[go: up one dir, main page]

KR100839337B1 - In2O3-ZnO-Sb2O5 target composition and its manufacturing method required for depositing n-type transparent conductive thin film by sputtering method - Google Patents

In2O3-ZnO-Sb2O5 target composition and its manufacturing method required for depositing n-type transparent conductive thin film by sputtering method Download PDF

Info

Publication number
KR100839337B1
KR100839337B1 KR1020070015690A KR20070015690A KR100839337B1 KR 100839337 B1 KR100839337 B1 KR 100839337B1 KR 1020070015690 A KR1020070015690 A KR 1020070015690A KR 20070015690 A KR20070015690 A KR 20070015690A KR 100839337 B1 KR100839337 B1 KR 100839337B1
Authority
KR
South Korea
Prior art keywords
cations
zno
cation
thin film
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020070015690A
Other languages
Korean (ko)
Inventor
김정주
이준형
허영우
서경한
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020070015690A priority Critical patent/KR100839337B1/en
Application granted granted Critical
Publication of KR100839337B1 publication Critical patent/KR100839337B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing gallium, indium or thallium, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/004Oxides; Hydroxides; Oxyacids
    • C01G30/005Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 n형 인듐 절약형(In-less) 투명전도 박막의 재료로 사용되는 도전성 In2O3-ZnO-Sb2O5계 세라믹스 재료 및 이 재료를 이용하여 스퍼터링 방법 등으로 박막을 증착할 때 필요한 타겟 제작 방법에 관한 것으로서, Zn 양이온과 Sb 양이온의 비율을 2:1(Zn:Sb=2:1)로 고정시킨 후 In 양이온 대신에 Zn 양이온과 Sb 양이온의 동시 첨가량을 증가시킴으로써 인듐의 함량을 감소시키고 소결밀도가 이론밀도의 97% 이상인 치밀한 In2O3-ZnO-Sb2O5계 세라믹스 타겟 제조에 관한 것이다.The present invention relates to a conductive In 2 O 3 -ZnO-Sb 2 O 5 based ceramic material used as a material of an n-type in-less transparent conductive thin film and a thin film deposited by a sputtering method using the material. A method for producing a target, in which the content of indium is increased by fixing the ratio of Zn cations to Sb cations at 2: 1 (Zn: Sb = 2: 1) and increasing the simultaneous addition of Zn cations and Sb cations instead of In cations. The present invention relates to the production of dense In 2 O 3 -ZnO-Sb 2 O 5 based ceramic targets having a reduced sintering density and a sintered density of 97% or more of theoretical density.

본 발명과 같이 In 양이온 대신 Zn 양이온과 Sb 양이온을 동시 첨가하여 In2O3-ZnO-Sb2O5계 세라믹스 타겟을 제조시 고온에서 Sb 양이온의 휘발이 발생한다. 이를 억제하기 위하여, 먼저 고온에서도 Sb 양이온의 휘발이 일어나지 않는 ZnSb2O6를 합성하여 ZnO와 함께 첨가하며 이때 Zn 양이온과 Sb 양이온의 비율이 2:1이 되게한다. 이렇게 함으로써 일반적인 고상법으로 소결할 경우 Sb 양이온의 휘발로 인한 조성불균일 및 치밀화 문제점 등을 용이하게 해결할 수 있는 장점이 있다.In the present invention, when Zn cations and Sb cations are simultaneously added instead of In cations, volatilization of Sb cations occurs at a high temperature when In 2 O 3 -ZnO-Sb 2 O 5 -based ceramic targets are prepared. In order to suppress this, first, ZnSb 2 O 6 , which does not generate volatilization of Sb cations even at high temperatures, is synthesized and added together with ZnO such that the ratio of Zn cations and Sb cations is 2: 1. By doing so, when sintered by a general solid-state method, there is an advantage that the composition nonuniformity and densification problems due to volatilization of the Sb cation can be easily solved.

Description

n형 투명전도 박막을 스퍼터링 방법으로 증착시 필요한 In2O3-ZnO-Sb2O5 계 타겟 조성 및 이의 제조 방법{Composition and Fabrication of In2O3-ZnO-Sb2O5 targets for n-type transparent conducting oxide film deposition through sputteirng methods}Composition and fabrication of In2O3-ZnO-Sb2O5 targets for n-type transparent conducting oxide film deposition through sputteirng methods}

도 1은 본 발명의 실시 예 조성을 나타낸 것으로 각 산화인듐(In2O3), 산화아연(ZnO) 및 산화 안티몬(Sb2O5)의 투입 함량 및 상태도상의 조성을 도시한 것이다.Figure 1 shows an embodiment composition of the present invention shows the composition of the content and state diagram of the indium oxide (In 2 O 3 ), zinc oxide (ZnO) and antimony oxide (Sb 2 O 5 ).

도 2는 본 발명의 실시 예 조성을 산소중에서 1500℃로 2시간동안 소결한 후 소결체의 상발달을 XRD를 이용하여 상분석한 결과를 그래프로 나타낸 것이다.2 is a graph showing the results of phase analysis of the phase development of the sintered compact by XRD after sintering the composition of the embodiment of the present invention at 1500 ° C. in oxygen for 2 hours.

도 3은 도2의 XRD결과를 이용하여 첨가량 변화에 따라 생성된 In2O3상의 격자상수 변화를 그래프로 나타낸 것이다.FIG. 3 is a graph showing the lattice constant change of the In 2 O 3 phase generated according to the change in the addition amount using the XRD result of FIG. 2.

도 4는 본 발명의 실시 예 조성을 산소중에서 1500℃로 2시간동안 소결한 후 소결체의 상발달을 전자현미경을 이용하여 분석한 미세구조 사진을 나타낸 것이다.Figure 4 shows a microstructure photograph of the embodiment of the present invention after sintering in oxygen for 2 hours at 1500 ℃ in the development of the sintered body using an electron microscope.

도 5는 본 발명의 실시 예 조성을 산소중에서 1500℃로 2시간동안 소결한 후 소결체의 전기적 특성을 Hall effect 측정기를 이용하여 분석한 결과를 그래프로 나타낸 것이다.5 is a graph showing the results of analyzing the electrical properties of the sintered body after sintering at 1500 ° C. in oxygen for 2 hours in an embodiment of the present invention using a Hall effect meter.

본 발명은 n형 인듐 절약형(In-less) 투명전도 박막의 재료로 사용되는 도전성 In2O3-ZnO-Sb2O5계 세라믹스 재료 및 이 재료를 이용하여 스퍼터링 방법 등으로 박막을 증착할 때 필요한 타겟 제작 방법에 관한 것으로서, 보다 구체적으로는 Zn양이온과 Sb양이온의 비율을 2:1로(Zn:Sb=2:1) 고정시킨 후 In 양이온 대신에 Zn 양이온과 Sb 양이온의 동시 첨가량을 증가시킴으로써 인듐의 함량을 감소시키고 소결밀도가 이론밀도의 97% 이상인 치밀한 In2O3-ZnO-Sb2O5계 세라믹스 타겟 제조에 관한 것이다.The present invention relates to a conductive In 2 O 3 -ZnO-Sb 2 O 5 based ceramic material used as a material of an n-type in-less transparent conductive thin film and a thin film deposited by a sputtering method using the material. As a specific method for producing a target, more specifically, the ratio of Zn and Sb cations is fixed to 2: 1 (Zn: Sb = 2: 1), and the amount of simultaneous addition of Zn and Sb cations instead of In cations is increased. The present invention relates to the production of dense In 2 O 3 -ZnO-Sb 2 O 5 based ceramics targets having a reduced content of indium and a sintered density of not less than 97% of theoretical density.

투명전도성 박막은 일반적으로 103Ω-1cm-1의 전기전도도, 가시광선영역에서 80% 이상의 투광성, 3.5eV 이상의 밴드갭을 가지는 재료로서, 전기전도도와 가시광영역에서의 투광성이 비교적 높기 때문에 전기적, 광학적 재료로 관심을 받아왔고, 다년간 연구 대상이 되어왔다.The transparent conductive thin film is generally a material having an electrical conductivity of 10 3 Ω -1 cm -1 , a light transmittance of 80% or more in the visible region, and a bandgap of 3.5 eV or more, and is relatively high in electrical conductivity and light transmittance in the visible region. The company has been interested in optical materials and has been the subject of research for many years.

투명전도성 박막은 액정 디스플레이 및 태양 전지, 창유리용 열선 반사 필름 및 대전 방지 필름과 같은 용도에 사용되며, 전기전도도에 기여하는 캐리어(carrier)의 종류에 따라, 크게 n형과 p형으로 분류된다. n형 투명전도 박막 중에서, 2-10wt%의 산화 주석(SnO2)을 함유하는 산화인듐(In2O3) 필름은 그 높은 전기 전도성 및 우수한 투명성으로 인해 많은 용도를 갖는다. 산화인듐-산화주석(In2O3-SnO2)을 이하에서는 ITO(Indium Tin Oxide)라 부른다. 이러한 ITO는 값 비싼 산화인듐을(In2O3) 90wt% 이상 함유하기 때문에 값이 비싸고, 디스플레이 산업의 발달과 함께 수급 불균형이 이루어지고 있다는 단점을 가진다.Transparent conductive thin films are used in applications such as liquid crystal displays and solar cells, heat ray reflecting films for window panes, and antistatic films, and are classified into n-type and p-type according to the type of carriers contributing to electrical conductivity. Among n-type transparent conductive thin films, indium oxide (In 2 O 3 ) films containing 2-10 wt% tin oxide (SnO 2 ) have many uses due to their high electrical conductivity and excellent transparency. Indium tin oxide (In 2 O 3 -SnO 2 ) is hereinafter referred to as indium tin oxide (ITO). Such ITO is expensive because it contains 90 wt% or more of expensive indium oxide (In 2 O 3 ), and has a disadvantage of supply and demand imbalance with the development of the display industry.

이와 같은 요구에 따라서 ITO를 대신할 투명 전도성 세라믹스 재료로서 산화아연(ZnO)계, 산화주석(SnO2)계 혹은 산화인듐-산화아연-산화주석(In2O3-ZnO-SnO2) 화합물 등에 대한 연구가 많이 이루어지고 있으나, 이러한 재료들이 ITO에 비해 디스플레이용으로 응용되지 못한 가장 큰 이유는 전기 저항 특성이 절대적인 열위에 있다는 것이며, 이를 해결하기 위해 주로 도핑 물질(dopant) 개발에 집중하고 있다.As a transparent conductive ceramic material to replace ITO, zinc oxide (ZnO), tin oxide (SnO 2 ) or indium zinc oxide-tin oxide (In 2 O 3 -ZnO-SnO 2 ) compounds and the like are replaced according to such requirements. Although a lot of research has been conducted, the biggest reason why these materials are not applied for displays compared to ITO is that the electrical resistance properties are in absolute inferiority, and the main focus is on developing a dopant.

산화 아연(ZnO)계의 경우 대기중에서의 경시적 안정성이 부족해 온도상승에 약한 문제가 있다. 한편, 저저항막을 얻기 위해서 불순물로서 인듐, 알루미늄, 붕소, 갈륨, 게르마늄 등이 검토되고 있지만, 산화알루미늄을 첨가한 ZnO-Al2O3계 및 산화갈륨을 수 at% 첨가한 ZnO-Ga2O3계가 부분적으로 상용화되고 있는 수준이다. 그러나, 산화아연(ZnO)계가 ITO 대체재로 응용되기 위해서는 성막조건의 안정성, 막의 부착강도, 에칭 특성 등 아직도 해결해야 할 과제들이 산적해 있는 수준이다.In the case of zinc oxide (ZnO), there is a problem in temperature rise due to lack of stability in the air over time. On the other hand, in order to obtain a low resistance film, indium, aluminum, boron, gallium, germanium and the like have been studied as impurities, but ZnO-Al 2 O 3 based aluminum oxide and ZnO-Ga 2 O added several at% of gallium oxide The third system is partially commercialized. However, in order for zinc oxide (ZnO) to be applied as an ITO substitute, there are still many problems to be solved, such as stability of film formation conditions, film adhesion strength, and etching characteristics.

산화주석(SnO2)계 투명 전도성 박막은 화학적으로 안정하고 값이 산화인듐보다는 비교적 싸지만, 산화인듐(In2O3)계의 투명 전도막에 비해 투명성, 전도성이 뒤 떨어진다. 또한 산에 대한 에칭성이 나쁜 것으로 알려져 있다. 따라서 ITO를 대체할 만한 특성 구현은 어려운 상태라 말할 수 있다.Although the tin oxide (SnO 2 ) based transparent conductive thin film is chemically stable and relatively inexpensive than indium oxide, the transparency and conductivity are inferior to that of the indium oxide (In 2 O 3 ) based transparent conductive film. It is also known that the etching property against acid is bad. Therefore, it can be said that it is difficult to implement characteristics that can replace ITO.

산화 인듐-산화주석-산화아연 화합물 조성의 경우, In 양이온 대신에 Zn 양이온과 Sn 양이온을 동시치환 시킴으로써 산화인듐에 대한 고용범위를 효과적으로 확대시킬 수 있다. 이러한 고용영역의 확대를 통하여 산화인듐의 사용량을 현저히 감소시킴으로써 ITO를 대체할 조성으로의 가능성이 충분하다고 할 수 있을 것이라 예상되나 아직까지 ITO에 상응하는 투과율 및 전기적 특성에는 도달하지 못하고 있다.In the case of the indium oxide-tin oxide-zinc oxide compound composition, the solid solution range for indium oxide can be effectively expanded by co-substituting the Zn cation and the Sn cation instead of the In cation. It is expected that the expansion of the solid solution area will significantly reduce the amount of indium oxide, and thus, the possibility of replacing ITO may be sufficient. However, the transmittance and electrical properties corresponding to ITO have not been reached.

본 발명의 첫 번째 목적은 산화인듐(In2O3), 산화아연(ZnO) 및 산화안티몬(Sb2O5)를 특정 비율로 함유하는 화합물의 소결체를 n형 투명 도전성 재료에 사용함으로서, 스퍼터링 방법으로 종래의 ITO 보다 열적인 안정성, 전기 전도도 및 투광성이 우수한 박막증착을 할 수 있는 도전성 In2O3-ZnO-Sb2O5계 세라믹스 재료를 제공하는 것을 목적으로 한다The first object of the present invention is to sputter by using a sintered body of a compound containing indium oxide (In 2 O 3 ), zinc oxide (ZnO) and antimony oxide (Sb 2 O 5 ) in an n-type transparent conductive material, It is an object of the present invention to provide a conductive In 2 O 3 -ZnO-Sb 2 O 5 based ceramic material capable of depositing thin films with better thermal stability, electrical conductivity and light transmittance than conventional ITO.

본 발명의 두 번째 목적은 상기와 같은 종래 기술들의 문제점을 해소하기 위해 인출된 것으로, 현재 범용으로 가장 많이 사용되고 있는 ITO의 주재료인 산화인듐의 수급이 불안정하고 가격적인 면에서 매우 고가이기 때문에(100만원/1kg, 2006년 기준), 산화인듐의 함량을 감소시킨 보다 범용의 저가소재를 개발하기 위함이다.The second object of the present invention has been drawn to solve the problems of the prior art as described above, since supply and demand of indium oxide, the main material of ITO, which is currently used most widely for general use, is unstable and very expensive in terms of price (100 10,000 won / 1kg, as of 2006), to develop a more general purpose low cost material with reduced content of indium oxide.

본 발명의 세 번째 목적은 In2O3-ZnO-SnO2계 세라믹스 타겟을 일반적인 고상법으로 합성할 경우, Sb 양이온의 휘발로 인한 조성 불균일 및 치밀화의 문제점을 보다 용이하게 해결하고 소결밀도가 이론밀도의 97%이상인 치밀한 In2O3-ZnO-SnO2계 세라믹스 타겟 제조 방법을 제공하는데 목적이 있다.The third object of the present invention is to more easily solve the problems of composition nonuniformity and densification due to volatilization of Sb cations when the In 2 O 3 -ZnO-SnO 2 -based ceramic targets are synthesized by a general solid-state method. An object of the present invention is to provide a method for producing a dense In 2 O 3 -ZnO-SnO 2 based ceramics target having a density of 97% or more.

본 발명은 스퍼터링 방법으로 n형 산화인듐계 투명전도 박막을 증착할 때 필요한 타겟 제조시 Zn 양이온과 Sb 양이온의 양이온 비율을 일정하게 (Zn:Sb=2:1) 고정시킨 후, Zn 양이온과 Sb 양이온의 동시 첨가량을 증가시킴으로써 산화인듐의 함량을 감소시킨 n형 투명 전도성 스퍼터링용 타겟의 제조를 목적으로 한다. 이 경우 서로 전하가수가 다른 Zn 양이온(Zn2+)과 Sb 양이온(Sb5+)을 2:1비율로 In 양이온(In3+)을 대신해 동시치환 시킴으로써 전하보상효과에 의한 고용범위의 확대를 이룰 수 있었다.According to the present invention, a fixed ratio (Zn: Sb = 2: 1) of Zn cations and Sb cations during the preparation of a target required for depositing an n-type indium oxide-based transparent conductive thin film by a sputtering method is fixed. An object of the present invention is to prepare an n-type transparent conductive sputtering target having a reduced content of indium oxide by increasing the amount of simultaneous addition of cations. In this case, Zn cations (Zn 2+ ) and Sb cations (Sb 5+ ), which have different charge numbers, are co-substituted in place of In cations (In 3+ ) at a 2: 1 ratio to expand the solid solution range due to the charge compensation effect. Could achieve.

한편, In 양이온 대신 Zn 양이온과 Sb 양이온을 동시 첨가하여 In2O3-ZnO-Sb2O5계 세라믹스 타겟을 제조시 Sb 양이온의 휘발을 억제하기 위하여, 먼저 고온에서도 Sb 양이온의 휘발이 일어나지 않는 ZnSb2O6를 합성하여 ZnO와 함께 첨가하며 이때 Zn 양이온과 Sb 양이온의 비율이 2:1이 되게한다. 이렇게 함으로써 일반적인 고상법으로 소결할 경우 Sb 양이온의 휘발로 인한 조성불균일 및 치밀화 문제점 등을 용이하게 해결할 수 있는 장점이 있다.On the other hand, In place of Zn cation to cation, and Sb by simultaneous addition of the cationic In 2 O 3 -ZnO-Sb 2 O 5 based ceramics to suppress the volatilization of Sb cations manufacturing the target, that is, first a volatile cation of Sb at high temperatures occur ZnSb 2 O 6 is synthesized and added together with ZnO such that the ratio of Zn cations and Sb cations is 2: 1. By doing so, when sintered by a general solid-state method, there is an advantage that the composition nonuniformity and densification problems due to volatilization of the Sb cation can be easily solved.

이하 본 발명을 실시예를 통하여 구체적으로 설명한다. 그러나 이하의 실시예는 본 발명에 대한 일 실시예로서 이에 의해 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are not intended to limit the scope of the present invention by one embodiment of the present invention.

실시예 1Example 1

n형 산화물 투명전도체인 산화 인듐계 박막을 형성하기 위하여 필요한 In2O3-ZnO-Sb2O5 타겟 제조방법으로서 먼저 고온에서도 Sb 양이온의 휘발이 일어나지 않는 ZnSb2O6를 합성하여 ZnO와 함께 첨가하며 이때 Zn 양이온과 Sb 양이온의 비율이 2:1이 되게 하였다. In2O3 분말, ZnSb2O6 분말 및 ZnO분말을 도면 1에 나타낸 각각의 조성으로 혼합하여 볼 밀 장치로 24시간 처리한 후, 냉간 정수압 성형(cold isostatic pressing)을 이용하여 200MPa의 압력으로 3분간 유지시킨 후 성형된 시편을 산소를 주입시키며 1500℃에서 2시간 소결하여 In2O3-ZnO-Sb2O5 타겟을 제작하였다.In 2 O 3 -ZnO-Sb 2 O 5 target manufacturing method required to form an indium oxide-based thin film, an n-type oxide transparent conductor, ZnSb 2 O 6 which does not volatilize Sb cation even at high temperature is synthesized together with ZnO. At this time, the ratio of Zn cation and Sb cation was 2: 1. In 2 O 3 powder, ZnSb 2 O 6 powder, and ZnO powder were mixed in the respective compositions shown in Fig. 1, treated with a ball mill for 24 hours, and then cooled to 200 MPa using cold isostatic pressing. After maintaining for 3 minutes, the molded specimen was injected with oxygen and sintered at 1500 ° C. for 2 hours, thereby preparing an In 2 O 3 -ZnO-Sb 2 O 5 target.

이때, 도면 2에 나타낸 바와 같이 X-ray 상회절 분석결과 산소중 1500℃에서 소결한 경우, 순수한 In2O3에 Zn2+와 Sb5+를 2:1비율로 첨가량을 증가시킴에 따라, 동시 치환 고용한계로 추정되는 x=5 (In3+:Zn2+:Sb5+=85:10:5) 까지는 단일상의 cubic bixbyite 구조의 In2O3 peak만이 관찰되지만, 이 후 첨가량을 증가시킬 경우, x=7 (In3+:Zn2+:Sb5+=79:14:7) 에서 스피넬 구조의 β-Zn7Sb2O12상이 생성되어 두상의 공존 영역이 형성되며, 첨가량이 증가함에 따라 상의 스피넬 상의 분율이 증가함을 알 수 있다.At this time, as shown in the X-ray phase diffraction analysis as shown in Figure 2, when sintered at 1500 ℃ in oxygen, as the addition amount of Zn 2+ and Sb 5+ in a 2: 1 ratio to pure In 2 O 3 , Until x = 5 (In 3+ : Zn 2+ : Sb 5+ = 85: 10: 5), which is assumed to be the co-substitution dissolution limit, only the In 2 O 3 peak of the cubic bixbyite structure of single phase is observed, but the amount of addition is increased In this case, a β-Zn 7 Sb 2 O 12 phase having a spinel structure is formed at x = 7 (In 3+ : Zn 2+ : Sb 5+ = 79: 14: 7) to form a coexistence region of two phases. It can be seen that the fraction of the spinel phase of the phase increases with increasing.

도면 3에는 Zn2+와 Sb5+를 2:1의 비율로 동시 첨가량을 증가시킴에 따른 격자상수의 변화를 나타낸 것이다. Cubic bixbyite 구조의 In2O3상의 격자상수는 첨가량이 증가함에 따라 x=5 (In3+:Zn2+:Sb5+=85:10:5) 까지는 격자상수가 급격하게 감소하다가 더 이상으로 첨가량을 증가시킨 x=7 (In3+:Zn2+:Sb5+=79:14:7)에서 일정하게 유지됨이 관찰되었다. 이러한 격자상수의 감소는 In3+ (0.080nm)에 비해 이온반경이 작은 Zn2+(0.074nm)와 Sb5+(0.060nm)가 In2O3에 동시치환 고용되기 때문에 나타난 결과로 판단되며, 고용한계를 넘어선 x=7에서 격자상수는 변화하지 않게 되는 것이다.Figure 3 shows the change in lattice constant with increasing simultaneous addition of Zn 2+ and Sb 5+ in a ratio of 2: 1. The lattice constant of In 2 O 3 phase of Cubic bixbyite structure decreases rapidly until x = 5 (In 3+ : Zn 2+ : Sb 5+ = 85: 10: 5) with increasing amount It was observed to remain constant at x = 7 (In 3+ : Zn 2+ : Sb 5+ = 79: 14: 7) which increased the amount added. This reduction in the lattice constant is determined by the results shown because of In 3+ (0.080nm) have an ionic radius smaller Zn 2+ (0.074nm) and Sb 5+ (0.060nm) is employed relative to the simultaneous substitution to the In 2 O 3 In other words, the lattice constant does not change at x = 7 beyond the employment limit.

도면 4는 산소중 1500℃에서 소결한 시편을 주사전자현미경 (SEM, Jeol, JSM-5400, Japan)을 이용하여 측정한 미세구조 사진이다. 모든 시편에서 기공이 거의 존재하지 않고 소결밀도가 이론밀도의 97% 이상으로 완전 치밀화 되었음을 알 수 있다. Zn2+와 Sb5+의 완전고용으로 인해 x=5조성까지는 첨가량에 관계없이 조대한 입자크기가 유지됨이 관찰되었다. 이후 첨가량 증가에 따라, 이차상의 생성과 함께 입자크기가 급격히 감소함이 관찰되었다. 즉, x=7의 경우, In2O3상의 감소와 동시에 생성된 β-Zn7Sb2O12상이 입계에 존재하여 입계의 이동을 방해함으로써 입자성장이 억제된 것이다. 또한 x=9의 경우, β-Zn7Sb2O12상의 분율이 증가함으로써 이러한 입자성장 억제효과가 더욱 두드러지게 된 것이다.4 is a microstructure photograph of a specimen sintered at 1500 ° C. in oxygen using a scanning electron microscope (SEM, Jeol, JSM-5400, Japan). It can be seen that almost no pores were present in all specimens and the sintered density was completely densified to more than 97% of theoretical density. Due to the complete employment of Zn 2+ and Sb 5+ , coarse particle size was maintained up to x = 5 composition regardless of the amount added. It was then observed that as the amount added increased, the particle size drastically decreased with the formation of the secondary phase. That is, in the case of x = 7, the β-Zn 7 Sb 2 O 12 phase generated at the same time as the reduction of the In 2 O 3 phase is present in the grain boundary, and the grain growth is inhibited by preventing the movement of the grain boundary. In addition, in the case of x = 9, by increasing the fraction of β-Zn 7 Sb 2 O 12 phase, such a particle growth inhibitory effect is more pronounced.

도면 5는 산소중 1500℃에서 소결한 시편을 Hall Effect 측정기 (Ecopia, HMS-3000, Korea)를 이용하여 측정한 전기적 특성을 변화를 나타낸 그래프이다. In2O3상의 경우 환원 분위기에서 소결할 경우 In2O3-δ의 비화학양론식을 가지며, 이러한 δ 값으로 인해 n-type 전기전도 특성을 나타낸는 것으로 알려져 있다. 본 발명의 경우 시편의 치밀화를 위해 산소분위기에서 소결을 시행함으로써, x=0인 순수한 In2O3상의 전기전도 특성이 매우 낮은 값을 가지게 될 것이라 판단된다. x=0인 순수한 In2O3에 Zn2+와 Sb5+의 동시치환량을 증가시킴에 따라, 전기전도도는 첨가량 증가와 함께 증가하다가, 고용한계인 x=5에서 최대값을 나타낸 후, 고용한계 이상으로 첨가량을 증가시킬 경우, 다시 감소함이 나타났다. 이는 이차상(β-Zn7Sb2O12)의 석출로 인한 입자크기의 감소 때문이다.5 is a graph showing the change in electrical characteristics of the specimen sintered at 1500 ℃ in oxygen using a Hall Effect measuring instrument (Ecopia, HMS-3000, Korea). The In 2 O 3 phase has a nonstoichiometric formula of In 2 O 3-δ when sintered in a reducing atmosphere, and it is known that the In 2 O 3 phase exhibits n-type electrical conductivity. In the case of the present invention, by sintering in an oxygen atmosphere for densification of the specimen, it is determined that the electrical conductivity of the pure In 2 O 3 phase of x = 0 will have a very low value. As the co-substitution of Zn 2+ and Sb 5+ increases in pure In 2 O 3 with x = 0, the electrical conductivity increases with increasing the amount of addition, and then reaches a maximum at the solid solution limit x = 5, Increasing the amount above the limit showed a decrease. This is due to the decrease in particle size due to precipitation of the secondary phase (β-Zn 7 Sb 2 O 12 ).

상기와 같이 구성된 본 발명의 소결밀도가 이론밀도의 97%이상인 치밀한 도전성 In2O3-ZnO-Sb2O5계 소결체를 이용하여 만들어진 타겟을 사용하면, 현재 범용으로 사용되는 ITO에 비해 저가이면서 우수한 전기적 특성을 가지는 n형 도전성 스퍼 터링 타겟의 제조가 가능하다는 효과가 있다.When using a target made of a dense conductive In 2 O 3 -ZnO-Sb 2 O 5 based sintered compact having a sintered density of the present invention configured as described above 97% or more of theoretical density, it is inexpensive compared to the currently used general purpose ITO. There is an effect that it is possible to manufacture the n-type conductive sputtering target having excellent electrical properties.

Claims (3)

삭제delete 산화인듐, 산화 아연 및 산화 안티몬의 각 성분을, 그의 금속 원자비에 있어서Each component of indium oxide, zinc oxide, and antimony oxide in terms of its metal atomic ratio InO1.5/(InO1.5 + ZnO + SbO2.5) = 0.73 내지 0.97InO 1.5 / (InO 1.5 + ZnO + SbO 2.5 ) = 0.73 to 0.97 ZnO/(InO1.5 + ZnO + SbO2.5) = 0.02 내지 0.18ZnO / (InO 1.5 + ZnO + SbO 2.5 ) = 0.02 to 0.18 SbO2.5/(InO1.5 + ZnO + SbO2.5) = 0.01 내지 0.09SbO 2.5 / (InO 1.5 + ZnO + SbO 2.5 ) = 0.01 to 0.09 인 조성을 특징으로 하는 In2O3-ZnO-Sb2O5계 세라믹스 타겟에 있어서,In In 2 O 3 -ZnO-Sb 2 O 5- based ceramic target characterized by the phosphorus composition, 상기 인듐 양이온에 상기 Zn 양이온과 상기 Sb 양이온의 비율이 동일한 2:1의 비율로 첨가된 것을 특징으로 하는 In2O3-ZnO-Sb2O5계 세라믹스 타겟.An In 2 O 3 —ZnO—Sb 2 O 5 based ceramics target, wherein the ratio of the Zn cation and the Sb cation is added to the indium cation in the same ratio of 2: 1. In 양이온 대신 Zn 양이온과 Sb 양이온을 동시 첨가하여 In2O3-ZnO-Sb2O5계 세라믹스 타겟을 형성하는 제조방법에 있어서, Sb 양이온의 휘발이 일어나지 않는 ZnSb2O6를 합성한 후 ZnO와 함께 첨가하여 Zn 양이온과 Sb 양이온의 비율이 2:1의 비율로 동시 첨가하는 것을 특징으로 하는 In2O3-ZnO-Sb2O5계 세라믹스 타겟의 제조방법.In the method for forming an In 2 O 3 -ZnO-Sb 2 O 5 -based ceramic target by simultaneously adding a Zn cation and an Sb cation instead of an In cation, after ZnSb 2 O 6 is synthesized without volatilization of the Sb cation, ZnO And adding together and simultaneously adding a Zn cation and a Sb cation in a ratio of 2: 1. A method of manufacturing an In 2 O 3 -ZnO-Sb 2 O 5 based ceramic target.
KR1020070015690A 2007-02-13 2007-02-13 In2O3-ZnO-Sb2O5 target composition and its manufacturing method required for depositing n-type transparent conductive thin film by sputtering method Expired - Fee Related KR100839337B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070015690A KR100839337B1 (en) 2007-02-13 2007-02-13 In2O3-ZnO-Sb2O5 target composition and its manufacturing method required for depositing n-type transparent conductive thin film by sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070015690A KR100839337B1 (en) 2007-02-13 2007-02-13 In2O3-ZnO-Sb2O5 target composition and its manufacturing method required for depositing n-type transparent conductive thin film by sputtering method

Publications (1)

Publication Number Publication Date
KR100839337B1 true KR100839337B1 (en) 2008-06-17

Family

ID=39771777

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070015690A Expired - Fee Related KR100839337B1 (en) 2007-02-13 2007-02-13 In2O3-ZnO-Sb2O5 target composition and its manufacturing method required for depositing n-type transparent conductive thin film by sputtering method

Country Status (1)

Country Link
KR (1) KR100839337B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235219A (en) * 1993-12-28 1995-09-05 Idemitsu Kosan Co Ltd Conductive transparent substrate and method for producing the same
JP2000256060A (en) 1999-03-05 2000-09-19 Idemitsu Kosan Co Ltd Transparent conductive material, transparent conductive glass and transparent conductive film
KR20040030048A (en) * 2001-07-17 2004-04-08 이데미쓰 고산 가부시키가이샤 Sputtering target and transparent conductive film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235219A (en) * 1993-12-28 1995-09-05 Idemitsu Kosan Co Ltd Conductive transparent substrate and method for producing the same
JP2000256060A (en) 1999-03-05 2000-09-19 Idemitsu Kosan Co Ltd Transparent conductive material, transparent conductive glass and transparent conductive film
KR20040030048A (en) * 2001-07-17 2004-04-08 이데미쓰 고산 가부시키가이샤 Sputtering target and transparent conductive film

Similar Documents

Publication Publication Date Title
CN101405427B (en) Zinc oxide-based transparent conductor and sputtering target for forming the transparent conductor
KR101841314B1 (en) Sintered oxide material, method for manufacturing same, sputtering target, oxide transparent electrically conductive film, method for manufacturing same, and solar cell
CN101233257B (en) Semiconductor thin film and method for manufacturing the same
EP2495224B1 (en) Indium oxide sintered body and indium oxide transparent conductive film
KR101990663B1 (en) Sputtering target for forming transparent oxide film and method for producing same
KR20090008299A (en) PHONO deposition material and PHONO film formed by it
TWI564250B (en) Oxide sintered body, sputtering target and oxide film
CN107207356B (en) Oxide sintered body, oxide sputtering target and oxide thin film
JPWO2009081677A1 (en) Tin oxide-magnesium oxide sputtering target and transparent semiconductor film
KR100839337B1 (en) In2O3-ZnO-Sb2O5 target composition and its manufacturing method required for depositing n-type transparent conductive thin film by sputtering method
TW201405580A (en) Sintered body and amorphous thin film
TWI579254B (en) Sintered and amorphous membranes
KR101485305B1 (en) Sintered body and amorphous film
CN104781211B (en) Oxide sinter, sputtering target using same, and oxide film
JP5776563B2 (en) Transparent film, method for producing the same, and sputtering target for forming transparent film
CN110573474A (en) Sn-Zn-O oxide sintered body and method for producing same
JPH06248427A (en) Raw material for vacuum vapor deposition
Peng et al. Effect of doping concentrations on properties of Nb doped ZnO (NZO) ceramics targets
KR102095828B1 (en) Oxide sintered body and sputtering target
JPH0971420A (en) Electrically conductive transparent oxide material
Houng et al. Preparation of TiO2 thin films deposited from highly dense targets with multi-oxide glass doping
WO2013140838A1 (en) SINTERED In-Ga-Zn-O-BASED OXIDE COMPACT AND METHOD FOR PRODUCING SAME, SPUTTERING TARGET, AND OXIDE SEMICONDUCTOR FILM
Cai et al. Effect of Doping Concentrations on Properties of Ga-Ti Co-Doped ZnO (GTZO) Targets
JPH0971419A (en) Electrically conductive transparent oxide material
JP2015042773A (en) Tablet for vapor deposition, production method thereof and oxide film

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20070213

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20080131

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20080602

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20080611

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20080611

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20110530

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20120530

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20130520

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20130520

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20140521

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20140521

Start annual number: 7

End annual number: 7

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20160310

FPAY Annual fee payment

Payment date: 20160311

Year of fee payment: 8

PR0401 Registration of restoration

Patent event code: PR04011E01D

Patent event date: 20160310

Comment text: Registration of Restoration

PR1001 Payment of annual fee

Payment date: 20160311

Start annual number: 8

End annual number: 8

R401 Registration of restoration
LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20170509

Termination category: Default of registration fee

Termination date: 20160310