[go: up one dir, main page]

KR100834008B1 - Metal catalyst electrode supported on conductive polymer and fuel cell comprising same - Google Patents

Metal catalyst electrode supported on conductive polymer and fuel cell comprising same Download PDF

Info

Publication number
KR100834008B1
KR100834008B1 KR1020060131002A KR20060131002A KR100834008B1 KR 100834008 B1 KR100834008 B1 KR 100834008B1 KR 1020060131002 A KR1020060131002 A KR 1020060131002A KR 20060131002 A KR20060131002 A KR 20060131002A KR 100834008 B1 KR100834008 B1 KR 100834008B1
Authority
KR
South Korea
Prior art keywords
metal catalyst
conductive polymer
catalyst electrode
metal
catalyst
Prior art date
Application number
KR1020060131002A
Other languages
Korean (ko)
Inventor
이재락
김석
박수진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020060131002A priority Critical patent/KR100834008B1/en
Application granted granted Critical
Publication of KR100834008B1 publication Critical patent/KR100834008B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

A metal catalyst electrode, and a fuel cell containing the metal catalyst electrode are provided to improve the electrochemical properties of a catalyst electrode by using a metal particle. A metal catalyst electrode comprises a conductive polymer support having the oxidation/reduction activity; and 1-10 % of a metal particle which is supported on the conductive polymer support by electroplating. Preferably the conductive polymer has a conjugated structure, is selected from polyaniline, polypyrrole, polythiophene, polyacetylene and their mixture, and is doped with an organic acid or an inorganic acid. Preferably the metal is selected from Pt, Ru, Ni, Co and an alloy comprising their mixture.

Description

전도성 고분자에 담지된 금속 촉매 전극 및 이를 포함하는 연료전지 {METAL CATALYST ELECTRODE SUPPORTED IN CONDUCTIVE POLYMER AND FUEL CELL COMPRISING SAME}Metal catalyst electrode supported on conductive polymer and fuel cell comprising same {METAL CATALYST ELECTRODE SUPPORTED IN CONDUCTIVE POLYMER AND FUEL CELL COMPRISING SAME}

도 1은 실시예 1 내지 5에 따른, 전도성 고분자 지지체에 담지된 금속 촉매 전극의 X-선 회절 분석 결과를 나타낸 것이다.FIG. 1 shows the results of X-ray diffraction analysis of a metal catalyst electrode supported on a conductive polymer support according to Examples 1 to 5. FIG.

도 2는 비교예 1 내지 4에 따른, 흑연 나노섬유 지지체에 담지된 금속 촉매 전극의 X-선 회절 분석 결과를 나타낸 것이다.Figure 2 shows the X-ray diffraction analysis of the metal catalyst electrode supported on the graphite nanofiber support according to Comparative Examples 1 to 4.

도 3은 실시예 1 내지 5에 따른, 전도성 고분자 지지체에 담지된 금속 촉매 전극의 전기 화학적 활성을 나타낸 것이다.3 shows the electrochemical activity of the metal catalyst electrode supported on the conductive polymer support according to Examples 1 to 5.

도 4는 비교예 1 내지 4에 따른, 흑연 나노섬유 지지체에 담지된 금속 촉매 전극의 전기 화학적 활성을 나타낸 것이다.Figure 4 shows the electrochemical activity of the metal catalyst electrode supported on the graphite nanofiber support according to Comparative Examples 1 to 4.

본 발명은 전기화학적 활성이 우수한 금속 촉매 전극 및 이를 포함하는 연료 전지에 관한 것이다.The present invention relates to a metal catalyst electrode having excellent electrochemical activity and a fuel cell comprising the same.

연료전지는 보통 전지와는 달리 전지의 교체나 충전이 필요없고, 기체 혹은 액체 연료를 공급하여 전기화학 반응을 통해 화학에너지를 전기에너지로 변환시켜주는 장치이다. 연료전지의 장점은 고효율이며, 친환경적인 에너지원으로서 다양한 연료의 사용이 가능하고, 연료 종류에 따라서 부피를 조절하여 다양한 응용측면에 맞추어 제작할 수 있다는 점이다. 즉, 이동용 휴대기기 등의 이동형 전원, 자동차의 수송용 전원, 가정용 및 전력 사업용으로 이용 가능한 분산형 전원에 이르기까지 다양한 응용분야가 가능하다.Unlike ordinary batteries, fuel cells do not require replacement or recharging of batteries, and supply gas or liquid fuel to convert chemical energy into electrical energy through an electrochemical reaction. The advantage of the fuel cell is that it can be used for various fuels as a highly efficient and eco-friendly energy source, and can be manufactured for various application aspects by adjusting the volume according to the type of fuel. That is, a variety of applications are possible from mobile power supplies such as mobile portable devices, power supplies for transportation of automobiles, and distributed power supplies that can be used for home and power businesses.

연료전지는 사용되는 연료와 작동 온도에 따라 분류될 수 있다. 즉, AFCs(알칼리 연료전지), PAFCs(인산형 연료전지), MCFCs(용융탄산염 연료전지), SOFCs(고체 산화물 연료전지), PEMFCs(고분자 전해질 연료전지), DMFCs(직접 메탄올 연료전지)가 있다. 여러가지 형태의 연료전지 중에서 이동기기의 전원으로서 응용이 가능한 것은 PEMFCs와 DMFCs라고 할 수 있다.Fuel cells can be classified according to the fuel used and the operating temperature. These include AFCs (alkaline fuel cells), PAFCs (phosphate fuel cells), MCFCs (molten carbonate fuel cells), SOFCs (solid oxide fuel cells), PEMFCs (polymer electrolyte fuel cells), and DMFCs (direct methanol fuel cells). . Among various types of fuel cells, PEMFCs and DMFCs can be used as power sources for mobile devices.

연료전지의 양극과 음극 전극재료의 촉매로서 가장 많이 이용되는 것은 백금과 같은 귀금속 촉매이며, 이러한 귀금속 촉매를 탄소 지지체에 담지하여 촉매전극을 제조하는 것이 일반적이다. 귀금속 촉매는 매우 고가여서 전기화학적 촉매 활성을 크게 감소시키지 않으면서 담지량을 감소시킬 필요성이 있으며, 촉매 입자의 크기를 작게 하여 지지체에 균일하게 담지시키는 것이 중요하다.The most commonly used catalysts for the anode and cathode electrode materials of fuel cells are noble metal catalysts such as platinum, and it is common to manufacture a catalyst electrode by supporting such a noble metal catalyst on a carbon support. Precious metal catalysts are very expensive and there is a need to reduce the amount of loading without significantly reducing the electrochemical catalyst activity, and it is important to make the catalyst particles small in size and to be uniformly supported on the support.

한편, 금속 촉매를 촉매 지지체에 담지하는 일반적인 방법으로는 백금 등의 금속 염 전구체를 지지체에 흡착시킨 후, 환원제 또는 수소가스를 이용하여 금속을 환원시키는 화학적 담지법이 있다. 이러한 화학적 담지법은 처리시간이 길고, 많은 양의 촉매가 비활성 상태로 존재할 수 있으며, 전극 제조공정 및 전극 구조가 복잡하여 연료 전지의 가격상승을 초래할 수 있다.On the other hand, as a general method of supporting a metal catalyst on a catalyst support, there is a chemical supporting method in which a metal salt precursor such as platinum is adsorbed on the support and then the metal is reduced using a reducing agent or hydrogen gas. Such a chemical supporting method has a long processing time, a large amount of catalyst may be present in an inactive state, and the electrode manufacturing process and the electrode structure may be complicated, resulting in a fuel cell price increase.

금속 촉매 전극을 제조하기 위한 또 다른 방법으로는 전기화학적 담지법, 즉 촉매 금속 전구체를 탄소 지지체에 흡착시킨 후 전압을 인가함으로써 금속 촉매를 환원시키는 방법이 있다. 전기화학적 담지법은 일반 화학적 담지법에 비해 간단하며 처리시간이 짧아 촉매 제조시의 비용절감과 촉매의 성능 향상에 크게 기여할 수 있다.Another method for producing a metal catalyst electrode is an electrochemically supported method, that is, a method of reducing a metal catalyst by adsorbing a catalyst metal precursor to a carbon support and then applying a voltage. The electrochemical supporting method is simpler than the general chemical supporting method and the processing time is short, which can greatly contribute to cost reduction and catalyst performance improvement.

이러한 전기화학적 담지법에 의한 촉매 전극 제조시 촉매 지지체는 넓은 표면적, 큰 세공부피 및 높은 전도도를 가져야 하는데, 현재 많이 사용되고 있는 흑연 나노섬유와 같은 탄소재료는 불규칙한 세공구조, 낮은 세공부피, 낮은 전도도 등의 문제점이 있어 촉매 지지체로 사용하기 위해서는 나피온(NafionTM)과 혼합하여 사용되는 것이 일반적이다. 또한, 비표면적이 크고 전기전도성이 우수한 카본블랙은 상당히 고가여서 비용상의 문제점을 갖는다.The catalyst support should have a large surface area, large pore volume and high conductivity in the preparation of the catalyst electrode by the electrochemical supporting method. Carbon materials such as graphite nanofibers, which are widely used, have irregular pore structure, low pore volume, low conductivity, etc. In order to use it as a catalyst support, it is generally used in combination with Nafion . In addition, carbon black having a large specific surface area and excellent electrical conductivity is quite expensive and has a cost problem.

이에, 본 발명자들은 촉매 지지체로서 탄소 지지체 대신, 보다 저렴하면서 산화환원 활성을 갖는 전도성 고분자에 금속 촉매 입자를 전기화학적 방법으로 담지시키는 경우 경제적인 방식으로 촉매의 전기화학적 활성을 현저히 향상시킬 수 있음을 발견하고 본 발명을 완성하게 되었다.Thus, the present inventors can significantly improve the electrochemical activity of the catalyst in an economical manner when the metal catalyst particles are electrochemically supported on the conductive polymer having a lower cost and redox activity instead of the carbon support as the catalyst support. Discovered and completed the present invention.

본 발명의 목적은 기존의 알려지지 않은 새로운 소재를 도입하여 얻은, 전기화학적 활성이 우수한 금속 촉매 및 이를 포함하는 연료전지를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a metal catalyst having excellent electrochemical activity and a fuel cell including the same, which are obtained by introducing a new and unknown material.

상기 목적에 따라 본 발명에서는, 산화환원 활성을 갖는 전도성 고분자에 금속입자가 담지된 금속 촉매 전극을 제공한다.In accordance with the above object, the present invention provides a metal catalyst electrode in which metal particles are supported on a conductive polymer having redox activity.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 금속 촉매 전극은 지지체로서 전도성 고분자를 사용하고 그 위에 금속 입자가 고르게 담지된 것을 특징으로 하며, 구체적으로 금속입자 전구체가 분산된 용액에 전도성 고분자-부착 전극을 삽입한 후 전압을 인가함으로써 전기적 산화환원 작용에 의해 금속입자를 전도성 고분자에 담지시킴으로써 제조될 수 있다.The metal catalyst electrode according to the present invention is characterized in that a conductive polymer is used as a support and metal particles are evenly loaded thereon. Specifically, a voltage is applied after the conductive polymer-attach electrode is inserted into a solution in which the metal particle precursor is dispersed. It can be prepared by supporting the metal particles in the conductive polymer by the electrical redox action.

본 발명에서 적용한 전기화학적 담지법은 촉매의 크기와 함량을 짧은 시간에 용이하게 제어할 수 있다.The electrochemical supporting method applied in the present invention can easily control the size and content of the catalyst in a short time.

본 발명에서, 촉매 지지체로서 사용된 전도성 고분자는 기존의 탄소 지지체와 같이 전기 전도성을 가져 촉매에 전자를 전달하는 역할을 할 뿐만 아니라, 자체적으로 산화환원 작용을 하여 전압 인가시에 전류를 발생시킴에 따라 촉매의 전기적 활성을 향상시킬 수 있다.In the present invention, the conductive polymer used as the catalyst support has the same electrical conductivity as the conventional carbon support to transfer electrons to the catalyst, and also generates a current upon application of voltage by redoxing itself. Accordingly, the electrical activity of the catalyst can be improved.

본 발명에서 사용가능한 산화환원 활성을 갖는 전도성 고분자는 주사슬에 π 결합을 가지는 공액(conjugated) 구조를 갖는 것이며, 이의 바람직한 예로는 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아세틸렌 또는 이들의 혼합물이 포함된다. 이들 화합물은 공지의 방법으로 제조되거나 시판 상품을 구입하여 사용될 수 있다.The conductive polymer having redox activity usable in the present invention has a conjugated structure having a π bond in the main chain, and preferred examples thereof include polyaniline, polypyrrole, polythiophene, polyacetylene or mixtures thereof. . These compounds may be prepared by known methods or used by purchasing a commercial item.

이러한 전도성 고분자는 전기 전도도 향상을 위해, 황산, 염산 및 질산과 같은 무기산, 또는 도데실벤젠설폰산, 캠포설폰산 및 톨루엔 설폰산과 같은 유기산으로 도핑될 수 있다. 전도성 고분자의 도핑은 고분자가 금속 촉매 전구체 용액에 첨가되기 전에 수행되거나, 상기 전구체 용액에 고분자와 유기산 또는 무기산을 함께 투입함으로써 수행될 수 있으며, 이때 유기산 또는 무기산은 전도성 고분자 단량체 단위당 도핑산의 분자수가 10 내지 50% 되게 하는 함량으로 사용되는 것이 바람직하다.Such conductive polymers may be doped with inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, or organic acids such as dodecylbenzenesulfonic acid, camphorsulfonic acid and toluene sulfonic acid to improve electrical conductivity. Doping of the conductive polymer may be performed before the polymer is added to the metal catalyst precursor solution, or may be performed by injecting the polymer together with the organic or inorganic acid in the precursor solution, wherein the organic acid or the inorganic acid has a molecular number of doping acid per unit of the conductive polymer monomer. Preference is given to using in amounts that are from 10 to 50%.

본 발명에서, 촉매 성분으로 사용될 수 있는 금속으로는 Pt, Ru, Ni, Co 및 이들의 조합으로 이루어진 합금을 들 수 있으며, 이들 금속은 전구 화합물 상태로 물 또는 유기용매에 5 내지 50mM의 농도로 분산되어 사용된다.In the present invention, metals that can be used as catalyst components include alloys composed of Pt, Ru, Ni, Co, and combinations thereof, and these metals are in the form of precursor compounds in a concentration of 5 to 50 mM in water or an organic solvent. Distributed.

본 발명에 따른 금속 촉매 전극에서, 전도성 고분자 지지체에 담지된 촉매의 평균 입자 크기는 2 내지 10 nm, 바람직하게는 3 내지 8 nm 이며, 이러한 크기의 촉매는 지지체에 1 내지 10%의 수준으로 담지된다.In the metal catalyst electrode according to the present invention, the average particle size of the catalyst supported on the conductive polymer support is 2 to 10 nm, preferably 3 to 8 nm, and the catalyst of this size is supported on the support at a level of 1 to 10%. do.

본 발명의 금속 촉매 전극은 900mV에서의 전류밀도가 -4×10-3 내지 1.5×10-2 로서, 우수한 전기화학적 활성을 나타낸다.The metal catalyst electrode of the present invention has a current density at 900 mV of −4 × 10 −3 to 1.5 × 10 −2 , which shows excellent electrochemical activity.

상술한 바와 같은 본 발명의 금속 촉매 전극은 금속 촉매 전구체의 분산 용액에 작업전극으로서 전도성 고분자를 부착시킨 전극, 카운터 전극 및 기준전극을 삽입한 후 일정시간 동안 전압을 인가함으로써 전도성 고분자에 금속입자를 담지시킨 다음, 고체 분말을 여과 및 세척한 후 건조시킴으로써 제조될 수 있다. 이때, 금속 촉매의 담지 시간은 인가되는 전압 조건에 따라 달라지나, 대략 15 내지 30분이 바람직하며, 담지 시간이 지나치게 길어지면 촉매의 응집이 발생하여 전기화학적 활성이 떨어지게 된다.In the metal catalyst electrode of the present invention as described above, metal particles are added to the conductive polymer by applying a voltage for a predetermined time after inserting the electrode, the counter electrode, and the reference electrode to which the conductive polymer is attached as a working electrode to the dispersion solution of the metal catalyst precursor. After supporting, the solid powder can be prepared by filtration, washing and drying. At this time, the supporting time of the metal catalyst varies depending on the applied voltage condition, but it is preferably about 15 to 30 minutes, and if the supporting time is too long, agglomeration of the catalyst occurs and the electrochemical activity is reduced.

이와 같이, 전기화학적 담지법으로 산화환원 작용을 할 수 있는 전도성 고분자에 금속입자를 담지시켜 얻은 금속 촉매는 전도성 고분자 지지체의 산화환원성이 부가됨에 따라 전기화학적 특성이 향상되어 연료전지에 효율적으로 사용될 수 있다.In this way, the metal catalyst obtained by supporting the metal particles in the conductive polymer capable of redox action by the electrochemical support method can be effectively used in fuel cells as the electrochemical properties are improved as the redox property of the conductive polymer support is added. have.

이하, 하기 실시예에 의하여 본 발명을 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예 1Example 1

먼저, 촉매 지지체로서 사용할 폴리아닐린을 제조하기 위해, 빙욕에 1M HCl 500㎖에 넣어 5℃가 되게 한 후 아닐린 5㎖ 및 0.06M 암모늄 퍼설페이트 100㎖를 첨가하였다. 24시간 후, 혼합물을 에탄올 및 물로 세척하고 여과하여 24시간 동안 건조하였다.First, to prepare polyaniline to be used as a catalyst support, it was put in 500 ml of 1M HCl in an ice bath to 5 ° C, and then 5 ml of aniline and 100 ml of 0.06 M ammonium persulfate were added. After 24 hours, the mixture was washed with ethanol and water, filtered and dried for 24 hours.

촉매의 전기화학적 담지를 수행하기 위해, 20mM H2PtCl6 및 20mM RuCl3의 1:1 혼합물을 에틸렌글리콜에 분산시킨 용액에 작업전극으로서 상기에서 얻은 폴리아닐린을 부착시킨 유리질 탄소 전극, 카운터 전극으로서 Pt선 및 기준 전극으로서 Ag/AgCl을 삽입한 후, 6분 동안 -0.2 내지 0.7V의 전위 및 0.03초의 펄스 간격으로 전압을 인가하였다. 그 다음, 고체 분말을 여과하고, 증류수로 세척한 후 건조하여 폴리아닐렌에 백금-루테늄 입자가 하기 표 1에 나타낸 바와 같은 크기 및 양으로 담지된 촉매 전극을 수득하였다.In order to carry out the electrochemical loading of the catalyst, a glassy carbon electrode obtained by attaching the polyaniline obtained above as a working electrode to a solution in which a 1: 1 mixture of 20 mM H 2 PtCl 6 and 20 mM RuCl 3 was dispersed in ethylene glycol, Pt as a counter electrode Ag / AgCl was inserted as the line and reference electrode, and then voltage was applied at a potential of −0.2 to 0.7V and a pulse interval of 0.03 seconds for 6 minutes. The solid powder was then filtered, washed with distilled water and dried to give a catalyst electrode in which platinum-ruthenium particles were supported in polyaniline in the size and amount as shown in Table 1 below.

실시예 2 내지 4Examples 2-4

담지 시간을 각각 12분, 24분 및 36분으로 하는 것을 제외하고는, 실시예 1과 동일한 공정을 수행하였다.The same process as in Example 1 was carried out except that the supporting time was 12 minutes, 24 minutes, and 36 minutes, respectively.

실시예 5Example 5

촉매 지지체로서 사용할 폴리아닐린의 제조시에 1M HCl 대신 1M 도데실벤젠설폰산 500㎖를 사용하고 담지 시간을 24분으로 하는 것을 제외하고는, 실시예 1과 동일한 공정을 수행하였다.The same process as in Example 1 was carried out except that 500 ml of 1M dodecylbenzenesulfonic acid was used instead of 1M HCl in preparing polyaniline to be used as a catalyst support and the holding time was 24 minutes.

비교예 1Comparative Example 1

촉매 지지체로서 폴리아닐린 대신 흑연나노섬유(GNF) 분말을 사용하는 것을 제외하고는 실시예 1과 동일한 공정을 수행하여, GNF에 담지된 백금-루테늄 촉매를 수득하였다.A platinum-ruthenium catalyst supported on GNF was obtained in the same manner as in Example 1 except that graphite nanofiber (GNF) powder was used instead of polyaniline as the catalyst support.

비교예 2 내지 4Comparative Examples 2 to 4

담지 시간을 각각 12분, 24분 및 36분으로 하는 것을 제외하고는, 비교예 1과 동일한 공정을 수행하였다.The same process as in Comparative Example 1 was carried out except that the supporting time was 12 minutes, 24 minutes, and 36 minutes, respectively.

실시예 1 내지 5, 및 비교예 1 내지 4로부터 제조된 백금-루테늄 촉매전극에 대한 X-선 회절법(XRD) 분석결과를 각각 도 1 및 도 2에 나타내었으며, 상기 XRD 분석결과로부터 산출한 담지된 촉매 입자의 평균 크기, 및 ICP-AES(inductively coupled plasma-atomic emission spectrometer)로 측정한 촉매 담지량을 하기 표 1에 나타내었다.X-ray diffraction (XRD) analysis results of the platinum-ruthenium catalyst electrode prepared in Examples 1 to 5 and Comparative Examples 1 to 4 are shown in FIGS. 1 and 2, respectively, and are calculated from the XRD analysis results. The average size of the supported catalyst particles, and the catalyst loading measured by an inductively coupled plasma-atomic emission spectrometer (ICP-AES) are shown in Table 1 below.

Figure 112006094535602-pat00001
Figure 112006094535602-pat00001

상기 표 1로부터, 전도성 고분자인 폴리아닐린 및 탄소재료인 GNF 지지체에 담지된 금속 촉매 모두 담지시간이 증가할수록 고르게 분산되어 담지량이 증가하다가, 24분 이후에서는 입자의 뭉침이 발생하여 크기가 증가하고 담지량이 감소하는 것을 볼 수 있다.From Table 1, all of the metal catalysts supported on the conductive polymer polyaniline and the GNF support of the carbon material are dispersed evenly as the supporting time increases, but after 24 minutes, the agglomeration of particles occurs to increase the size and the supporting amount. You can see the decrease.

또한, 담지된 금속 촉매의 전기활성을 분석하기 위해서, 제조된 촉매 분말을 나피온(Nafion)과 함께 잘 분산시킨 후 글래시 카본 전극(glassy carbon electrode)에 부착시켜 건조시키고, 상대전극으로서 백금 호일 및 기준전극으로 Ag/AgCl을 사용하여 0.5M H2SO4와 1.0M CH3OH 혼합 용액에서 300 mV에서 1100 mV의 범위에서 순환 전압 전류법(cyclic voltammetry)으로 전압-전류 곡선을 측정하였다.In addition, in order to analyze the electrical activity of the supported metal catalyst, the prepared catalyst powder is well dispersed with Nafion and then attached to a glassy carbon electrode and dried, and a platinum foil as a counter electrode. And a voltage-current curve was measured by cyclic voltammetry in a range of 300 mV to 1100 mV in a 0.5 MH 2 SO 4 and 1.0 M CH 3 OH mixed solution using Ag / AgCl as a reference electrode.

도 3 및 도 4는 각각 실시예 1 내지 5, 및 비교예 1 내지 4에 따라 제조된 금속 촉매 전극의 전기화학적 활성을 보여주는 것으로서, 이들로부터 실시예 1 내지 5에 따라 전도성 고분자로서 폴리아닐린에 담지된 금속 촉매 전극이 탄소 재료인 GNF 지지체에 담지된 비교예 1 내지 4의 촉매 전극에 비해 입자의 담지량이 다소 적음에도 불구하고 전기적 활성은 현저히 우수한 것을 알 수 있다. 특히, 실시예 3에 따라 담지된 촉매의 경우가 가장 우수한 결과를 보였는데 이는 촉매 입자가 뭉치지 않고 고르게 분산되어 가장 작은 입자크기로 담지되었기 때문인 것으로 판단된다.3 and 4 show the electrochemical activity of the metal catalyst electrodes prepared according to Examples 1 to 5 and Comparative Examples 1 to 4, respectively, from which they were carried in polyaniline as conductive polymers according to Examples 1 to 5, respectively. It can be seen that the electrical activity is remarkably excellent despite the fact that the metal catalyst electrode has a smaller amount of particles than the catalyst electrodes of Comparative Examples 1 to 4 supported on the GNF support, which is a carbon material. In particular, the catalyst supported according to Example 3 showed the best results because the catalyst particles were uniformly dispersed without agglomeration and were supported by the smallest particle size.

본 발명에 따른 금속 촉매 전극은 산화환원 활성을 갖는 전도성 고분자에 금속입자가 전기화학적 방법으로 담지됨으로써 기존의 촉매 전극에 비해 우수한 전기화학적 활성을 나타낼 수 있다.In the metal catalyst electrode according to the present invention, the metal particles are supported by the electrochemical method in the conductive polymer having redox activity, thereby exhibiting excellent electrochemical activity compared to the conventional catalyst electrode.

Claims (9)

산화환원 활성을 갖는 전도성 고분자 지지체에 전기도금으로써 금속 입자가 담지된 금속 촉매 전극. A metal catalyst electrode in which metal particles are supported by electroplating on a conductive polymer support having redox activity. 삭제delete 제 1 항에 있어서,The method of claim 1, 금속 입자가 전도성 고분자 지지체에 1 내지 10%의 양으로 담지된 것임을 특징으로 하는, 금속 촉매 전극.The metal catalyst electrode, characterized in that the metal particles are supported on the conductive polymer support in an amount of 1 to 10%. 제 1 항에 있어서,The method of claim 1, 전도성 고분자가 공액 구조를 가짐을 특징으로 하는, 금속 촉매 전극.A metal catalyst electrode, characterized in that the conductive polymer has a conjugated structure. 제 4 항에 있어서,The method of claim 4, wherein 전도성 고분자가 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아세틸렌 및 이들의 혼합물 중에서 선택된 것임을 특징으로 하는, 금속 촉매 전극.A metal catalyst electrode, characterized in that the conductive polymer is selected from polyaniline, polypyrrole, polythiophene, polyacetylene and mixtures thereof. 제 5 항에 있어서,The method of claim 5, wherein 전도성 고분자가 유기산 또는 무기산으로 도핑된 것임을 특징으로 하는, 금속 촉매 전극.A metal catalyst electrode, characterized in that the conductive polymer is doped with an organic or inorganic acid. 제 6 항에 있어서,The method of claim 6, 유기산이 도데실벤젠설폰산, 캠포설폰산 또는 톨루엔 설폰산이며, 무기산이 황산, 염산 또는 질산인 것을 특징으로 하는, 금속 촉매 전극.A metal catalyst electrode, wherein the organic acid is dodecylbenzenesulfonic acid, camphorsulfonic acid, or toluene sulfonic acid, and the inorganic acid is sulfuric acid, hydrochloric acid, or nitric acid. 제 1 항에 있어서,The method of claim 1, 금속이 Pt, Ru, Ni, Co 및 이들의 조합으로 이루어진 합금 중에서 선택된 것임을 특징으로 하는, 금속 촉매 전극.A metal catalyst electrode, characterized in that the metal is selected from alloys consisting of Pt, Ru, Ni, Co and combinations thereof. 제 1 항 또는 제 3 항 내지 제 8 항 중 어느 한 항에 따른 금속 촉매 전극을 포함하는 연료전지.A fuel cell comprising the metal catalyst electrode according to any one of claims 1 to 10.
KR1020060131002A 2006-12-20 2006-12-20 Metal catalyst electrode supported on conductive polymer and fuel cell comprising same KR100834008B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060131002A KR100834008B1 (en) 2006-12-20 2006-12-20 Metal catalyst electrode supported on conductive polymer and fuel cell comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060131002A KR100834008B1 (en) 2006-12-20 2006-12-20 Metal catalyst electrode supported on conductive polymer and fuel cell comprising same

Publications (1)

Publication Number Publication Date
KR100834008B1 true KR100834008B1 (en) 2008-05-30

Family

ID=39665756

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060131002A KR100834008B1 (en) 2006-12-20 2006-12-20 Metal catalyst electrode supported on conductive polymer and fuel cell comprising same

Country Status (1)

Country Link
KR (1) KR100834008B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476095B2 (en) 2017-07-10 2019-11-12 Hyundai Motor Company Fuel cell and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346780A (en) 1991-11-25 1994-09-13 Kabushiki Kaisha Toshiba Fuel cell and method for producing an electrode used therefor
US6117581A (en) 1999-03-15 2000-09-12 Ford Global Technologies, Inc. Fuel cell electrode comprising conductive zeolite support material
US20050019650A1 (en) 2003-07-24 2005-01-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Fuel cell electrode, fuel cell, and manufacturing methods thereof
KR20050047913A (en) * 2003-11-18 2005-05-23 광주과학기술원 Pt-based alloy catalyst for use of direct formic acid fuel cell
KR20070039239A (en) * 2005-10-07 2007-04-11 주식회사 동진쎄미켐 Electroactive material using conductive polymer nanofiber, method for manufacturing the same, and electrode for fuel cell comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346780A (en) 1991-11-25 1994-09-13 Kabushiki Kaisha Toshiba Fuel cell and method for producing an electrode used therefor
US6117581A (en) 1999-03-15 2000-09-12 Ford Global Technologies, Inc. Fuel cell electrode comprising conductive zeolite support material
US20050019650A1 (en) 2003-07-24 2005-01-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Fuel cell electrode, fuel cell, and manufacturing methods thereof
KR20050047913A (en) * 2003-11-18 2005-05-23 광주과학기술원 Pt-based alloy catalyst for use of direct formic acid fuel cell
KR20070039239A (en) * 2005-10-07 2007-04-11 주식회사 동진쎄미켐 Electroactive material using conductive polymer nanofiber, method for manufacturing the same, and electrode for fuel cell comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476095B2 (en) 2017-07-10 2019-11-12 Hyundai Motor Company Fuel cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7622216B2 (en) Supports for fuel cell catalysts
US7175930B2 (en) Conducting polymer-grafted carbon material for fuel cell applications
EP3159958B1 (en) Carbon-based material, electrode catalyst, electrode, electrochemical device, fuel cell, and method for manufacturing carbon-based material
Gharibi et al. Investigation of carbon monoxide tolerance of platinum nanoparticles in the presence of optimum ratio of doped polyaniline with para toluene sulfonic acid and their utilization in a real passive direct methanol fuel cell
US7459103B2 (en) Conducting polymer-grafted carbon material for fuel cell applications
KR100984663B1 (en) Carbon-titanium oxide electrode catalyst support for oxygen reduction in PEM fuel cell
Ojani et al. Highly improved methanol oxidation onto carbon paste electrode modified by nickel particles dispersed into poly (2, 5-dimethylaniline) film
US7195834B2 (en) Metallized conducting polymer-grafted carbon material and method for making
WO2012160957A1 (en) Electrode catalyst and method for producing same
US7858267B2 (en) Fuel cell electrode, fuel cell, and manufacturing methods thereof
CN104953134B (en) The preparation method of Electro Catalysts for Direct Methanol Fuel Cells
KR100834008B1 (en) Metal catalyst electrode supported on conductive polymer and fuel cell comprising same
JP2008189837A (en) Electroconductive polymer-metal complex and oxidation-reduction catalyst electrode using the same
JP4474864B2 (en) Fuel cell electrode catalyst and method for producing the same
Park et al. Preparation and comparative test of polypyrrole electrodes for direct methanol fuel cell
Raoof et al. Nickel particles dispersed into poly (o-anisidine) and poly (o-anisidine)/multi-walled carbon nanotube modified glassy carbon electrodes for electrocatalytic oxidation of methanol
CN114616700A (en) Catalysts for Electrochemical Oxygen Reduction
JP5213397B2 (en) Catalyst for fuel cell and method for producing the same
JP5114657B2 (en) Process for producing conductive polymer metal complex and electrocatalyst using the same
KR100786579B1 (en) Method for producing metal catalyst electrode using step potential method
Fuentes et al. Bimetallic electrocatalysts supported on TiO2 for PEM water electrolyzer
Pollet et al. The use of ionic and non-ionic surfactants for the control of platinum nanoparticle aggregation in proton exchange membrane fuel cells (PEMFCs)
JP2006252938A (en) Electrode for solid polymer electrolyte fuel cell and its manufacturing method
JP5251009B2 (en) Electrocatalyst
Wang et al. Enhancing Voltage Reversal Tolerance of Proton Exchange Membrane Fuel Cells by Tuning the Microstructure of IrO x Catalysts

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20061220

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20071031

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20080508

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20080526

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20080527

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20110411

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20120305

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20120305

Start annual number: 5

End annual number: 5

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee