KR100829798B1 - Plating wastewater treatment method using vacuum evaporation concentration method - Google Patents
Plating wastewater treatment method using vacuum evaporation concentration method Download PDFInfo
- Publication number
- KR100829798B1 KR100829798B1 KR1020010083449A KR20010083449A KR100829798B1 KR 100829798 B1 KR100829798 B1 KR 100829798B1 KR 1020010083449 A KR1020010083449 A KR 1020010083449A KR 20010083449 A KR20010083449 A KR 20010083449A KR 100829798 B1 KR100829798 B1 KR 100829798B1
- Authority
- KR
- South Korea
- Prior art keywords
- plating
- wastewater
- plating wastewater
- vacuum evaporation
- heavy metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/048—Purification of waste water by evaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0057—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
- B01D5/006—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/16—Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
본 발명은 진공증발농축법을 이용한 Zn-Cr 도금폐수의 처리방법, 더욱 자세하게는 진공증발농축법을 이용하여 Zn-Cr 도금폐수중 중금속이온 및 COD 성분을 분리제거하는 방법을 제공하여, 얻어진 응축수는 도금 수세수로 이용하고 농축수는 도금용액으로 재활용할 수 있도록 함으로써 슬러지 발생을 최소화하면서 Zn-Cr 도금폐수 중의 중금속이온 및 COD성분을 효과적으로 제거할 수 있다. The present invention provides a method for treating Zn-Cr plating wastewater using vacuum evaporation concentration method, and more specifically, a method for separating and removing heavy metal ions and COD components from Zn-Cr plating wastewater using vacuum evaporation concentration method. Silver can be used as a plating flush and concentrated water can be recycled into the plating solution to effectively remove heavy metal ions and COD components in Zn-Cr plating wastewater while minimizing sludge.
Zn-Cr 도금폐수, 진공증발농축Zn-Cr Plating Wastewater, Vacuum Evaporation Concentration
Description
도 1은 본 발명에 의한 Zn-Cr 도금폐수의 처리공정을 나타낸 개략도이다.1 is a schematic view showing a treatment step of Zn-Cr plating wastewater according to the present invention.
도 2는 비교예 1의 소석회를 이용한 Zn-Cr 도금폐수중 중금속이온 제거효과를 나타낸 그래프이다.Figure 2 is a graph showing the effect of removing heavy metal ions in Zn-Cr plating wastewater using the slaked lime of Comparative Example 1.
도 3은 비교예 2의 펜톤산화방법에 의한 Zn-Cr 도금폐수중 유기물 제거효과를 COD 수치로 나타낸 그래프이다.Figure 3 is a graph showing the COD value of the organic matter removal effect in Zn-Cr plating wastewater by the Fenton oxidation method of Comparative Example 2.
본 발명은 진공증발농축법을 이용한 Zn-Cr 도금폐수 처리방법에 관한 것으로, 보다 상세하게는 진공증발농축법을 이용한 Zn-Cr 도금폐수 중의 중금속이온 및 COD성분을 분리하여 도금용액으로 이용하고 응축수를 도금 수세수로 재이용하는 방법에 관한 것이다.The present invention relates to a Zn-Cr plating wastewater treatment method using a vacuum evaporation concentration method, more specifically, to separate heavy metal ions and COD components in Zn-Cr plating wastewater using a vacuum evaporation concentration method as a plating solution and condensate The present invention relates to a method for reusing the water into a plating flush.
일반적으로 도금공장에서는 열연코일을 소재로 하여 산세, 냉간압연, 전기청정, 소둔 및 도금공정을 통하여 미려한 냉연 및 도금제품을 생산한다. 이때, 도금폐수 중의 중금속이온 및 화학적으로 산화될 수 있는 물질(이하 COD성분으로 언급 함)을 제거하기 위해 종래의 응집침전법 및 화학적산화법 등이 사용되어 왔다.In general, plating factories produce beautiful cold rolled and plated products using hot rolled coils through pickling, cold rolling, electric cleaning, annealing, and plating processes. At this time, in order to remove heavy metal ions and chemically oxidizable substances (hereinafter referred to as COD components) in the plating waste water, conventional flocculation sedimentation methods and chemical oxidation methods have been used.
응집침전법은 알루미늄염이나 철염을 사용하여 폐수중의 중금속 이온을 응집 및 침전시켜 제거하는 방법이며, 화학적산화법은 과산화수소 및 과망간산칼륨 등과 같은 산화제를 사용하여 폐수 중의 유기물을 화학적으로 산화시켜 제거하는 방법이다(Journal of KSEE, Vol.18, p43-54(1996)). Agglomeration sedimentation is a method of agglomeration and precipitation of heavy metal ions in wastewater using aluminum salt or iron salt, and chemical oxidation is a method of chemically oxidizing and removing organic substances in wastewater using oxidizing agents such as hydrogen peroxide and potassium permanganate. (Journal of KSEE, Vol. 18, p 43-54 (1996)).
그러나, 이와 같은 종래의 방법은 응집제와 같은 화학약품을 사용함으로 약품비용으로 인한 비용이 발생되어 폐수처리비용이 상승하게 되고 슬러지가 다량 발생할 뿐만 아니라 별도로 발생하는 슬러지를 처리해야 하는 문제가 있다.However, such a conventional method has a problem in that the cost of the chemical cost is generated by using a chemical such as a flocculant to increase the wastewater treatment cost and a large amount of sludge, as well as to treat the sludge generated separately.
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 진공증발농축법으로 Zn-Cr도금 폐수를 처리하는 방법을 제공하고자 한다. In order to solve the problems of the prior art as described above, the present invention is to provide a method for treating Zn-Cr plating wastewater by vacuum evaporation concentration method.
본 발명의 또다른 목적은 진공증발농축법에 의해 Zn-Cr도금 폐수중의 중금속이온 및 COD성분을 분리하고, 얻어진 응축수를 도금수세수로 사용하고 중금속이온 및 COD성분을 포함하는 농축수를 도금용액으로 재이용하는 방법을 제공하는 것이다.It is still another object of the present invention to separate heavy metal ions and COD components in Zn-Cr plating wastewater by vacuum evaporation, and to use the obtained condensed water as the plating wash water and to plate the concentrated water containing heavy metal ions and COD components. It is to provide a method for reuse in solution.
상기 목적을 달성하기 위해, 본 발명은 Zn-Cr 도금폐수를 처리하는 방법에 있어서, 진공증발 농축장치에서 Zn-Cr 도금폐수중 COD성분 및 중금속이온을 진공증발시켜, 상기 COD성분 및 중금속 이온을 포함하는 농축수와 응축수로 분리하는 진공증발농축법을 이용한 Zn-Cr 도금폐수의 처리방법에 관한 것이다. In order to achieve the above object, the present invention is a method for treating Zn-Cr plating wastewater, by vacuum evaporation of the COD component and heavy metal ions in the Zn-Cr plating wastewater in a vacuum evaporation concentrator, the COD component and heavy metal ions The present invention relates to a method for treating Zn-Cr plating wastewater using a vacuum evaporative concentration method for separating concentrated water and condensate.
또한, 본 발명은 상기 진공증발농축에 의해서 얻어진 응축수는 도금 수세수로 이용하고 상기 농축수는 도금용액으로 재사용하는 Zn-Cr 도금폐수의 처리방법에 관한 것이다.The present invention also relates to a method for treating Zn-Cr plating wastewater in which the condensed water obtained by the vacuum evaporation concentrate is used as a plating flush and the concentrated water is reused as a plating solution.
이하, 본 발명을 더욱 자세히 설명하고자 한다. Hereinafter, the present invention will be described in more detail.
Zn-Cr 도금폐수중에는 Zn, Cr 및 Fe 등을 포함하는 중금속 이온, 및 각종 COD 성분이 포함되어 있다. 상기 중금속 이온 및 COD성분을 수질오염물질로서 폐수중 허용농도 이하로 낮추어야 한다.Zn-Cr plating wastewater contains heavy metal ions including Zn, Cr, Fe and the like, and various COD components. The heavy metal ions and COD components should be lowered below the allowable concentration in the wastewater as water pollutants.
본 발명의 일례에서, Zn-Cr 도금폐수를 열교환기에 의해 70~80℃로 데워져 분리기로 유입되고, 상기 분리기에서 증발된 물은 응축기에서 응축되어 응축수로 응축수조에 저장되고 물이 제거된 도금폐수는 농축되며, 다시 새로운 도금폐수가 도입되어 상기 공정을 반복하면 도금폐수는 점차 농축되어 일정농도 이상의 중금속이온을 포함하게 되어 다시 도금 공정에 유입시켜 재사용 가능하게 된다. In one example of the present invention, the Zn-Cr plating wastewater is heated to 70 ~ 80 ℃ by a heat exchanger and introduced into the separator, the water evaporated in the separator is condensed in the condenser is stored in the condensate tank as condensate water and the water is removed plating wastewater When the new plating waste water is introduced again and the above process is repeated, the plating waste water is gradually concentrated to include heavy metal ions of a predetermined concentration or more, and thus, the plating waste water is reused by being introduced into the plating process.
본 발명의 일례로서 도 1의 공정개략도를 들어 진공증발농축장치의 일례를 설명하면, 진공증발 농축장치를 구성하는 기본 요소로는 분리기, 순환펌프, 열교환기, 진공펌프, 응축기, 및 냉각탑 등을 들 수 있다. 도금폐수는 공급펌프에 의해 열교환기로 이송되어 온수생성조(Hot water generation tank)에서 공급된 온수에 의해 열교환에 의해 70-80℃의 온도로 조절된다. 열교환된 도금폐수가 분리기로 유입되고 팽창증발된 후 응축기에서 냉각되어 응축수조에 응축수가 모이게 되고 분리기에서 농축수는 재농축되어, 원하는 농도까지 순환펌프에 의해서 열교환기를 거쳐 분리기로 재순환된다. As an example of the present invention, an example of a vacuum evaporation concentrator will be described with reference to the process diagram of FIG. 1. A basic element constituting the vacuum evaporation concentrator includes a separator, a circulation pump, a heat exchanger, a vacuum pump, a condenser, a cooling tower, and the like. Can be mentioned. The plating waste water is transferred to the heat exchanger by a feed pump and is controlled to a temperature of 70-80 ° C. by heat exchange by hot water supplied from a hot water generation tank. After the heat exchanged plating wastewater enters the separator and expands and evaporates, it is cooled in the condenser to collect condensate in the condensate tank.
본 발명에서 상기 진공증발 농축장치로 공급되는 온수온도는 70~80℃이고, 바람직하게는 70~75℃이다. 도금폐수는 공급펌프에 의해 열교환기로 이송되어 온수조(hot water generation tank)에서 공급된 온수에 의해 70-80℃의 온도로 조절된다. 유입되는 폐수의 온도는 분리기에서의 진공도와 관련된 것으로 진공증발장치로 유입되는 폐수의 온도가 70℃ 미만이면 상대적으로 분리기에서의 진공도를 상승시켜야하며, 80℃온도를 초과하면 본 발명에 의한 온수 순환펌프를 사용 불가능함으로 폐수의 온도를 70-80℃로 바람직하게는 70-75℃로 조절한다. 즉, 열교환된 도금폐수(70-80℃)가 분리기로 유입되고 팽창증발된 후 응축기에서 냉각되어 응축수조에 응축수가 모이게 되고 분리기에서 농축수는 재농축되어, 원하는 농도까지 순환펌프에 의해서 열교환기를 거쳐 분리기로 재 순환된다. The hot water temperature supplied to the vacuum evaporation concentrator in the present invention is 70 ~ 80 ℃, preferably 70 ~ 75 ℃. The plating waste water is transferred to a heat exchanger by a feed pump and is controlled to a temperature of 70-80 ° C. by hot water supplied from a hot water generation tank. The temperature of the incoming wastewater is related to the degree of vacuum in the separator. If the temperature of the wastewater flowing into the vacuum evaporator is less than 70 ° C, the degree of vacuum in the separator should be relatively increased. By disabling the pump, the temperature of the wastewater is adjusted to 70-80 ° C., preferably 70-75 ° C. That is, the heat-exchanged plated wastewater (70-80 ° C) flows into the separator, expands and evaporates, and then cools in the condenser to collect condensate in the condensate tank, and the concentrated water is reconcentrated in the separator. Recirculated to the separator.
상기 진공증발 농축장치의 분리기의 진공도는 -500 ~ -600 mmHg범위이며, 이는 유입되는 도금폐수의 온도가 70-80℃인 경우에는 -500 ~ -600 mmHg이고, 바람직하게는 70-75℃의 유입폐수를 사용하는 경우에는, 진공도 -550 ~ -600mmHg이 더욱 효과적으로 증발된다. The vacuum degree of the separator of the vacuum evaporation concentrator is in the range of -500 ~ -600 mmHg, which is -500 ~ -600 mmHg, preferably 70-75 ℃ when the temperature of the incoming plating waste water is 70-80 ℃ If influent wastewater is used, the vacuum degree of -550 to -600 mmHg is more effectively evaporated.
또한, 상기 진공증발 농축장치로 유입되는 도금폐수양은 분리기의 레벨안정성을 유지하여 도금폐수가 응축기로 넘어가는 현상을 방지하기 위해서 10~20ℓ/hr 이고, 순환펌프 전단 운전압력은 0.5-0.6kg/cm2 이고, 순환펌프 후단 운전압력은 2.0-2.5kg/cm2 일 수 있다. In addition, the amount of plating wastewater flowing into the vacuum evaporation concentrator is 10 to 20 l / hr to maintain the level stability of the separator and prevent the plating wastewater from flowing to the condenser, and the circulating pump shear operation pressure is 0.5-0.6kg /. cm 2 , the back end operating pressure of the circulation pump may be 2.0-2.5kg / cm 2 .
이하, 하기 예시적인 실시예를 들어 본 발명을 더욱 자세히 설명할 것이나, 본 발명의 보호범위가 하기 실시예로 한정되는 의도는 아니다. Hereinafter, the present invention will be described in more detail with reference to the following exemplary embodiments, but the protection scope of the present invention is not intended to be limited to the following examples.
[실시예]EXAMPLE
실시예 1: 진공증발농축을 이용한 Zn-Cr 도금폐수 처리Example 1 Treatment of Zn-Cr Plating Wastewater Using Vacuum Evaporation Concentration
본 발명에 사용된 진공증발농축기는 최대 30 L/hr의 처리용량을 갖춘 파일럿트 장치이며, 분리기의 레벨안정을 위해서 10-20 L/hr 범위로 도금폐수를 유입하였고, 온수 온도를 70-75℃ 범위에서 온도 조절기로 자동조절하면서 실험을 수행하였다. 순환펌프의 압력범위는 0.5 ~ 0.6 kg/cm2 이었고, 진공도는 -550 ~ -600mmHg 범위에서 8시간동안 연속운전 실험을 수행하여 응축수와 농축수의 전기전도도, COD성분, 중금속이온농도를 표 1에 각각 나타내었다.The vacuum evaporator used in the present invention is a pilot device having a processing capacity of up to 30 L / hr, the plating wastewater is introduced into the range of 10-20 L / hr for level stability of the separator, and the hot water temperature is 70-75. The experiment was performed while automatically adjusting with a temperature controller in the range of ℃. The pressure range of the circulating pump was 0.5 to 0.6 kg / cm 2 and the vacuum degree was -550 to -600mmHg for 8 hours of continuous operation experiments to show the electrical conductivity, COD and heavy metal ion concentrations of condensate and concentrated water. Represented in each.
주*) 함량퍼세트는 다음식에 의해 계산된다: Note *) The content set is calculated by the formula:
[농축수농도/(원폐수농도 X 5)] X100[Concentrated water concentration / (raw wastewater concentration X 5)] X100
상기 표1에서 알 수 있는 바와 같이, 응축수의 전기전도도, 중금속이온, COD성분의 제거율이 99%이상으로 도금수세수로 재이용할 수 있다. 또한 운전시간 8시간 후 농축수의 COD농도 및 중금속이온농도, 전기전도도가 도금원액 농도 대비 96%이상의 품질을 유지할 수 있는 것으로 나타나 도금용액으로 재활용하는 것이 가능하다고 판단된다. 따라서 표1로부터 Zn-Cr 도금폐수를 진공증발농축법을 이용하여 농축수는 도금용액으로 재활용할 수 있고, 응축수는 도금수세수로 재이용할 수 있음을 알 수 있다.As can be seen in Table 1, the electrical conductivity of the condensed water, heavy metal ions, COD component removal rate of 99% or more can be reused as the plating wash water. In addition, the COD concentration, heavy metal ion concentration, and electrical conductivity of the concentrated water after 8 hours of operation time can maintain the quality of 96% or more of the plating solution concentration, it is judged that it is possible to recycle the plating solution. Therefore, it can be seen from Table 1 that the concentrated water can be recycled to the plating solution, and the condensate can be reused as the washing water using the vacuum evaporation concentration method.
비교예 1: 소석회를 이용한 Zn-Cr 도금폐수 처리Comparative Example 1: Zn-Cr Plating Wastewater Treatment Using Slaked Lime
Zn-Cr 도금폐수에 소석회를 주입하여 pH 8~10로 상승시켜 수산화물 침전을 형성하였다. 소석회를 주입하여 그 결과를 하기 표 2 및 도 2에 사용된 소석회의 주입농도대 Cr 및 Zn 이온 제거율로 나타내었다.The lime was injected into Zn-Cr plating wastewater to raise the pH to 8-10 to form a hydroxide precipitate. The injection of slaked lime is shown in the results of the injection concentration of Cr and Zn ion removal rate used in Table 2 and Figure 2 below.
상기 표 2 및 도 2의 그래프에서 알 수 있는 바와 같이, 초기 Cr 및 Zn이온농도가 432.9mg/L, 920mg/L였던 Zn-Cr 도금폐수는 소석회를 1000mg/L 이상 주입해서 pH 8.8 이상이 되어야 Cr 및 Zn 이온 제거율이 95% 이상으로 거의 완전히 제거됨을 알 수 있고, 소석회를 1000mg/L 이하로 주입했을 때는 Cr 및 Zn 이온 제거율이 그다지 높지 않음을 알 수 있었다.As can be seen in the graphs of Table 2 and Figure 2, the initial Cr and Zn ion concentration was 432.9mg / L, 920mg / L Zn-Cr plating waste water should be at least pH 8.8 by injecting lime more than 1000mg / L It can be seen that the removal rate of Cr and Zn ions is almost completely removed at 95% or more, and the removal rate of Cr and Zn ions is not very high when the slaked lime is injected at 1000 mg / L or less.
비교예 2: Zn-Cr 도금폐수의 펜톤산화Comparative Example 2: Fenton Oxidation of Zn-Cr Plating Wastewater
Zn-Cr 도금폐수를 과산화수소와 철염을 이용한 펜톤산화(Fenton Oxidation) 방법으로 처리하였으며, 구체적으로 철염의 농도를 500mg/L 로 일정하게 한 가운데 과산화수소농도를 표 3에 나타난 바와 같이 변화시키면서 실험을 수행하였다. 얻어진 결과를 하기 표 3에 나타내었다. 또한 도 3에서 사용된 과산화수소의 주입농도에 따른 COD 농도로 나타내었다. Zn-Cr plating wastewater was treated by Fenton Oxidation method using hydrogen peroxide and iron salt. Specifically, the experiment was performed while changing the hydrogen peroxide concentration as shown in Table 3 while maintaining the iron salt concentration to 500 mg / L. It was. The results obtained are shown in Table 3 below. In addition, it is shown as the COD concentration according to the injection concentration of hydrogen peroxide used in FIG.
상기 표 3 및 도 3의 그래프에서 알 수 있는 바와 같이, 초기 COD 농도가 2000mg/L 였던 Zn-Cr 도금폐수는 과산화수소와 철염으로 유기물을 산화분해한 후에도 과산화주입농도 600mg/L 일 때, 처리수의 COD 농도가 968mg/L 이상으로 COD 제거율이 52% 정도로 폐수 중의 COD 성분의 제거효율이 그다지 높지 않음을 알 수 있었다. As can be seen in the graph of Table 3 and Figure 3, the initial COD concentration was 2000mg / L Zn-Cr plating wastewater treated water when the peroxide injection concentration is 600mg / L even after oxidative decomposition of organic matter with hydrogen peroxide and iron salt The COD concentration of 968mg / L or more and the COD removal rate was 52%, indicating that the removal efficiency of COD components in the wastewater was not very high.
상기한 바와 같이 진공증발농축을 이용하여 Zn-Cr폐수중의 중금속이온 및 COD성분을 분리 제거함으로써 종래 응집침전법 및 화학적산화법에 비하여 슬러지 발생을 감소시킴과 동시에 폐수 중의 중금속이온 및 COD성분을 효과적으로 제거할 수 있다. 나아가, 진공증발농축에 의한 응축수는 도금수세수로 재이용할 수 있고, 최종 농축수는 도금용액으로 재활용할 수 있다.As described above, by separating and removing heavy metal ions and COD components in Zn-Cr wastewater using vacuum evaporation concentration, sludge generation is reduced as compared to conventional flocculation and chemical oxidation methods, and at the same time, the heavy metal ions and COD components in wastewater are effectively Can be removed. Furthermore, the condensed water by vacuum evaporation concentration can be reused as the plating washing water, and the final concentrated water can be recycled as the plating solution.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010083449A KR100829798B1 (en) | 2001-12-22 | 2001-12-22 | Plating wastewater treatment method using vacuum evaporation concentration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010083449A KR100829798B1 (en) | 2001-12-22 | 2001-12-22 | Plating wastewater treatment method using vacuum evaporation concentration method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030053273A KR20030053273A (en) | 2003-06-28 |
KR100829798B1 true KR100829798B1 (en) | 2008-05-16 |
Family
ID=29577870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020010083449A Expired - Fee Related KR100829798B1 (en) | 2001-12-22 | 2001-12-22 | Plating wastewater treatment method using vacuum evaporation concentration method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100829798B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101275691B1 (en) | 2013-01-03 | 2013-06-17 | 주식회사 케이제이씨 | Vacuum evaporation and concentration system with heat exchanger injecting air |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100943201B1 (en) * | 2008-02-14 | 2010-02-19 | 서안켐텍 주식회사 | Solid composition for copper-zinc alloy plating |
CN105293608B (en) * | 2015-12-02 | 2018-03-09 | 四川上特科技有限公司 | A kind of nickel waste water processing method of chip production line |
KR102827858B1 (en) | 2022-04-29 | 2025-06-30 | 박병근 | Evaporation concentration equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR940001419A (en) * | 1992-06-30 | 1994-01-11 | 김광호 | Semiconductor memory device and manufacturing method thereof |
KR960001397A (en) * | 1994-06-03 | 1996-01-25 | 전성원 | Locking device of car door |
KR960007530A (en) * | 1994-08-11 | 1996-03-22 | 클라우스 데너, 크누트 샤우에르테 | Method of producing dinitrotoluene |
KR960014030A (en) * | 1994-10-27 | 1996-05-22 | 안효삼 | Far infrared rays lens |
KR20020051491A (en) * | 2000-12-22 | 2002-06-29 | 이구택 | A method for treatment of zinc-chrome electroplating wastewater |
-
2001
- 2001-12-22 KR KR1020010083449A patent/KR100829798B1/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR940001419A (en) * | 1992-06-30 | 1994-01-11 | 김광호 | Semiconductor memory device and manufacturing method thereof |
KR960001397A (en) * | 1994-06-03 | 1996-01-25 | 전성원 | Locking device of car door |
KR960007530A (en) * | 1994-08-11 | 1996-03-22 | 클라우스 데너, 크누트 샤우에르테 | Method of producing dinitrotoluene |
KR960014030A (en) * | 1994-10-27 | 1996-05-22 | 안효삼 | Far infrared rays lens |
KR20020051491A (en) * | 2000-12-22 | 2002-06-29 | 이구택 | A method for treatment of zinc-chrome electroplating wastewater |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101275691B1 (en) | 2013-01-03 | 2013-06-17 | 주식회사 케이제이씨 | Vacuum evaporation and concentration system with heat exchanger injecting air |
Also Published As
Publication number | Publication date |
---|---|
KR20030053273A (en) | 2003-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1890970B1 (en) | Electrodialysis reversal and electrochemical wastewater treatment method of compound containing nitrogen | |
CN101734820B (en) | Method for treating high slat-containing wastewater | |
CN102295378B (en) | Treatment and recycling method of ammonia nitrogen containing high-salt catalyst wastewater | |
KR100743146B1 (en) | Pretreatment Method of Desulfurization Denitrification Wastewater | |
CN110835199A (en) | Electroplating wastewater zero-discharge treatment system and treatment process thereof | |
KR100829798B1 (en) | Plating wastewater treatment method using vacuum evaporation concentration method | |
CN110590074A (en) | High-concentration pickle wastewater treatment process | |
CN114906973A (en) | Coking sewage advanced treatment zero-discharge process | |
CN115140862A (en) | Method for pretreating electroplating wastewater by adopting ozone and Fenton process in cooperation | |
CN111115894A (en) | Chemical copper plating wastewater treatment method | |
CN206156979U (en) | High processing apparatus who contains salt difficult degradation saccharin industrial waste water waste gas | |
CN110143710A (en) | Formation foil production line Sewage treatment utilizes method | |
KR100468450B1 (en) | A method for treatment of zinc-chrome electroplating wastewater | |
KR20020041504A (en) | Process for treating waste water in plating process | |
JP2621090B2 (en) | Advanced wastewater treatment method | |
KR100398420B1 (en) | A Removal Method of Organics in Zn-Cr Eletroplating Wastewater | |
KR0145396B1 (en) | Wastewater Recycling Method Generated During Plating And Its Apparatus | |
KR20090072606A (en) | Removal of COD Components in Plating Wastewater | |
CN114394705A (en) | Method for treating high-concentration salt water of large-scale steel and iron combined enterprise | |
KR960003921B1 (en) | Method for treatment of waste water from cold rolling plant | |
KR102787494B1 (en) | A method for purifying wastewater with high salinity and purification system using the same | |
CN115353245B (en) | Method for recycling and reducing emission of metal surface treatment wastewater | |
CN110759573A (en) | Concentrated water treatment process | |
CN221917708U (en) | An energy and chemical wastewater treatment system based on advanced electron beam oxidation technology | |
KR800000190B1 (en) | Treating method for waste plating-water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20011222 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20061215 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20011222 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20071122 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20080421 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20080508 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20080509 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20110428 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20120423 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20130417 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20130417 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140507 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20140507 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20150417 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20150417 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20160421 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20160421 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170424 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20170424 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20180508 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20180508 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20190429 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20190429 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20200506 Start annual number: 13 End annual number: 13 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20220219 |