용해시킨 루테니움 복합체 용액을 1:1 비율로 혼합한 후, 실온에서 하루 동안 교반하고 용액을 석영판 표면에 코팅하였다. 상기 코팅된 석영판을 실온에서 5 일간 공기 중에서 건조시킨 후 80 ℃에서 2 일간 건조하여 고정화하였다.In order to immobilize the ruthenium complex or fluoresceamine on the surface of the quartz plate, 0.6 ml of tetraethylorthosilicate (98%) and 0.6 ml of 3-glycidoxypropyl trimethoxysilane (98%) were mixed, followed by nitrogen. Stored in the stomach. 0.4 ml of tetraethylammonium hydroxide (25%) solution was mixed with 1.5 ml of high purity ethanol, the solution was ice-cooled, mixed with the solution and stirred at room temperature for 3 hours to obtain a sol-gel solution. The obtained sol-gel solution and the ruthenium complex solution dissolved in high purity ethanol at a concentration of 5 mg / l were mixed in a 1: 1 ratio, then stirred at room temperature for one day, and the solution was coated on the quartz plate surface. The coated quartz plate was dried in air for 5 days at room temperature and then fixed for 2 days at 80 ° C.
제조예 2: 졸-겔 법을 이용한 HPTS의 고정화Preparation Example 2 Immobilization of HPTS by Sol-Gel Method
HPTS를 석영판 표면에 고정화하기 위하여, 3-아미노프로필-트리에톡시실란, 3-글리시독시프로필 트리메톡시실란 및 테트라에틸오르쏘실리케이트와 공기 중의 이산화탄소만을 확산시키기 위해 소수성 고분자인 하이드록시-말단 폴리(디메틸실록산)을 사용하여 졸-겔을 형성하였다. 먼저 0.6 ㎖의 테트라에틸오르쏘실리케이트와 0.4 ㎖의 3-글리시독시프로필 트리메톡시실란, 0.4 ㎖의 하이드록시-말단 폴리(디메틸실록산) 및 0.6 ㎖의 3-아미노프로필-트리에톡시실란, 3-글리시독시프로필 트리메톡시실란을 혼합하여 빙냉 하에 교반하여 졸-겔 용액을 제조하였다. 테트라에틸암모늄 하이드록사이드(25%) 0.4 ㎖를 1.5 ㎖의 고순도 에탄올과 혼합하여 빙냉시키며 교반하였다. 상기 졸-겔 용액과 혼합하고 3 시간 동안 교반하여 졸-겔 용액을 제조하였다. 고순도 에탄올에 용해된 5 ㎎/ℓ의 HPTS를 졸-겔 용액과 혼합하고 실온에서 하루 동안 교반한 후 석영판 표면에 코팅하고, 상기 제조예 1과 동일하게 건조하여 고정화하였다.In order to immobilize the HPTS on the surface of the quartz plate, 3-aminopropyl-triethoxysilane, 3-glycidoxypropyl trimethoxysilane and tetraethylorthosilicate and hydroxy- which is a hydrophobic polymer to diffuse only carbon dioxide in the air Terminal poly (dimethylsiloxanes) were used to form the sol-gel. First 0.6 ml tetraethylorthosilicate and 0.4 ml 3-glycidoxypropyl trimethoxysilane, 0.4 ml hydroxy-terminated poly (dimethylsiloxane) and 0.6 ml 3-aminopropyl-triethoxysilane, 3-glycidoxypropyl trimethoxysilane was mixed and stirred under ice-cooling to prepare a sol-gel solution. 0.4 ml of tetraethylammonium hydroxide (25%) was mixed with 1.5 ml of high purity ethanol and stirred with ice. The sol-gel solution was prepared by mixing with the sol-gel solution and stirring for 3 hours. 5 mg / L HPTS dissolved in high purity ethanol was mixed with the sol-gel solution, stirred at room temperature for one day, coated on the surface of the quartz plate, and dried and immobilized in the same manner as in Preparation Example 1 above.
제조예 3: 실리콘을 이용한 루테니움 복합체, HPTS 및 플루오르세인아민의 고정화Preparation Example 3 Immobilization of Ruthenium Complex, HPTS and Fluoresceinamine Using Silicon
석영판 표면에 실리콘과 형광염료를 톨루엔에 용해시킨 용액을 코팅하고 실온에서 공기 건조시켜 고정화하였다.The quartz plate surface was coated with a solution of silicon and fluorescent dye dissolved in toluene and immobilized by air drying at room temperature.
실시예 1: 두 가닥의 광섬유로 이루어지는 광센서 프로브의 제작Example 1: Fabrication of an optical sensor probe consisting of two strands of optical fiber
광원으로 470 ㎚의 빛을 발광하는 블루 발광다이오드(blue LED)를 사용하고, 형광염료가 감응할 수 있는 여기광만을 조사하기 위하여 LED 앞에 광학 밴드 통과 필터(optical band pass filter)를 위치시켰다. 또한 검출기(실리콘 포토다이오드)로 입사되는 빛 중의 원하는 파장의 빛(형광염료에 의해 발생된 형광)만을 선택 적으로 받아들이기 위하여 광학 밴드 통과 필터를 두었다. 상기 제조예 1 내지 3에 따라, 형광염료를 두께 2 ㎜, 직경 12 mm의 석영판에 고정화하였다. 또한 LED에서 일정한 광량을 방출시키기 위하여 전자제어부에 LED를 연결하고, 검출기로 들어오는 신호를 증폭시키기 위하여 록-인 증폭기(lock-in amplifier)를 포토다이오드에 연결하여, 도 1에 나타낸 바와 같은 광센서 프로브를 제작하였다.A blue light emitting diode (blue LED) emitting light of 470 nm was used as a light source, and an optical band pass filter was placed in front of the LED to irradiate only excitation light that the fluorescent dye could respond to. In addition, an optical band pass filter was installed to selectively receive only light having a desired wavelength (fluorescence generated by a fluorescent dye) among the light incident on the detector (silicon photodiode). According to Preparation Examples 1 to 3, the fluorescent dye was immobilized on a quartz plate having a thickness of 2 mm and a diameter of 12 mm. In addition, the LED is connected to the electronic control unit to emit a constant amount of light from the LED, and a lock-in amplifier is connected to the photodiode to amplify the signal coming into the detector. Probes were fabricated.
실시예 2: 한 가닥의 광섬유로 이루어지는 광센서 프로브의 제작Example 2: Fabrication of an optical sensor probe consisting of one strand of optical fiber
광원과 검출기는 상기 실시예 1과 같이 설치하되, 한 가닥의 광섬유를 이용하기 위하여 LED와 포토다이오드를 직각으로 위치시키고, 그 중간에 45°에서 여기광을 반사시키고 180°에서 입사광을 투과시키는 다이크로익 필터를 위치시켜 도 2에 나타낸 바와 같은 광센서 프로브를 제작하였다.The light source and the detector are installed in the same manner as in Example 1, but in order to use a single optical fiber, the LED and the photodiode are positioned at right angles, and a dike that reflects the excitation light at 45 ° in the middle and transmits the incident light at 180 °. The roic filter was positioned to produce an optical sensor probe as shown in FIG. 2.
상기한 바와 같은 광센서 프로브는 생물반응기에 장착하여 반응기 내 용존 산소, 용존 이산화탄소 및 pH를 온라인 모니터링할 수 있을 뿐만 아니라, 각종 환경 모니터링 및 공정 모니터링에 유용하게 사용될 수 있다. 또한, 하나의 센서 프로브를 사용하여 동시에 여러 가지 분석물질을 모니터링할 수 있으며, 빛을 이용한 분석이므로 특히 전자기장에 민감한 분석 분야에 매우 유용하게 사용될 수 있다.The optical sensor probe as described above may be mounted on a bioreactor to monitor dissolved oxygen, dissolved carbon dioxide, and pH in the reactor online, and may be useful for various environmental monitoring and process monitoring. In addition, it is possible to monitor several analytes at the same time using a single sensor probe, and because the analysis using light can be very useful especially in the field of analysis sensitive to electromagnetic fields.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070001320A KR100845425B1 (en) | 2007-01-05 | 2007-01-05 | Optical sensor probe and detection method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070001320A KR100845425B1 (en) | 2007-01-05 | 2007-01-05 | Optical sensor probe and detection method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080064422A KR20080064422A (en) | 2008-07-09 |
KR100845425B1 true KR100845425B1 (en) | 2008-07-10 |
Family
ID=39815725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070001320A Expired - Fee Related KR100845425B1 (en) | 2007-01-05 | 2007-01-05 | Optical sensor probe and detection method using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100845425B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100860958B1 (en) | 2007-08-08 | 2008-09-30 | 전남대학교산학협력단 | Multi-channel Small Bioreactor with Optical Sensor Membrane Attachment |
KR100940513B1 (en) | 2008-04-30 | 2010-02-10 | 전남대학교산학협력단 | Optical Sensor Membrane, Apparatus and Method for Simultaneous Detection of Two or More Variables of Dissolved Oxygen, pH and Temperature |
KR101135717B1 (en) * | 2010-01-05 | 2012-04-13 | (주)동양화학 | Microoraganisms activity measuring method |
KR101135716B1 (en) * | 2010-01-05 | 2012-04-13 | (주)동양화학 | Microoraganisms activity measuring device |
KR101166556B1 (en) | 2010-12-07 | 2012-07-19 | 국립암센터 | Fluorescence sensing probe and fluorescence sensing method using the same |
KR102159454B1 (en) | 2019-07-30 | 2020-09-23 | 건국대학교 산학협력단 | Cyclic type arbon dioxide detection sensor of carbon capture and storage |
KR20210014281A (en) | 2019-07-30 | 2021-02-09 | 건국대학교 산학협력단 | Carbon dioxide detection sensor of carbon capture and storage |
KR20220075823A (en) | 2020-11-30 | 2022-06-08 | 건국대학교 산학협력단 | Low cost all in one sensor for CO2 detection |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102841080B (en) * | 2012-08-06 | 2014-10-15 | 上海交通大学 | Dual Parameter Fiber Optic Sensor for pH and Dissolved Oxygen Measurement |
CN104236604A (en) * | 2013-06-14 | 2014-12-24 | 天津奇谱光电技术有限公司 | Fluorescence method optical fiber sensor |
CN104237179A (en) * | 2013-06-14 | 2014-12-24 | 天津奇谱光电技术有限公司 | Optical fiber sensing equipment by fluorescence method |
KR101838640B1 (en) | 2015-06-17 | 2018-03-14 | (주)동국이노텍 | Cell metabolism measurement apparatus based on microplate |
KR101675543B1 (en) * | 2015-06-17 | 2016-11-11 | (주) 동국이노텍 | Cell metabolism measurement apparatus based on microplate |
KR101875702B1 (en) * | 2017-01-13 | 2018-07-06 | (주) 동국이노텍 | Ultra-precision thermostat apparatus for measurement of metabolic heat change in cells |
CN108458997B (en) * | 2017-12-29 | 2020-10-27 | 北京农业智能装备技术研究中心 | Dissolved oxygen optical fiber sensor |
KR102197006B1 (en) * | 2018-11-20 | 2020-12-30 | 주식회사 케이에스 | Disposible Container for Bacteria |
CN109916885B (en) * | 2019-03-26 | 2024-04-26 | 上海思源光电有限公司 | Real-time online detection device for dissolved oxygen content in insulating oil |
KR102818624B1 (en) * | 2024-02-19 | 2025-06-10 | 무송지오씨 주식회사 | optical type dissolved oxygen measurement apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5896255A (en) * | 1981-12-02 | 1983-06-08 | Toyo Commun Equip Co Ltd | Electric field sensor |
JPH02190748A (en) * | 1989-01-19 | 1990-07-26 | Terumo Corp | Implement for measuring oxygen concentration |
KR20010035759A (en) * | 1999-10-02 | 2001-05-07 | 박호군 | Mono layered granular structure type thin film for magnetic sensor |
-
2007
- 2007-01-05 KR KR1020070001320A patent/KR100845425B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5896255A (en) * | 1981-12-02 | 1983-06-08 | Toyo Commun Equip Co Ltd | Electric field sensor |
JPH02190748A (en) * | 1989-01-19 | 1990-07-26 | Terumo Corp | Implement for measuring oxygen concentration |
KR20010035759A (en) * | 1999-10-02 | 2001-05-07 | 박호군 | Mono layered granular structure type thin film for magnetic sensor |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100860958B1 (en) | 2007-08-08 | 2008-09-30 | 전남대학교산학협력단 | Multi-channel Small Bioreactor with Optical Sensor Membrane Attachment |
KR100940513B1 (en) | 2008-04-30 | 2010-02-10 | 전남대학교산학협력단 | Optical Sensor Membrane, Apparatus and Method for Simultaneous Detection of Two or More Variables of Dissolved Oxygen, pH and Temperature |
KR101135717B1 (en) * | 2010-01-05 | 2012-04-13 | (주)동양화학 | Microoraganisms activity measuring method |
KR101135716B1 (en) * | 2010-01-05 | 2012-04-13 | (주)동양화학 | Microoraganisms activity measuring device |
KR101166556B1 (en) | 2010-12-07 | 2012-07-19 | 국립암센터 | Fluorescence sensing probe and fluorescence sensing method using the same |
WO2012077936A3 (en) * | 2010-12-07 | 2012-10-04 | National Cancer Center | Fluorescence-sensing probe, and fluorescence detection method, sentinel lymph node dissection method and target-guided surgery method which use the probe |
KR102159454B1 (en) | 2019-07-30 | 2020-09-23 | 건국대학교 산학협력단 | Cyclic type arbon dioxide detection sensor of carbon capture and storage |
KR20210014281A (en) | 2019-07-30 | 2021-02-09 | 건국대학교 산학협력단 | Carbon dioxide detection sensor of carbon capture and storage |
KR20220075823A (en) | 2020-11-30 | 2022-06-08 | 건국대학교 산학협력단 | Low cost all in one sensor for CO2 detection |
Also Published As
Publication number | Publication date |
---|---|
KR20080064422A (en) | 2008-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100845425B1 (en) | Optical sensor probe and detection method using the same | |
Bambot et al. | Phase fluorometric sterilizable optical oxygen sensor | |
US6051437A (en) | Optical chemical sensor based on multilayer self-assembled thin film sensors for aquaculture process control | |
Kocincova et al. | Fiber-optic microsensors for simultaneous sensing of oxygen and pH, and of oxygen and temperature | |
Moßhammer et al. | Design and application of an optical sensor for simultaneous imaging of pH and dissolved O2 with low cross-talk | |
US8574921B2 (en) | Optical sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature | |
Wang et al. | Minreview: Recent advances in the development of gaseous and dissolved oxygen sensors | |
Burke et al. | Development of an optical sensor probe for the detection of dissolved carbon dioxide | |
Abel et al. | Fast responsive, optical trace level ammonia sensor for environmental monitoring | |
Ghosh et al. | Optical dissolved oxygen sensor utilizing molybdenum chloride cluster phosphorescence | |
Chu | Optical fiber oxygen sensor based on Pd (II) complex embedded in sol–gel matrix | |
Optiz et al. | Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes | |
Schaffar et al. | Chemically mediated fiberoptic biosensors | |
Zilberman et al. | Microfluidic optoelectronic sensor based on a composite halochromic material for dissolved carbon dioxide detection | |
KR20220027985A (en) | Sensor module for multi-parameter analysis of media | |
Urriza-Arsuaga et al. | Luminescence-based sensors for bioprocess applications | |
Walt | Fiber-optic sensors for continuous clinical monitoring | |
Pérez de Vargas-Sansalvador et al. | Compact optical instrument for simultaneous determination of oxygen and carbon dioxide | |
Petrasek et al. | Confocal luminescence lifetime imaging with variable scan velocity and its application to oxygen sensing | |
KR100940513B1 (en) | Optical Sensor Membrane, Apparatus and Method for Simultaneous Detection of Two or More Variables of Dissolved Oxygen, pH and Temperature | |
Badugu et al. | Development and application of an excitation ratiometric optical pH sensor for bioprocess monitoring | |
Lam et al. | Optical instrumentation for bioprocess monitoring | |
CA2329783A1 (en) | System and method for optical chemical sensing | |
Chan et al. | Application of a luminescence-based pH optrode to monitoring of fermentation by Klebsiella pneumoniae | |
Mills et al. | Fluorescent carbon dioxide indicators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20070105 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20071214 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20080404 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20080704 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20080707 End annual number: 3 Start annual number: 1 |
|
PG1501 | Laying open of application | ||
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20110704 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20120702 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20130515 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20130515 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140704 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20140704 Start annual number: 7 End annual number: 7 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20160609 |