[go: up one dir, main page]

KR100832022B1 - Method of forming contact plug of semiconductor device - Google Patents

Method of forming contact plug of semiconductor device Download PDF

Info

Publication number
KR100832022B1
KR100832022B1 KR1020060134328A KR20060134328A KR100832022B1 KR 100832022 B1 KR100832022 B1 KR 100832022B1 KR 1020060134328 A KR1020060134328 A KR 1020060134328A KR 20060134328 A KR20060134328 A KR 20060134328A KR 100832022 B1 KR100832022 B1 KR 100832022B1
Authority
KR
South Korea
Prior art keywords
contact plug
semiconductor device
forming
polysilicon film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020060134328A
Other languages
Korean (ko)
Inventor
한기현
남기원
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020060134328A priority Critical patent/KR100832022B1/en
Application granted granted Critical
Publication of KR100832022B1 publication Critical patent/KR100832022B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 에치백 또는 화학적기계적연마공정시의 디싱 현상에 의한 스토리지노드콘택플러그 공정시 발생된 단차를 감소시킬 수 있는 반도체소자의 제조 방법을 제공하기 위한 것으로, 본 발명의 반도체소자의 제조 방법은 기판 상부에 절연막을 형성하는 단계; 상기 절연막을 식각하여 콘택홀을 형성하는 단계; 상기 콘택홀 내부를 채울때까지 전면에 콘택플러그물질을 형성하는 단계; 적어도 에치백을 통해 상기 콘택플러그물질을 식각하여 상기 콘택홀 내부에 제1콘택플러그를 형성하는 단계; 및 상기 제1콘택플러그 상에 선택적에피택셜성장법(SEG)을 이용하여 상기 절연막 표면과 동일한 표면을 갖는 제2콘택플러그를 형성하는 단계를 포함하고, 상술한 본 발명은 선택적에피택셜성장법에 의해 추가로 콘택플러그를 형성해주므로써 랜딩플러그, 스토리지노드콘택플러그 등의 콘택플러그 공정시 에치백 또는 화학적기계적연마에 의해 발생된 단차 또는 디싱을 감소시킬 수 있는 효과가 있다.The present invention is to provide a method for manufacturing a semiconductor device that can reduce the step difference generated during the storage node contact plug process due to dishing during the etch back or chemical mechanical polishing process, the manufacturing method of the semiconductor device of the present invention Forming an insulating film on the substrate; Etching the insulating film to form a contact hole; Forming a contact plug material on the front surface until filling the inside of the contact hole; Etching the contact plug material through at least an etch back to form a first contact plug inside the contact hole; And forming a second contact plug on the first contact plug using a selective epitaxial growth method (SEG) having the same surface as the surface of the insulating film. By forming the contact plug additionally, there is an effect of reducing the step or dish caused by etch back or chemical mechanical polishing during the contact plug process such as the landing plug and the storage node contact plug.

Description

반도체소자의 콘택플러그 형성 방법{METHOD FOR FABRICATING CONTACT PLUG IN SEMICONDUCTOR DEVICE}Method of forming contact plug of semiconductor device {METHOD FOR FABRICATING CONTACT PLUG IN SEMICONDUCTOR DEVICE}

도 1a 및 도 1b는 종래기술에 따른 스토리지노드콘택플러그 형성 방법을 간략히 도시한 도면.1A and 1B schematically illustrate a method of forming a storage node contact plug according to the prior art;

도 2a는 종래기술에 따른 랜딩플러그 형성 방법을 간략히 도시한 도면.Figure 2a is a simplified view showing a landing plug forming method according to the prior art.

도 2b는 종래기술에 따른 랜딩플러그 형성후의 디싱 발생을 나타낸 사진.Figure 2b is a photograph showing the dishing after forming the landing plug according to the prior art.

도 3a 내지 도 3e는 본 발명의 제1실시예에 따른 반도체소자의 제조 방법을 도시한 공정 단면도.3A to 3E are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a first embodiment of the present invention.

도 4a 내지 도 4d는 본 발명의 제2실시예에 따른 반도체소자의 제조 방법을 도시한 공정 단면도.4A through 4D are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a second embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

31 : 기판 32 : 절연막31 substrate 32 insulating film

34A : 제1콘택플러그 35 : 제2콘택플러그34A: 1st contact plug 35: 2nd contact plug

36 : 식각정지질화막36 etch stop nitride film

본 발명은 반도체소자의 제조 방법에 관한 것으로, 특히 토폴로지 또는 디싱에 의한 단차를 감소시키는 반도체소자의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device for reducing a step caused by topology or dishing.

DRAM 소자 제조 공정시, 랜딩플러그(Landing plug), 스토리지노드콘택플러그 (Storage node conact plug) 등의 콘택홀에 매립되는 플러그 공정시 도전막 증착 및 에치백(Etchback)의 순서로 진행하거나, 또는 도전막 증착, 에치백 및 화학적기계적연마(Chemical Mechanical Polishing, CMP)의 순서로 진행하고 있다.During the DRAM device manufacturing process, during the plug process embedded in the contact hole such as the landing plug and the storage node contact plug, the conductive film is deposited and etched back in order. The process proceeds in the order of film deposition, etch back and chemical mechanical polishing (CMP).

도 1a 및 도 1b는 종래기술에 따른 스토리지노드콘택플러그 형성 방법을 간략히 도시한 도면이고, 도 2a는 종래기술에 따른 랜딩플러그 형성 방법을 간략히 도시한 도면이다.1A and 1B are views illustrating a method of forming a storage node contact plug according to the prior art, and FIG. 2A is a view illustrating a method of forming a landing plug according to the prior art.

먼저, 도 1a 및 도 1b를 참조하면, 층간산화막(11) 내부에 스토리지노드콘택홀을 형성한 후, 폴리 실리콘 증착과 식각 공정에 의해 스토리지노드콘택플러그(12)를 형성한다. 이어서, 전면에 식각정지막(13)을 형성한 후, 식각정지막(13) 상에 스토리지노드분리막(14)을 형성한다. 이어서, 스토리지노드분리막(14)을 식각하고, 식각정지질화막(13)을 식각하여 스토리지노드가 형성될 오픈영역(15)을 형성한다.First, referring to FIGS. 1A and 1B, after the storage node contact hole is formed in the interlayer oxide layer 11, the storage node contact plug 12 is formed by polysilicon deposition and etching. Subsequently, after the etch stop layer 13 is formed on the entire surface, the storage node isolation layer 14 is formed on the etch stop layer 13. Subsequently, the storage node isolation layer 14 is etched and the etch stop nitride layer 13 is etched to form an open region 15 in which the storage node is to be formed.

위와 같은 종래기술은 스토리지노드(SN)가 형성될 오픈영역(15) 식각시 하부 층간산화막(11)의 식각을 방지하기 위하여 식각정지막(13)을 형성한다.The prior art as described above forms an etch stop layer 13 to prevent etching of the lower interlayer oxide layer 11 when etching the open region 15 in which the storage node SN is to be formed.

그러나, 종래기술은 스토리지노드콘택홀 형성, 폴리 실리콘 증착과 에치백 공정에 의해 스토리지노드콘택플러그(12) 형성시 발생된 전면 토폴로지(Global Topology) 단차에 의하여 스토리지노드콘택플러그(12) 상부와 스토리지노드콘택플러그(12) 주변의 층간산화막(11) 상부에 증착되는 식각정지막(13)의 두께가 달라져 오픈영역(15) 식각시 식각정지질화막(13)의 손실이 불가피하다. However, in the related art, the top of the storage node contact plug 12 and the storage may be formed due to the global topology generated when the storage node contact plug 12 is formed by the storage node contact hole formation, polysilicon deposition, and the etch back process. Since the thickness of the etch stop layer 13 deposited on the interlayer oxide layer 11 around the node contact plug 12 is changed, loss of the etch stop layer 13 is inevitable when the open region 15 is etched.

도 1a를 참조하면, 스토리지노드콘택플러그(12)와의 연결을 위해 식각정지막(13)의 충분한 과도 식각을 진행하면, 스토리지노드콘택플러그(12) 주변의 층간산화막(11) 상부에 형성된 식각정지질화막(13)이 식각되어 하부의 층간산화막(11)이 식각되어 펀치(Punch)가 발생되는 문제가 있다.Referring to FIG. 1A, when sufficient etching of the etch stop layer 13 is performed for connection with the storage node contact plug 12, an etch stop formed on the interlayer oxide layer 11 around the storage node contact plug 12 is formed. Since the nitride film 13 is etched and the lower interlayer oxide film 11 is etched, a punch is generated.

그리고, 펀치 현상을 방지하도록 식각정지막(13)을 식각하면, 도 1b에 도시된 것처럼, 스토리지 노드 콘택 플러그(12)와 연결을 위한 오픈영역(15)의 형성이 어려워 오픈마진(Open margin)이 감소하게 된다. 즉, 식각정지질화막(13)이 완전히 식각되지 않아 오픈영역(15)의 바닥이 오픈되지 않는다.When the etch stop layer 13 is etched to prevent the punch phenomenon, as shown in FIG. 1B, it is difficult to form the open area 15 for connection with the storage node contact plug 12. This decreases. That is, since the etch stop nitride film 13 is not completely etched, the bottom of the open area 15 is not opened.

위와 같은, 종래기술의 오픈불량(Not open) 및 식각정지막의 펀치(Punch) 현상은 스토리지노드콘택플러그 형성후의 토폴로지 단차가 그 원인이 되어 식각정지막의 두께가 불균일해지기 때문에 발생한다.As described above, the not-open and punch-out phenomenon of the etch stop layer is caused by a topology step after the storage node contact plug is formed, resulting in an uneven thickness of the etch stop layer.

도 2a를 참조하면, 기판(21) 상에 게이트라인(22)을 형성하고, 식각정지막(23) 및 층간절연막(24)을 형성한다. 이어서, 층간절연막(24) 식각 및 식각정지막(23) 식각을 통해 콘택홀을 형성하고, 폴리실리콘막 증착, 에치백 및 화학적기계적연마를 순차적으로 진행하여 랜딩플러그(25)를 형성한다.Referring to FIG. 2A, the gate line 22 is formed on the substrate 21, and the etch stop layer 23 and the interlayer insulating layer 24 are formed. Subsequently, contact holes are formed through etching the interlayer insulating layer 24 and etching stop layer 23, and the landing plug 25 is sequentially formed by sequentially depositing polysilicon, etching back, and chemical mechanical polishing.

도 2a의 랜딩플러그(25) 형성시 화학적기계적연마 후에 디싱(Dishing)이 발 생하는 것을 피할 수 없고, 이러한 디싱에 의해 랜딩플러그(25)의 표면과 그 주변구조간에 단차가 발생한다. 여기서, 디싱은 연마대상막간의 선택비에 의해 발생한다.In the formation of the landing plug 25 of FIG. 2A, dishing after chemical mechanical polishing is unavoidable, and such dishing causes a step between the surface of the landing plug 25 and its surrounding structure. Here, dishing is caused by the selectivity between the films to be polished.

디싱의 형성 정도가 깊을수록 표면의 토폴로지가 평평하지 않게 됨에 따라 후속 비트라인콘택 형성을 위한 패터닝 공정이 어렵다. 또한, 디싱에 의해 표면에 존재하는 피노키오결함(Pinocchio defect)을 제거하기 위해 과도한 세정을 진행하여야 하는데, 이때, 층간절연막의 손실이 커져서 디싱의 형성 정도가 더욱 증대되고, 이러한 디싱에 의한 단차를 제거하기 위해 추가로 연마를 진행해야 하는 등의 문제가 발생한다.The deeper the formation of dishing, the more uneven the topography of the surface, making the patterning process for subsequent bit line contact formation difficult. In addition, excessive cleaning must be performed to remove Pinocchio defects present on the surface by dishing. At this time, the loss of the interlayer insulating film is increased, thereby increasing the degree of dishing and eliminating the step by dishing. In order to solve this problem, further polishing occurs.

도 2b는 종래기술에 따른 랜딩플러그 형성후의 디싱 발생을 나타낸 사진이다.Figure 2b is a photograph showing the dishing after forming the landing plug according to the prior art.

본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 에치백에 의한 스토리지노드콘택플러그 공정시 발생된 단차를 감소시킬 수 있는 반도체소자의 제조 방법을 제공하는데 그 목적이 있다.The present invention has been proposed to solve the above problems of the prior art, and an object of the present invention is to provide a method for manufacturing a semiconductor device that can reduce the step difference generated during the storage node contact plug process by etch back.

또한, 본 발명의 다른 목적은 화학적기계적연마공정시의 디싱 현상에 의한 단차를 감소시킬 수 있는 반도체소자의 제조 방법을 제공하는데 있다.In addition, another object of the present invention is to provide a method for manufacturing a semiconductor device that can reduce the step difference caused by dishing during the chemical mechanical polishing process.

상기 목적을 달성하기 위한 본 발명의 반도체소자의 제조 방법은 기판 상부에 절연막을 형성하는 단계; 상기 절연막을 식각하여 콘택홀을 형성하는 단계; 상기 콘택홀 내부를 채울때까지 전면에 콘택플러그물질을 형성하는 단계; 적어도 에치백을 통해 상기 콘택플러그물질을 식각하여 상기 콘택홀 내부에 제1콘택플러그를 형성하는 단계; 및 상기 제1콘택플러그 상에 선택적에피택셜성장법(SEG)을 이용하여 상기 절연막 표면과 동일한 표면을 갖는 제2콘택플러그를 형성하는 단계를 포함하는 것을 특징으로 하고, 상기 제1콘택플러그는 상기 콘택플러그물질로서 폴리실리콘막을 형성한 후에 에치백하여 형성하는 것을 특징으로 하며, 상기 제1콘택플러그는 상기 콘택플러그물질로서 폴리실리콘막을 형성한 후에 에치백과 화학적기계적연마를 순차적으로 진행하여 형성하는 것을 특징으로 한다.Method of manufacturing a semiconductor device of the present invention for achieving the above object comprises the steps of forming an insulating film on the substrate; Etching the insulating film to form a contact hole; Forming a contact plug material on the front surface until filling the inside of the contact hole; Etching the contact plug material through at least an etch back to form a first contact plug inside the contact hole; And forming a second contact plug on the first contact plug using a selective epitaxial growth method (SEG), the second contact plug having the same surface as the surface of the insulating film. And forming a polysilicon film as a contact plug material and then etching back, wherein the first contact plug is formed by sequentially performing etch back and chemical mechanical polishing after forming the polysilicon film as the contact plug material. It features.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. .

후술하는 실시예들은 화학적기계적연마(CMP) 또는 에치백에 의한 단차를 감소시키기 위한 방법이다. The embodiments described below are methods for reducing the step by chemical mechanical polishing (CMP) or etch back.

제1실시예는, 스토리지노드콘택플러그 형성시 발생된 전면 토폴로지의 단차를 감소시켜 식각정지질화막의 두께를 균일하게 하고자 하며, 이를 통해 식각정지질화막의 펀치현상 및 오픈불량을 방지한다.In the first embodiment, the thickness of the etch stop nitride film is made uniform by reducing the step difference in the front topology generated when the storage node contact plug is formed, thereby preventing the punch phenomenon and the open defect of the etch stop nitride film.

식각정지질화막은 하부의 토폴로지를 따라 증착이 되어 하부의 굴곡을 그대 로 상부로 전사가 되면서 완화되어 스토리지노드콘택플러그 상부의 식각정지질화막이 더 두껍게 증착된다. 따라서, 스토리지노드콘택플러그와 식각정지질화막간의 단차를 감소시키면 펀치가 형성될 확률이 낮아지며 식각마진이 증가하게 된다.The etch stop nitride film is deposited along the topology of the bottom, and is relaxed by transferring the curvature of the bottom to the top, so that the etch stop nitride film on the storage node contact plug is deposited thicker. Therefore, if the step difference between the storage node contact plug and the etch stop nitride film is reduced, the probability of forming a punch is lowered and the etching margin is increased.

제2실시예는, 화학적기계적연마 후 발생된 디싱에 의한 단차를 감소시킨다.The second embodiment reduces the step by dishing generated after chemical mechanical polishing.

제1 및 제2실시예 모두 단차를 감소시키기 위해 추가로 선택적에피택셜성장(SEG)에 의해 콘택플러그를 형성하므로써, 후속 공정을 안정적으로 진행할 수 있다.In both the first and second embodiments, the contact plug is further formed by selective epitaxial growth (SEG) to reduce the step, so that the subsequent process can be stably performed.

도 3a 내지 도 3e는 본 발명의 제1실시예에 따른 반도체소자의 제조 방법을 도시한 공정 단면도이다.3A to 3E are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a first embodiment of the present invention.

도 3a에 도시된 바와 같이, 기판(31) 상에 층간산화막(32)을 형성한 후, 층간산화막(32)을 식각하여 스토리지노드콘택홀(33)을 형성한다. 이때, 도시하지 않았지만, 층간산화막(32) 형성전에 잘 알려진 바와 같이, 워드라인, 랜딩플러그, 비트라인 등이 형성될 수 있다. 따라서, 기판(31)은 랜딩플러그 또는 소스/드레인접합일 수 있으며, 랜딩플러그는 폴리실리콘이고, 소스/드레인접합은 불순물이 도핑된 실리콘이다.As shown in FIG. 3A, after forming the interlayer oxide layer 32 on the substrate 31, the interlayer oxide layer 32 is etched to form the storage node contact hole 33. At this time, although not shown, as is well known before the interlayer oxide film 32 is formed, a word line, a landing plug, a bit line, or the like may be formed. Thus, the substrate 31 may be a landing plug or a source / drain junction, the landing plug is polysilicon, and the source / drain junction is silicon doped with impurities.

이어서, 스토리지노드콘택홀(33)을 채울때까지 전면에 제1폴리실리콘막(34)을 증착한다. 이때, 제1폴리실리콘막(34)은 실리콘소스로 SiH4를 이용한 화학기상증착법(Chemical Vapor Deposition, CVD)을 이용하여 증착한다. 여기서, 실리콘소스는 SiH4외에 알려진 소스가스를 사용할 수도 있다.Subsequently, the first polysilicon layer 34 is deposited on the entire surface until the storage node contact hole 33 is filled. In this case, the first polysilicon layer 34 is deposited using chemical vapor deposition (CVD) using SiH 4 as a silicon source. Here, the silicon source may use a known source gas in addition to SiH 4 .

도 3b에 도시된 바와 같이, 에치백(Etchback)을 통해 제1폴리실리콘막(34)을 식각하여 스토리지노드콘택홀(33)의 내부를 매립하는 형태의 제1콘택플러그(34A)를 형성한다.As shown in FIG. 3B, the first polysilicon layer 34 is etched through an etchback to form a first contact plug 34A that fills the inside of the storage node contact hole 33. .

위와 같은, 제1폴리실리콘막(34)의 증착 및 에치백에 의해 제1콘택플러그(34A)와 그 주변의 층간산화막(32) 표면간에는 단차가 발생한다.As described above, a step is generated between the first contact plug 34A and the surface of the interlayer oxide film 32 around it by the deposition and etch back of the first polysilicon film 34.

제1실시예는 위와 같은 단차를 감소시키기 위해 제1콘택플러그(34A) 상부에 콘택플러그 물질을 다시 형성한다.In the first embodiment, the contact plug material is re-formed on the first contact plug 34A to reduce the above step difference.

도 3c에 도시된 바와 같이, 선택적에피택셜성장(Selectivity Epitaxial Growth, SEG)을 통해 제1콘택플러그(34A) 표면 상에 폴리실리콘막(35)을 선택적으로 성장시킨다. 이때, 제2폴리실리콘막(35)의 두께는 제1콘택플러그(34A) 상부를 매립하여 단차를 완화시키는 두께가 바람직하다. 즉, 제2폴리실리콘막(35)은 층간산화막의 표면 높이만큼 성장시킨다.As shown in FIG. 3C, the polysilicon layer 35 is selectively grown on the surface of the first contact plug 34A through selective epitaxial growth (SEG). At this time, the thickness of the second polysilicon film 35 is preferably a thickness that reduces the step by filling the upper portion of the first contact plug 34A. That is, the second polysilicon film 35 is grown by the surface height of the interlayer oxide film.

제2폴리실리콘막(35)의 선택적에피택셜성장은, 가스, 증착온도 및 압력에 따라 다음의 두가지 방법을 이용한다.Selective epitaxial growth of the second polysilicon film 35 uses the following two methods depending on gas, deposition temperature and pressure.

제1방법으로는, 반응물질은 SiH2Cl2/PH3/HCl의 혼합을 이용하고, 증착챔버내의 압력을 90∼150torr로 하여 제2폴리실리콘막을 선택적으로 성장시킨다. SiH2Cl2 가스는 실리콘 소스가스이고 PH3 가스는 불순물인 인(Phosphorous, P)을 도핑하기 위한 도핑가스이며, HCl 가스는 반응부산물을 제거하기 위한 세정가스이다. 그리고, 제1방법 적용시 증착온도는 700∼950℃의 고온으로 한다.In the first method, the reaction material uses a mixture of SiH 2 Cl 2 / PH 3 / HCl, and selectively grows the second polysilicon film at a pressure in the deposition chamber of 90 to 150 torr. The SiH 2 Cl 2 gas is a silicon source gas and the PH 3 gas is a doping gas for doping phosphorus (Phosphorous, P), and the HCl gas is a cleaning gas for removing reaction byproducts. In the case of applying the first method, the deposition temperature is a high temperature of 700 to 950 ° C.

제2방법으로는, 반응물질은 SiH4/PH3/H2의 혼합을 이용하고, 증착챔버내의 압력을 120∼200torr로 하여 제2폴리실리콘막을 선택적으로 성장시킨다. SiH4 가스는 실리콘 소스가스이고 PH3 가스는 불순물인 인(Phosphorous, P)을 도핑하기 위한 도핑가스이며, H2 가스는 반응부산물을 제거하기 위한 세정가스이다. 그리고, 제2방법 적용시 증착온도는 550∼700℃의 온도로 하며, 이는 제1방법 적용시의 증착온도보다 낮은 온도이다.As a second method, the reaction material uses a mixture of SiH 4 / PH 3 / H 2 and selectively grows the second polysilicon film with a pressure in the deposition chamber of 120 to 200 torr. SiH 4 gas is a silicon source gas and PH 3 gas is a doping gas for doping phosphorus (Phosphorous, P), and H 2 gas is a cleaning gas for removing reaction byproducts. In the second method, the deposition temperature is 550 to 700 ° C., which is lower than the deposition temperature in the first method.

위와 같은 제1방법 및 제2방법에 의하면, 불순물인 인을 도핑하기 위한 도핑가스로 PH3 가스를 사용하고 있는데, 이로써 제2폴리실리콘막(35) 내에는 불순물인 인(P)이 인시튜(In-situ)로 도핑된다.According to the first method and the second method as described above, PH 3 gas is used as a doping gas for doping phosphorus which is an impurity. Thus, phosphorus (P) as an impurity is in situ in the second polysilicon film 35. Doped with (In-situ).

한편, 선택적에피택셜성장을 통해 제2폴리실리콘막(35)이 성장되는 표면이 되는 제1콘택플러그(34A)의 표면은 고품질(High quality)의 제2폴리실리콘막(35) 성장을 위해 불순물이 제거되어야 한다. 이를 위해, 본 발명은 선택적에피택셜성장 전에 제1콘택플러그(34A) 표면의 불순물을 제거하기 위해 세정공정을 진행하며, 이때 세정공정은 N2 가스와 H2 가스의 혼합을 이용한 플라즈마 식각을 이용한다.Meanwhile, the surface of the first contact plug 34A, which is a surface on which the second polysilicon film 35 is grown through selective epitaxial growth, is impurity for growth of the high quality second polysilicon film 35. Should be removed. To this end, the present invention proceeds with a cleaning process to remove impurities on the surface of the first contact plug 34A before selective epitaxial growth, wherein the cleaning process uses plasma etching using a mixture of N 2 gas and H 2 gas. .

전술한 바와 같은 제2폴리실리콘막(35)의 성장에 의해 제1콘택플러그(34A)와 층간산화막(32)간 단차가 제거된다. 그리고, 제2폴리실리콘막(35)은 제1콘택플러그(34A)와 함께 스토리지노드콘택플러그로 작용하므로, 이하 제2폴리실리콘막(35)을 '제2콘택플러그(35)'라 약칭한다.By growing the second polysilicon film 35 as described above, the step difference between the first contact plug 34A and the interlayer oxide film 32 is removed. In addition, since the second polysilicon film 35 functions as a storage node contact plug together with the first contact plug 34A, the second polysilicon film 35 is hereinafter abbreviated as a 'second contact plug 35'. .

결국, 제1콘택플러그(34A)와 제2콘택플러그(35)로 이루어진 스토리지노드콘택플러그(100)가 형성된다.As a result, the storage node contact plug 100 including the first contact plug 34A and the second contact plug 35 is formed.

도 3d에 도시된 바와 같이, 제2콘택플러그(35)가 형성된 구조의 전면에 식각정지질화막(36)을 형성한다. 이때, 식각정지질화막(36)은 형성전의 하부 구조가 단차를 갖고 있지 않으므로, 하부 구조의 전 표면 상에서 균일한 두께로 형성된다. 따라서, 후속 오픈영역 형성을 위한 식각공정시 오픈불량 및 펀치현상이 발생하지 않는다.As shown in FIG. 3D, an etch stop nitride film 36 is formed on the entire surface of the structure in which the second contact plug 35 is formed. At this time, the etch stop nitride film 36 has a uniform thickness on the entire surface of the substructure because the substructure before formation has no step. Therefore, open defects and punches do not occur during an etching process for forming a subsequent open area.

이어서, 식각정지질화막(36) 상에 스토리지노드분리막(37)을 형성한다. 이때, 스토리지노드분리막(37)은 이웃한 스토리지노드간 분리 및 절연을 위한 것으로서, PSG, PETOS와 같은 산화막 물질로 형성한다.Subsequently, the storage node isolation layer 37 is formed on the etch stop nitride layer 36. In this case, the storage node isolation layer 37 is for isolation and insulation between neighboring storage nodes, and is formed of an oxide layer material such as PSG and PETOS.

이어서, 스토리지노드가 형성될 오픈영역 형성을 위한 식각을 진행한다. 예컨대, 식각정지질화막(36)에서 식각이 정지하도록 스토리지노드분리막(37)을 식각하고, 연속해서 식각정지질화막(36)을 식각하여 제2콘택플러그(35)의 표면을 개방시키는 오픈영역(28)을 형성한다. 이때, 오픈영역(38)은 스토리지노드(SN)와 스토리지노드콘택플러그(SNC)가 웨이퍼 내에서 최적화되도록 도 1과 같은 평면 구조로 오버레이된다.Subsequently, etching is performed to form an open area in which the storage node is to be formed. For example, the storage node separation layer 37 may be etched to stop the etching in the etch stop nitride layer 36, and the open region 28 that opens the surface of the second contact plug 35 by sequentially etching the etch stop nitride layer 36. ). In this case, the open area 38 is overlaid in a planar structure as shown in FIG. 1 so that the storage node SN and the storage node contact plug SNC are optimized in the wafer.

도 3e에 도시된 바와 같이, 스토리지노드로 사용될 도전막 증착 및 식각을 진행하여 오픈영역(38)의 내부에 캐패시터의 스토리지노드(39)를 형성한다.As shown in FIG. 3E, the conductive layer is deposited and etched to be used as the storage node to form the storage node 39 of the capacitor in the open area 38.

도시하지 않았지만, 후속공정으로 유전막 및 플레이트를 형성한다.Although not shown, a dielectric film and a plate are formed in a subsequent process.

도 4a 내지 도 4d는 본 발명의 제2실시예에 따른 반도체소자의 제조 방법을 도시한 공정 단면도이다.4A through 4D are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a second embodiment of the present invention.

도 4a에 도시된 바와 같이, 기판(41) 상에 게이트라인(42)을 형성한 후, 전면에 식각정지질화막(43)을 형성한다. 이때, 게이트라인(42)은 게이트산화막, 게이트전극 및 하드마스크질화막의 순서로 적층된 구조일 수 있다. 그리고, 식각정지질화막(43)은 후속 콘택홀 형성을 위한 층간산화막(34) 식각시 게이트라인의 상부가 식각되는 것을 방지하는 식각정지 역할을 한다.As shown in FIG. 4A, after the gate line 42 is formed on the substrate 41, an etch stop nitride film 43 is formed on the entire surface. In this case, the gate line 42 may have a stacked structure in order of a gate oxide film, a gate electrode, and a hard mask nitride film. In addition, the etch stop nitride layer 43 serves as an etch stop to prevent the upper portion of the gate line from being etched when the interlayer oxide layer 34 for subsequent contact hole formation is etched.

이어서, 전면에 층간산화막(44)을 형성한 후, 층간산화막(44) 및 식각정지질화막(43)을 순차적으로 식각하여 게이트라인(42) 사이의 기판(41) 표면을 노출시키는 콘택홀(45)을 형성한다. 이때, 콘택홀(45)에 의해 노출되는 기판(41)은 소스/드레인접합일 수 있으며, 소스/드레인접합은 불순물이 도핑된 실리콘이다. Subsequently, after the interlayer oxide layer 44 is formed on the entire surface, the interlayer oxide layer 44 and the etch stop nitride layer 43 are sequentially etched to expose the contact hole 45 exposing the surface of the substrate 41 between the gate lines 42. ). In this case, the substrate 41 exposed by the contact hole 45 may be a source / drain junction, and the source / drain junction is silicon doped with impurities.

위와 같이 콘택홀(45) 형성을 위한 식각공정을 랜딩플러그 콘택(Landing Plug Contact) 식각이라고 하며, 랜딩플러그콘택식각은 자기정렬콘택(Self Aligned Contact, SAC) 방식을 적용하므로써 이웃하는 게이트라인의 상부가 모두 노출된다.As described above, the etching process for forming the contact hole 45 is referred to as landing plug contact etching, and the landing plug contact etching is based on the self aligned contact (SAC) method, and the upper portion of the neighboring gate line is applied. Are all exposed.

도 4b에 도시된 바와 같이, 콘택홀(45)을 채울때까지 전면에 제1폴리실리콘막(46)을 증착한다. 이때, 제1폴리실리콘막(46)은 실리콘소스로 SiH4를 이용한 화학기상증착법(Chemical Vapor Deposition, CVD)을 이용하여 증착한다. 여기서, 실리콘소스는 SiH4외에 알려진 소스가스를 사용할 수도 있다.As shown in FIG. 4B, the first polysilicon film 46 is deposited on the entire surface until the contact hole 45 is filled. In this case, the first polysilicon layer 46 is deposited using chemical vapor deposition (CVD) using SiH 4 as a silicon source. Here, the silicon source may use a known source gas in addition to SiH 4 .

도 4c에 도시된 바와 같이, 제1폴리실리콘막(46)에 대해 에치백 및 화학적기계적연마(CMP)를 순차적으로 진행하여 제1폴리실리콘막(46)을 평탄화하므로써, 콘 택홀(45)의 내부를 매립하는 형태의 제1콘택플러그(46A)를 형성한다. 여기서, 화학적기계적연마공정시 층간산화막(44)도 동시에 연마된다.As shown in FIG. 4C, the etch back and chemical mechanical polishing (CMP) are sequentially performed with respect to the first polysilicon film 46 to planarize the first polysilicon film 46, thereby reducing the contact hole 45. A first contact plug 46A is formed to fill the inside. Here, in the chemical mechanical polishing process, the interlayer oxide film 44 is also polished at the same time.

위와 같은, 제1폴리실리콘막(46)의 화학적기계적연마에 의해 제1콘택플러그(46A)와 그 주변의 구조물(여기서는 게이트라인 상부의 식각정지질화막) 표면간에는 디싱(Dishing)에 의한 단차가 발생한다. 이와 같은 디싱은 연마대상막간 선택비 차이에 의한 것이다.As described above, a step due to dishing occurs between the surface of the first contact plug 46A and the structure (here, the etch stop nitride film on the upper gate line) by chemical mechanical polishing of the first polysilicon film 46. do. Such dishing is caused by the difference in selectivity between the films to be polished.

제2실시예는 위와 같은 디싱에 의한 단차를 감소시키기 위해 제1콘택플러그(46A) 상에 콘택플러그 물질을 다시 형성한다.The second embodiment re-forms the contact plug material on the first contact plug 46A to reduce the step difference caused by dishing.

도 4d에 도시된 바와 같이, 선택적에피택셜성장(Selectivity Epitaxial Growth, SEG)을 통해 제1콘택플러그(46A) 표면 상에 제2폴리실리콘막(47)을 선택적으로 성장시킨다. 이때, 제2폴리실리콘막(47)의 두께는 제1콘택플러그(46A) 상부를 매립하여 디싱을 제거하여 단차를 완화시키는 두께가 바람직하다. 즉, 제2폴리실리콘막(47)은 게이트라인(42) 상부의 식각정지질화막(43)의 표면 높이만큼 성장시킨다.As shown in FIG. 4D, the second polysilicon layer 47 is selectively grown on the surface of the first contact plug 46A through selective epitaxial growth (SEG). At this time, the thickness of the second polysilicon film 47 is preferably a thickness to reduce the step by filling the upper portion of the first contact plug 46A to remove the dishing. That is, the second polysilicon film 47 is grown by the surface height of the etch stop nitride film 43 on the gate line 42.

제2폴리실리콘막(47)의 선택적에피택셜성장은, 가스, 증착온도 및 압력에 따라 다음의 두가지 방법을 이용한다.Selective epitaxial growth of the second polysilicon film 47 uses the following two methods depending on the gas, deposition temperature and pressure.

제1방법으로는, 반응물질은 SiH2Cl2/PH3/HCl의 혼합을 이용하고, 증착챔버내의 압력을 90∼150torr로 하여 제2폴리실리콘막(47)을 선택적으로 성장시킨다. SiH2Cl2 가스는 실리콘 소스가스이고 PH3 가스는 불순물인 인(Phosphorous, P)을 도 핑하기 위한 도핑가스이며, HCl 가스는 반응부산물을 제거하기 위한 세정가스이다. 그리고, 제1방법 적용시 증착온도는 700∼950℃의 고온으로 한다.In the first method, the reaction material uses a mixture of SiH 2 Cl 2 / PH 3 / HCl, and selectively grows the second polysilicon film 47 at a pressure in the deposition chamber of 90 to 150 torr. SiH 2 Cl 2 gas is a silicon source gas and PH 3 gas is a doping gas for doping phosphorus (Phosphorous, P), and HCl gas is a cleaning gas for removing reaction byproducts. In the case of applying the first method, the deposition temperature is a high temperature of 700 to 950 ° C.

제2방법으로는, 반응물질은 SiH4/PH3/H2의 혼합을 이용하고, 증착챔버내의 압력을 120∼200torr로 하여 제2폴리실리콘막(47)을 선택적으로 성장시킨다. SiH4 가스는 실리콘 소스가스이고 PH3 가스는 불순물인 인(Phosphorous, P)을 도핑하기 위한 도핑가스이며, H2 가스는 반응부산물을 제거하기 위한 세정가스이다. 그리고, 제2방법 적용시 증착온도는 550∼700℃의 온도로 하며, 이는 제1방법 적용시의 증착온도보다 낮은 온도이다.As a second method, the reaction material uses a mixture of SiH 4 / PH 3 / H 2 , and selectively grows the second polysilicon film 47 at a pressure in the deposition chamber of 120 to 200 torr. SiH 4 gas is a silicon source gas and PH 3 gas is a doping gas for doping phosphorus (Phosphorous, P), and H 2 gas is a cleaning gas for removing reaction byproducts. In the second method, the deposition temperature is 550 to 700 ° C., which is lower than the deposition temperature in the first method.

위와 같은 제1방법 및 제2방법에 의하면, 불순물인 인을 도핑하기 위한 도핑가스로 PH3 가스를 사용하고 있는데, 이로써 제2폴리실리콘막(47) 내에는 불순물인 인(P)이 인시튜(In-situ)로 도핑된다.According to the first method and the second method as described above, PH 3 gas is used as a doping gas for doping phosphorus which is an impurity. Thus, phosphorus (P) as an impurity is in situ in the second polysilicon film 47. Doped with (In-situ).

한편, 선택적에피택셜성장을 통해 제2폴리실리콘막(47)이 성장되는 표면이 되는 제1콘택플러그(46A)의 표면은 고품질(High quality)의 제2폴리실리콘막(47) 성장을 위해 불순물이 제거되어야 한다. 이를 위해, 제2실시예는 선택적에피택셜성장 전에 제1콘택플러그(46A) 표면의 불순물을 제거하기 위해 세정공정을 진행하며, 이때 세정공정은 N2 가스와 H2 가스의 혼합을 이용한 플라즈마 식각을 이용한다.On the other hand, the surface of the first contact plug 46A, which is the surface on which the second polysilicon film 47 is grown through selective epitaxial growth, is impurity for growth of the high quality second polysilicon film 47. Should be removed. To this end, the second embodiment performs a cleaning process to remove impurities on the surface of the first contact plug 46A before the selective epitaxial growth, wherein the cleaning process is plasma etching using a mixture of N 2 gas and H 2 gas. Use

전술한 제2폴리실리콘막(47)의 성장에 의해 제1콘택플러그(46A) 상부의 디싱에 의한 주변 구조와의 단차가 제거된다. 그리고, 제2폴리실리콘막(47)은 제1콘택 플러그(46A)와 함께 랜딩플러그로 작용하므로, 이하 제2폴리실리콘막(47)을 '제2콘택플러그(47)'라 약칭한다.By the growth of the second polysilicon film 47 described above, the step with the peripheral structure due to dishing on the first contact plug 46A is removed. In addition, since the second polysilicon film 47 acts as a landing plug together with the first contact plug 46A, the second polysilicon film 47 is hereinafter abbreviated as a 'second contact plug 47'.

결국, 제1콘택플러그(46A)와 제2콘택플러그(47)로 이루어진 랜딩플러그(200)가 형성된다. 그리고, 잘 알려진 바와 같이, 랜딩플러그(200)는 셀영역은 물론 주변회로영역에서도 형성되는 구조이므로, 주변회로영역에서도 단차가 제거된 랜딩플러그를 형성할 수 있어 셀영역과 주변회로영역에서 모두 연마 균일도를 확보할 수 있다.As a result, the landing plug 200 including the first contact plug 46A and the second contact plug 47 is formed. And, as is well known, since the landing plug 200 is formed not only in the cell region but also in the peripheral circuit region, the landing plug 200 can form a landing plug in which the step is removed in the peripheral circuit region, thereby polishing both the cell region and the peripheral circuit region. Uniformity can be secured.

제2실시예에 따르면, 제2콘택플러그로서 폴리실리콘막을 선택적에피택셜성장법을 통해 추가로 성장시키므로써 랜딩플러그와 랜딩플러그 주변의 절연막간 연마선택비에 의한 디싱을 제거한다.According to the second embodiment, the polysilicon film is further grown through the selective epitaxial growth method as the second contact plug, thereby eliminating dishing by the polishing selectivity between the landing plug and the insulating film around the landing plug.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

상술한 본 발명은 선택적에피택셜성장법에 의해 추가로 콘택플러그를 형성해주므로써 랜딩플러그, 스토리지노드콘택플러그 등의 콘택플러그 공정시 에치백 또는 화학적기계적연마에 의해 발생된 단차 또는 디싱을 감소시킬 수 있는 효과가 있다.The present invention described above can form contact plugs by the selective epitaxial growth method, thereby reducing step or dishing caused by etch back or chemical mechanical polishing during contact plug processes such as landing plugs and storage node contact plugs. It has an effect.

Claims (11)

삭제delete 기판 상부에 절연막을 형성하는 단계;Forming an insulating film on the substrate; 상기 절연막을 식각하여 콘택홀을 형성하는 단계;Etching the insulating film to form a contact hole; 상기 콘택홀 내부를 채울때까지 전면에 콘택플러그물질을 형성하는 단계;Forming a contact plug material on the front surface until filling the inside of the contact hole; 적어도 에치백을 통해 상기 콘택플러그물질을 식각하여 상기 콘택홀 내부에 제1콘택플러그를 형성하는 단계; 및Etching the contact plug material through at least an etch back to form a first contact plug inside the contact hole; And 상기 제1콘택플러그 상에 선택적에피택셜성장법(SEG)을 이용하여 상기 절연막 표면과 동일한 표면을 갖는 제2콘택플러그를 형성하는 단계Forming a second contact plug on the first contact plug using a selective epitaxial growth method (SEG) having the same surface as the surface of the insulating film; 를 포함하는 반도체소자의 제조 방법.Method for manufacturing a semiconductor device comprising a. 제2항에 있어서,The method of claim 2, 상기 선택적에피택셜성장법에 의한 제2콘택플러그는, 폴리실리콘막인 반도체소자의 제조 방법.The method for manufacturing a semiconductor device, wherein the second contact plug by the selective epitaxial growth method is a polysilicon film. 제3항에 있어서,The method of claim 3, 상기 폴리실리콘막의 선택적에피택셜성장은,Selective epitaxial growth of the polysilicon film, 반응물질로 SiH2Cl2/PH3/HCl의 혼합을 이용하고, 증착 챔버 내의 압력을 90∼150torr로 하여 진행하는 반도체소자의 제조 방법.A method of manufacturing a semiconductor device in which a mixture of SiH 2 Cl 2 / PH 3 / HCl is used as a reactant and the pressure in the deposition chamber is set to 90 to 150 torr. 제4항에 있어서,The method of claim 4, wherein 상기 폴리실리콘막의 선택적에피택셜성장시, 증착온도는 700∼950℃ 범위로 하는 반도체소자의 제조 방법.In the selective epitaxial growth of the polysilicon film, the deposition temperature is 700 ~ 950 ℃ manufacturing method of a semiconductor device. 제3항에 있어서,The method of claim 3, 상기 폴리실리콘막의 선택적에피택셜성장은,Selective epitaxial growth of the polysilicon film, 반응물질로 SiH4/PH3/H2의 혼합을 이용하고, 증착 챔버 내의 압력을 120∼200torr로 하여 진행하는 반도체소자의 제조 방법.A method of manufacturing a semiconductor device in which a mixture of SiH 4 / PH 3 / H 2 is used as a reactant and the pressure in the deposition chamber is set to 120 to 200 torr. 제6항에 있어서,The method of claim 6, 상기 폴리실리콘막의 선택적에피택셜성장시, 증착온도는 550∼700℃ 범위로 하는 반도체소자의 제조 방법.In the selective epitaxial growth of the polysilicon film, the deposition temperature is in the range of 550 ~ 700 ℃ manufacturing method of a semiconductor device. 제2항에 있어서,The method of claim 2, 상기 제1콘택플러그는,The first contact plug, 상기 콘택플러그물질로서 폴리실리콘막을 형성한 후에 에치백하여 헝성하는 반도체소자의 제조 방법.And forming a polysilicon film as the contact plug material and then etching back to form the polysilicon film. 제2항에 있어서,The method of claim 2, 상기 제1콘택플러그는,The first contact plug, 상기 콘택플러그물질로서 폴리실리콘막을 형성한 후에 에치백과 화학적기계적연마를 순차적으로 진행하여 형성하는 반도체소자의 제조 방법.And forming a polysilicon film as the contact plug material and then sequentially performing etch back and chemical mechanical polishing. 제2항 내지 제9항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 9, 상기 절연막은, The insulating film, 산화막 또는 질화막인 반도체소자의 제조 방법.A method of manufacturing a semiconductor device which is an oxide film or a nitride film. 제2항 내지 제9항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 9, 상기 제1 및 제2콘택플러그는, 랜딩플러그 또는 스토리지노드콘택플러그인 반도체소자의 제조 방법.The first and second contact plugs are a landing plug or a storage node contact plug.
KR1020060134328A 2006-12-27 2006-12-27 Method of forming contact plug of semiconductor device Expired - Fee Related KR100832022B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060134328A KR100832022B1 (en) 2006-12-27 2006-12-27 Method of forming contact plug of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060134328A KR100832022B1 (en) 2006-12-27 2006-12-27 Method of forming contact plug of semiconductor device

Publications (1)

Publication Number Publication Date
KR100832022B1 true KR100832022B1 (en) 2008-05-26

Family

ID=39665102

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060134328A Expired - Fee Related KR100832022B1 (en) 2006-12-27 2006-12-27 Method of forming contact plug of semiconductor device

Country Status (1)

Country Link
KR (1) KR100832022B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030057659A (en) 2001-12-29 2003-07-07 주식회사 하이닉스반도체 Method of forming memory cell contact
KR100517328B1 (en) * 2002-09-17 2005-09-28 주식회사 하이닉스반도체 Semiconductor device having contact plug using selective epitaxial growth and method of fabricating the same
KR100524802B1 (en) * 2002-12-30 2005-11-02 주식회사 하이닉스반도체 Semiconductor device having contact plug formed using double selective epitaxial growth and method for fabrication of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030057659A (en) 2001-12-29 2003-07-07 주식회사 하이닉스반도체 Method of forming memory cell contact
KR100517328B1 (en) * 2002-09-17 2005-09-28 주식회사 하이닉스반도체 Semiconductor device having contact plug using selective epitaxial growth and method of fabricating the same
KR100524802B1 (en) * 2002-12-30 2005-11-02 주식회사 하이닉스반도체 Semiconductor device having contact plug formed using double selective epitaxial growth and method for fabrication of the same

Similar Documents

Publication Publication Date Title
KR100876976B1 (en) Wiring of Semiconductor Devices and Formation Methods
KR101094371B1 (en) Method of manufacturing semiconductor device with vertical transistor
USRE45232E1 (en) Method of forming a contact plug for a semiconductor device
US6933228B2 (en) Method of manufacturing of contact plug in a contact hole on a silicon substrate
US6818537B2 (en) Method of manufacturing a contact plug for a semiconductor device
US7666738B2 (en) Method for fabricating capacitor of semiconductor device
KR20020083770A (en) Method for forming contact plug of semiconductor device
CN111162079B (en) Method for forming selective epitaxial structure and method for manufacturing 3D memory device
KR100517328B1 (en) Semiconductor device having contact plug using selective epitaxial growth and method of fabricating the same
KR100415519B1 (en) Method of manufacturing a semiconductor device
US20030068885A1 (en) Method of forming a contact plug for a semiconductor device
KR100832022B1 (en) Method of forming contact plug of semiconductor device
KR100524802B1 (en) Semiconductor device having contact plug formed using double selective epitaxial growth and method for fabrication of the same
KR100510994B1 (en) Device Separating Method of Composite Semiconductor Device
KR100669108B1 (en) Stacked semiconductor device and manufacturing method thereof
JP4756926B2 (en) Method for manufacturing element isolation structure
KR100927394B1 (en) Semiconductor device using selective epitaxial growth method and manufacturing method thereof
KR20080058006A (en) Manufacturing method of semiconductor device
KR100717811B1 (en) Contact formation method of semiconductor device
KR100680962B1 (en) Capacitor Formation Method of Semiconductor Device
KR100853458B1 (en) Manufacturing method of capacitor using silicon germanium island
KR100625794B1 (en) Semiconductor device manufacturing method
KR100917639B1 (en) Semiconductor device manufacturing method
KR20070035362A (en) Semiconductor device and manufacturing method
KR20070060352A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20061227

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20080201

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20080428

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20080519

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20080520

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20110429

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20110429

Start annual number: 4

End annual number: 4

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee