[go: up one dir, main page]

KR100828720B1 - Method for producing mesoporous organosilica material using PEO-PLLA-PEO block copolymer and mesoporous organosilica material produced thereby - Google Patents

Method for producing mesoporous organosilica material using PEO-PLLA-PEO block copolymer and mesoporous organosilica material produced thereby Download PDF

Info

Publication number
KR100828720B1
KR100828720B1 KR1020050098230A KR20050098230A KR100828720B1 KR 100828720 B1 KR100828720 B1 KR 100828720B1 KR 1020050098230 A KR1020050098230 A KR 1020050098230A KR 20050098230 A KR20050098230 A KR 20050098230A KR 100828720 B1 KR100828720 B1 KR 100828720B1
Authority
KR
South Korea
Prior art keywords
peo
block copolymer
silica
plga
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020050098230A
Other languages
Korean (ko)
Other versions
KR20070042377A (en
Inventor
조은범
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020050098230A priority Critical patent/KR100828720B1/en
Publication of KR20070042377A publication Critical patent/KR20070042377A/en
Application granted granted Critical
Publication of KR100828720B1 publication Critical patent/KR100828720B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

본 발명은 화학식 1로 표시되는 PEO-PLGA-PEO 블록공중합체를 구조유도체로 사용하여 메조포러스 유기-실리카 물질을 제조하는 방법 및 상기 방법에 의해 제조되는 것을 특징으로 하는 메조포러스 유기-실리카 물질에 관한 것이다:The present invention relates to a method for producing a mesoporous organo-silica material using the PEO-PLGA-PEO block copolymer represented by the formula (1) as a structural derivative, and to the mesoporous organo-silica material, which is prepared by the method. It is about:

<화학식 1><Formula 1>

Figure 112005058883832-pat00001
Figure 112005058883832-pat00001

상기 식에서, x, y 및 z는 각각 고분자 블록의 단위수이다.Wherein x, y and z are each the number of units of the polymer block.

본 발명에 따르면, 500~2,000 m2/g의 표면적을 갖고 5~10 nm 크기의 기공들이 규칙적인 육방형으로 배열되어 있는 메조포러스 유기-실리카 물질을 제공할 수 있다. 또한, 본 발명에 따르면, 상기 메조포러스 유기-실리카 물질은 사용 용도에 따라 분말 및 막으로 제조될 수 있다.According to the present invention, it is possible to provide a mesoporous organo-silica material having a surface area of 500 to 2,000 m 2 / g and pores having a size of 5 to 10 nm arranged in a regular hexagon. In addition, according to the present invention, the mesoporous organo-silica material may be prepared into a powder and a film depending on the intended use.

메조포러스(mesoporous), PEO-PLGA-PEO 블록공중합체, 유기-실리카 Mesoporous, PEO-PLGA-PEO block copolymer, organo-silica

Description

PEO-PLGA-PEO 블록공중합체를 이용한 메조포러스 유기실리카 물질의 제조 방법 및 그에 의해 제조되는 메조포러스 유기실리카 물질{Method for preparing mesoporous organosilica material using PEO-PLGA-PEO block copolymer and mesoporous organosilica material using the method} Method for preparing mesoporous organosilica material using PEO-PLLA-PEO block copolymer and method for preparing mesoporous organosilica material produced by PEO-PLGA-PEO block copolymer and mesoporous organosilica material using the method }

도 1은 본 발명의 일 실시예에서 제조된 메조포러스 페닐렌-실리카 물질의 소각 X-선 산란 스펙트럼을 나타낸 것이다.Figure 1 shows the incineration X-ray scattering spectrum of the mesoporous phenylene-silica material prepared in one embodiment of the present invention.

도 2는 본 발명의 일 실시예에서 제조된 메조포러스 페닐렌-실리카 물질의 질소 흡착-탈착 등온선(adsorption-desorption isotherm)을 나타낸 것이다.Figure 2 shows the nitrogen adsorption-desorption isotherm of the mesoporous phenylene-silica material prepared in one embodiment of the present invention.

도 3은 도 2에 나타난 질소의 흡착 등온선으로부터 BJH(Barret-Joyner-Halenda) 방법을 이용하여 구한 기공크기 분포곡선(pore size distribution curve)을 나타낸 것이다. FIG. 3 shows a pore size distribution curve obtained from the adsorption isotherm of nitrogen shown in FIG. 2 using the Barrett-Joyner-Halenda (BJH) method.

도 4는 본 발명의 일 실시예에서 제조된 메조포러스 페닐렌-실리카 물질의 고체상 실리콘 원자핵자기 공명분광분석 스펙트럼을 나타낸 것이다. Figure 4 shows the solid-state silicon nuclear magnetic resonance spectroscopy spectrum of the mesoporous phenylene-silica material prepared in one embodiment of the present invention.

본 발명은 메조포러스 유기실리카 물질의 제조 방법에 관한 것으로, 보다 상 세하게 본 발명은 높은 표면적과 정돈된 배열의 일정 크기의 기공을 갖는 메조포러스 유기-실리카 물질의 신규한 제조 방법 및 상기 방법에 의해 제조되는 메조포러스 유기-실리카 물질에 관한 것이다. The present invention relates to a method for producing a mesoporous organosilica material, and more particularly, the present invention relates to a novel method for producing a mesoporous organo-silica material having a high surface area and a predetermined size of pores in an orderly arrangement. A mesoporous organo-silica material produced by the present invention.

1992년 모빌(Mobil)사에서 M41S를 발표한 이후, 메조포러스 기공 구조의 분석 및 새로운 기공 구조의 탐색, 기공의 확장, 실리카 벽에 새로운 기능기의 도입 및 금속 산화물 도입 등의 수많은 연구가 진행되었으며, 특히 균일한 실리카 성분의 벽을 두껍게 하거나 물리적 및 화학적 특성을 부여하여 다른 물질과의 표면 반응성, 광학 특성, 기계적 특성, 외부 물질의 원활한 삽입 및 선택적 분리 등의 기능을 보완하고자 하는 노력이 계속 이어지고 있다. Since the release of M41S by Mobil in 1992, numerous studies have been carried out, including mesoporous pore structure analysis, the discovery of new pore structures, the expansion of pores, the introduction of new functional groups on silica walls and the introduction of metal oxides. Efforts are being made to complement the functions of surface reactivity with other materials, optical properties, mechanical properties, smooth insertion and selective separation of other materials, especially by thickening or imparting a uniform wall of silica. have.

이러한 메조포러스 분자체(molecular sieve) 물질의 개발은 기존의 제올라이트 등의 미세기공(micropore)을 갖는 물질들에 비해 기공의 크기의 범위를 2~50 nm 정도로 확장 시킴으로써 그 동안 분자체 물질의 응용에 제한이 되었던 나노 미터 단위의 분자인 고분자 물질이나 단백질 및 세포 등의 생물학적 물질들의 반응, 흡착, 분리 및 배양 등의 문제 해결 또는 표면적이 큰 금속 산화물의 제조가 현실화 될 수 있는 가능성을 열어준 것이다. The development of such a mesoporous molecular sieve material extends the pore size range by 2 to 50 nm, compared to existing materials having micropores such as zeolites. It opened up the possibility of solving the problems such as the reaction, adsorption, separation and cultivation of the limited nanometer molecules, biological substances such as proteins and cells, or the manufacture of metal oxides with large surface area.

실리카 외에 다른 기능기의 도입은 메조포러스 실리카 물질 제조 후 기능성 기를 화학적으로 재부착시키거나, 실리카 전구물질과 함께 기능기 전구물질을 동시에 반응시키는 방법(co-condensation) 등이 제시되었으나 이들은 모두 실리카 물질 내에 불균일한 분포를 보이거나 효과적인 물성 부여를 위한 충분한 함량을 도입하는데 제한이 따른다. 아울러 기능기를 새로이 부여하는 경우, 기존의 실리카 물질 과는 다른 기능기 전구물질의 수화 및 중합반응 속도, 실리카 물질과의 반응 용기 내에서의 상용성(compatibility) 등이 중합의 새로운 문제점이 되었다. The introduction of functional groups other than silica has been suggested to chemically reattach functional groups after preparation of mesoporous silica materials or to co-condensation of functional group precursors with silica precursors. There are limitations in introducing a non-uniform distribution in the interior or incorporating sufficient content for effective physical properties. In addition, when a functional group is newly provided, the hydration and polymerization rate of the functional group precursor different from the existing silica material, and compatibility in the reaction vessel with the silica material become new problems of polymerization.

1999년부터 규칙 배열된 메조포러스 유기실리카(periodic mesoporous organosilica) 물질이 발표되기 시작했으며, 이는 실리카와 실리카 사이에 유기물질이 다리 구조로 연결된 유기 실록산(organosiloxane) 전구물질을 사용하고 기존 또는 보완된 양이온 계면활성제나 블록공중합체를 사용하여 효과적으로 정돈된 구조의 메조포러스 유기 실리카 물질을 제조할 수 있음이 확인되었다(T. Asefa, M. J. MacLachlan, N. Coombs, G. A. Ozin, Nature, Vol.402, p.867, 1999). Since 1999, regularly ordered mesoporous organosilica materials have been published, which use organic or organosiloxane precursors in which organic materials are bridged between silica and silica and are either existing or complemented cations. It has been shown that mesoporous organic silica materials of effectively ordered structure can be prepared using surfactants or block copolymers (T. Asefa, MJ MacLachlan, N. Coombs, GA Ozin, Nature, Vol. 402, p. 867, 1999).

상기에 기술한 바와 같이 메조포러스 물질 제조와 응용분야는 점점 확대되고 있으며, 새로운 메조포러스 물질의 설계에 새로운 구조 유도체의 개발은 새로운 구조와 기능기가 도입된 물질의 제조를 통해 응용분야를 개척하는데 가장 중요한 부분이라고 여겨진다. 기공의 크기를 확대하고 실리카 벽의 두께를 키우는데 독일 BASF사에서 판매하는 Pluronic PEO-PPO-PEO 삼중블록공중합체가 1998년 이후 줄곧 사용되어 왔다. 이는 대규모로 판매되는 상용 고분자 수지이며 테트라에틸오르토실리케이트(tetraethyl orthosilicate; TEOS)와 같은 기본 실리카 전구물질과의 결합이 용이하게 이루어져 수많은 연구가 되어왔고, SBA-15, SBA-16 등은 널리 알려진 대표적 육방형(hexagonal), 입방형(cubic) 구조를 가지는 실리카 물질 들이다(미국 특허 제 6,027,706호; 미국 특허 제 6,054,111호; D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, Vol.279, p.548, 1998). As described above, the production and application of mesoporous materials are increasing. The development of new structural derivatives in the design of new mesoporous materials is the best way to pioneer applications through the manufacture of materials with new structures and functional groups. It is considered an important part. Pluronic PEO-PPO-PEO triblock copolymers sold by BASF, Germany, have been used since 1998 to increase the pore size and increase the silica wall thickness. It is a commercially available polymer resin that is sold on a large scale and has been easily studied in combination with basic silica precursors such as tetraethyl orthosilicate (TEOS), and SBA-15 and SBA-16 are well known and representative. Silica materials with hexagonal and cubic structure (US Pat. No. 6,027,706; US Pat. No. 6,054,111; D. Zhao, J. Feng, Q. Huo, N. Melosh, GH Fredrickson, BF Chmelka, GD Stucky, Science, Vol. 279, p. 548, 1998).

Pluronic 블록공중합체의 사용이 저분자량의 계면활성제를 사용하는 것에 비해 기공의 크기와 물질의 안정성을 증진시키는데 적합한 구조 유도체이나, 유기 실리카와의 혼성체를 제조하는데 이용되기 시작하면서, TEOS와 같은 유기물이 없는 실리카 전구물질을 사용하는 경우에 비해 유기 실리카 물질과의 반응은 쉽지 않거나 보다 제한적인 범위에서 이루어지는 문제점이 보고되었다. Organics such as TEOS are beginning to be used to prepare structural derivatives or hybrids with organic silica, which are suitable for enhancing pore size and material stability over the use of low molecular weight surfactants, compared to using low molecular weight surfactants. It has been reported that the reaction with organic silica material is not easy or in a more limited range compared to the case where no silica precursor is used.

페닐렌이 실리카와 화학적으로 결합되어 메조포러스 물질을 이루는 제조법은 양이온성 아민을 포함한 옥타데실트리메틸암모늄 클로라이드(Octadecyltrimethyl-ammonium chloride; ODTMA) 계면활성제를 사용하여 처음 소개되었다(S. Inagaki, S. Guan, T. Ohsuna, T. Terasaki, Nature, Vol.416, p.304, 2002). 메조포러스 페닐렌-실리카 물질의 제조는 촉매 용도로서의 선택성 등을 좀더 확장할 뿐만 아니라 황산기를 벽면에 부가하면 전지의 전해질이나 산촉매로의 응용이 가능할 것으로 생각된다. 하지만, 현재까지 기공과 실리카 벽 두께를 키우고 안정적이며 막(membrane)을 제조할 수 있는 제조법은 소개되지 않았다. A process in which phenylene is chemically bonded to silica to form a mesoporous material was first introduced using octadecyltrimethyl-ammonium chloride (ODDTMA) surfactants containing cationic amines (S. Inagaki, S. Guan). , T. Ohsuna, T. Terasaki, Nature, Vol. 416, p. 304, 2002). The preparation of mesoporous phenylene-silica materials not only expands the selectivity as a catalyst use, but also adds sulfuric acid groups to the walls, and thus it is considered that the application of the battery to the electrolyte or acid catalyst is possible. However, to date, no method has been introduced to increase the pore and silica wall thickness, and to produce a stable and membrane.

이에 본 발명자는 상기 종래 기술의 문제점을 해결하기 위하여 연구를 거듭한 결과 기공 형성 유도체로서 PEO-PLGA-PEO 삼중블록공중합체를 이용하고 그의 분자량 및 블록 분율을 조절함으로써 높은 표면적과 정돈된 배열의 일정 크기의 기공을 갖는 육방형 메조포러스 유기-실리카 물질을 제조할 수 있음을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors have repeatedly studied to solve the problems of the prior art, using a PEO-PLGA-PEO triblock copolymer as a pore-forming derivative, and by adjusting its molecular weight and block fraction, constant surface area and orderly arrangement The present invention has been completed by confirming that hexagonal mesoporous organo-silica materials having pores of size can be prepared.

따라서, 본 발명의 목적은 페닐렌 등의 유기물이 화학적 결합으로 실리카 벽 에 균일하게 분포되고, 사용 용도에 따라 분말 및 수 밀리미터 정도 두께의 박막 형태로 제조될 수 있으며, 높은 표면적과 정돈된 배열의 일정 크기의 기공을 갖는 메조포러스 유기-실리카 물질의 제조 방법을 제공하는 것이다. Accordingly, an object of the present invention is to distribute the organic material such as phenylene uniformly on the silica wall by chemical bonding, and can be prepared in the form of powder and a thin film of a few millimeters thick depending on the intended use, high surface area and orderly arrangement It is to provide a method for producing a mesoporous organo-silica material having pores of a certain size.

본 발명의 다른 목적은 상기 방법에 의해 제조되는 메조포러스 유기-실리카 물질을 제공하는 것이다. Another object of the present invention is to provide a mesoporous organo-silica material produced by the above method.

본 발명의 목적을 달성하기 위하여, 본 발명은 화학식 1로 표시되는 PEO-PLGA-PEO 블록공중합체를 구조유도체로 사용하여 메조포러스 유기-실리카 물질을 제조하는 방법을 제공한다:In order to achieve the object of the present invention, the present invention provides a method for producing a mesoporous organo-silica material using the PEO-PLGA-PEO block copolymer represented by the formula (1) as a structural derivative:

<화학식 1><Formula 1>

Figure 112005058883832-pat00002
Figure 112005058883832-pat00002

상기 식에서, x, y 및 z는 각각 고분자 블록의 단위수이다.Wherein x, y and z are each the number of units of the polymer block.

본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 방법에 의해 제조되는 메조포러스 유기-실리카 물질을 제공한다. In order to achieve another object of the present invention, the present invention provides a mesoporous organo-silica material produced by the above method.

이하 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 일 측면은 메조포러스 유기-실리카 물질의 제조 방법에 관한 것이다. 본 발명의 일 측면에 따른 메조포러스 유기-실리카 물질의 제조 방법은 화학식 1로 표시되는 PEO-PLGA-PEO 블록공중합체를 구조유도체로 사용하는 것을 특징으 로 한다:One aspect of the invention is directed to a method of making a mesoporous organo-silica material. Method for producing a mesoporous organo-silica material according to an aspect of the present invention is characterized by using the PEO-PLGA-PEO block copolymer represented by the formula (1) as a structural derivative:

<화학식 1><Formula 1>

Figure 112005058883832-pat00003
Figure 112005058883832-pat00003

상기 식에서, x, y 및 z는 각각 고분자 블록의 단위수이다.Wherein x, y and z are each the number of units of the polymer block.

본 발명에서 사용되는 PEO-PLGA-PEO 블록공중합체의 PLGA 사슬은 FDA 승인을 얻은 생물학적으로 안정적인 물질이며, PEO 블록과의 블록공중합체를 이루는 경우 수용액 내에서의 온도에 의존하는 특수한 졸-젤 상전이 거동으로 생물학적 약물 방출이나 약물 운반체로 많은 연구가 된 물질이다(미국 특허 제 6,201,072호, 대한민국 공개 제 2001-0030891호).The PLGA chain of the PEO-PLGA-PEO block copolymer used in the present invention is a biologically stable material with FDA approval, and when the block copolymer with the PEO block forms a special sol-gel phase transition depending on the temperature in the aqueous solution It is a substance that has been studied a lot as a biological drug release or drug carrier due to the behavior (US Patent No. 6,201,072, Republic of Korea Publication No. 2001-0030891).

그러나 상기 PEO-PLGA-PEO 블록공중합체를 이용하여 메조포러스 유기실리카 물질을 제조하려는 시도는 전혀 없었다. 본 발명은 종래의 PEO-PPO-PEO 블록공중합체 내의 PPO 블록이 수용액 상에서 갖는 소수성보다 증가된 소수성을 갖는 PLGA 블록이 도입된 PEO-PLGA-PEO 블록공중합체를 메조포러스 유기실리카 물질을 제조하는데 있어서 구조 유도체로 사용함으로써 유기 실리카 전구물질의 반응이 보다 효과적으로 PEO 블록 상에서만 이루어지도록 유도할 수 있다. However, no attempt has been made to produce mesoporous organosilica materials using the PEO-PLGA-PEO block copolymer. The present invention provides a method for preparing a mesoporous organosilica material using a PEO-PLGA-PEO block copolymer in which a PLGA block having an increased hydrophobicity than the hydrophobicity of the PPO block in a conventional PEO-PPO-PEO block copolymer is introduced. Use as structural derivatives can lead to more efficient reactions of organic silica precursors only on PEO blocks.

본 발명의 제조 방법은 화학식 1로 표시되는 PEO-PLGA-PEO 삼중블록공중합체를 이용하는 졸-젤 합성법에 의해 메조포러스 유기-실리카, 예컨대 에탄-실리카, 티오펜-실리카 및 페닐렌-실리카 등의 물질을 제공할 수 있다. The preparation method of the present invention is mesoporous organo-silica, such as ethane-silica, thiophene-silica and phenylene-silica by the sol-gel synthesis method using the PEO-PLGA-PEO triblock copolymer represented by the formula (1) Material may be provided.

본 발명에 있어서, 상기 블록공중합체의 블록의 단위수 x는 16이고, y는 3~7 의 정수이고, z는 25~35의 정수이며, 블록공중합체의 수평균 분자량은 3,500~7,000 달톤인 것이 바람직하다. In the present invention, the number of units x of the block copolymer block is 16, y is an integer of 3 to 7, z is an integer of 25 to 35, the number average molecular weight of the block copolymer is 3,500 to 7,000 Daltons It is preferable.

본 발명에 따른 메조포러스 유기-실리카 제조 방법은 구체적으로 다음 단계들을 포함할 수 있다:The method for producing mesoporous organo-silica according to the present invention may specifically include the following steps:

a) 화학식 1로 표시되는 PEO-PLGA-PEO 블록공중합체를 증류수, 알코올 및 산과 혼합하여 수용액을 제조하는 단계;a) preparing an aqueous solution by mixing PEO-PLGA-PEO block copolymer represented by Chemical Formula 1 with distilled water, alcohol and acid;

b) 상기 수용액에 유기-실리카 전구물질을 혼합하여 반응하는 단계;b) reacting the organic-silica precursor mixed with the aqueous solution;

c) 상기 b) 단계에서 얻어진 물질을 수열 반응하는 단계; 및c) hydrothermally reacting the material obtained in step b); And

d) 상기 c)단계에서 얻어진 물질을 여과 및 세척하여 블록공중합체를 제거하고 최종 물질을 건조하는 단계.d) filtering and washing the material obtained in step c) to remove the block copolymer and to dry the final material.

상기 a) 단계에서 PEO-PLGA-PEO 삼중블록공중합체는 합성에 의해 제조될 수 있다. 예컨대, 상기 PEO-PLGA-PEO 삼중블록공중합체의 합성은 D,L-락타이드(lactide)와 글리콜라이드(glycolide) 전구체를 에틸 아세테이트(ethyl acetate) 용액으로 용해시키고 여과하고 재결정을 통해 정제하여 준비한 후, 개환 중합(ring opening polymerization)을 통해 PLGA 블록을 일정 길이로 합성하고 PEG 한쪽 말단에 메톡시(CH3O-)기가 붙은 mPEG와의 수소 이온 결합으로 이중블록공중합체를 합성한 다음 이중블록공중합체끼리 헥사메틸렌 디아이소시아네이트(hexamethylene diisocianate)를 매개체로 연결함으로써 수행될 수 있다. In step a), the PEO-PLGA-PEO triblock copolymer may be prepared by synthesis. For example, the synthesis of the PEO-PLGA-PEO triblock copolymer is prepared by dissolving D, L-lactide and glycolide precursors in an ethyl acetate solution, filtration and purification through recrystallization. After synthesis of PLGA blocks to a certain length through ring opening polymerization, a double-block copolymer was synthesized by hydrogen ion bonding with mPEG having a methoxy (CH 3 O-) group attached to one end of PEG. The coalescing may be performed by linking hexamethylene diisocianate with each other via a medium.

상기 블록공중합체의 블록의 단위수 x는 16이고, y는 3~7의 정수이고, z는 25~35의 정수이며, 블록공중합체의 수 평균 분자량이 3,500~7,000 달톤인 경우, 화학식 1로 표시되는 PEO-PLGA-PEO 블록공중합체 이외에 상기 화학식 1과 물리적 형태가 다른 PLGA-PEO 이중블록공중합체 및 PLGA-PEO-PLGA 형태의 삼중블록공중합체도 구조 유도체로 사용할 수 있다. When the number of units x of the block copolymer block is 16, y is an integer of 3 to 7, z is an integer of 25 to 35, and the number average molecular weight of the block copolymer is 3,500 to 7,000 Daltons, Formula 1 In addition to the PEO-PLGA-PEO block copolymers represented, PLGA-PEO biblock copolymers having a physical form different from that of Chemical Formula 1 and triblock copolymers of PLGA-PEO-PLGA type may also be used as structural derivatives.

상기 a) 단계에서 제조되는 수용액은 PEO-PLGA-PEO 블록공중합체 2~2.5 중량%, 산 0.3~7.4 중량%, 알코올 0~6.7 중량% 및 나머지 물을 포함할 수 있다. The aqueous solution prepared in step a) may include 2 to 2.5 wt% of PEO-PLGA-PEO block copolymer, 0.3 to 7.4 wt% of acid, 0 to 6.7 wt% of alcohol, and the remaining water.

상기 유기-실리카 전구물질은 화학식 2로 표시되는 물질들 및 화학식 3으로 표시되는 물질들로 이루어진 군에서 선택되는 하나 이상의 물질일 수 있다: The organo-silica precursor may be one or more materials selected from the group consisting of materials represented by Formula 2 and materials represented by Formula 3:

<화학식 2><Formula 2>

R1 iR2 jMO4 -i-j R 1 i R 2 j MO 4 -ij

<화학식 3><Formula 3>

R1 kR2 lO3 -k- lMSMO3 -k- lR1 kR2 l R 1 k R 2 l O 3 -k- l MSMO 3 -k- l R 1 k R 2 l

상기 식에서 R1 R2는 각각 독립적으로 탄소수 1~10의 알킬기이고; O는 탄소수 1~5의 알콕시기이고; M은 Si 또는 Ti 원자이고; S는 탄소수 1~15의 알킬렌기, 또는 탄소수 5~40의 티오펜기, 알킬티오펜기, 페닐렌기, 알킬페닐렌기, 아릴페닐렌기, 아릴렌기, 알킬아릴렌기 또는 아릴알킬렌기이고; i 및 j는 각각 독립적으로 0 ≤ i + j ≤3을 만족시키는 0 내지 3의 정수이고, k 및 l은 각각 독립적으로 0 ≤ k + l ≤ 2를 만족시키는 0 내지 2의 정수이다.In which R 1 And Each R 2 is independently an alkyl group having 1 to 10 carbon atoms; O is an alkoxy group having 1 to 5 carbon atoms; M is Si or Ti atom; S is an alkylene group having 1 to 15 carbon atoms, or a thiophene group having 5 to 40 carbon atoms, an alkylthiophene group, a phenylene group, an alkylphenylene group, an arylphenylene group, an arylene group, an alkylarylene group or an arylalkylene group; i and j are each independently integers of 0 to 3 satisfying 0 ≦ i + j ≦ 3, and k and l are each independently integers of 0 to 2 satisfying 0 ≦ k + l ≦ 2.

상기 유기 실리카 전구물질의 예는 메틸트리메톡시실란(methyltrimethoxysilane), 디메틸디메톡시실란(dimethyldimethoxysilane), 트리메틸메톡시실란(trimethylmethoxysilane), 메틸트리에톡시실란(methyltriethoxysilane), 디메틸디에톡시실란(dimethyldiethoxysilane), 트리메틸에톡시실란(trimethylethoxysilane), 메틸트리클로로실란(methyltrichlorosilane), 디메틸디클로로실란(dimethyldichlorosilane), 트리메틸클로로실란(trimethylchlorosilane), 비스(트리클로로실릴)메탄(bis(trichlorosilyl)methane), 1,2-비스(트리클로로실릴)에탄(1,2-bis(trichlorosilyl)ethane), 비스(트리메톡시실릴)메탄(bis(trimethoxysilyl)methane), 1,2-비스(트리에톡시실릴)에탄(1,2-bis(triethoxysilyl)ethane), 1,4-비스(트리메톡시실릴)벤젠(1,4-bis(trimethoxysilyl)benzene), 1,4-비스(트리메톡시실릴에틸)벤젠(1,4-bis(trimethoxysilylethyl)benzene), 1,4-비스(트리에톡시실릴)벤젠(1,4-bis(triethoxysilyl)benzene), 1,4-비스(트리에톡시실릴에틸)벤젠(1,4-bis(triethoxysilylethyl)benzene), 2,5-비스(트리메톡시실릴)티오펜(2,5-bis(trimethoxysilyl)thiophene), 2,5-비스(트리에톡시실릴)티오펜(2,5-bis(triethoxysilyl)thiophene), 4,4 -비스(트리메톡시실릴)바이페닐(2,5-bis(trimethoxysilyl)biphenyl), 4,4 -비스(트리에톡시실릴)바이페닐(2,5-bis(triethoxysilyl)biphenyl) 등을 포함할 수 있다.Examples of the organic silica precursors are methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, Trimethylethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, bis (trichlorosilyl) methane, 1,2-bis (Trichlorosilyl) ethane (1,2-bis (trichlorosilyl) ethane), bis (trimethoxysilyl) methane (bis (trimethoxysilyl) methane), 1,2-bis (triethoxysilyl) ethane (1,2 -bis (triethoxysilyl) ethane), 1,4-bis (trimethoxysilyl) benzene (1,4-bis (trimethoxysilyl) benzene), 1,4-bis (trimethoxysilylethyl) benzene (1,4- bis (trimethoxysilylethyl) benzene), 1,4-bis (triethoxysilyl) benzene (1,4-b is (triethoxysilyl) benzene), 1,4-bis (triethoxysilylethyl) benzene (1,4-bis (triethoxysilylethyl) benzene), 2,5-bis (trimethoxysilyl) thiophene (2,5- bis (trimethoxysilyl) thiophene), 2,5-bis (triethoxysilyl) thiophene, 4,4-bis (trimethoxysilyl) biphenyl (2,5- bis (trimethoxysilyl) biphenyl), 4,4-bis (triethoxysilyl) biphenyl (2,5-bis (triethoxysilyl) biphenyl) and the like.

상기 유기-실리카 전구물질은 PEO-PLGA-PEO 블록공중합체 1몰 기준으로 15~100 몰의 범위로 혼합될 수 있다. The organo-silica precursor may be mixed in the range of 15 to 100 moles based on 1 mole of PEO-PLGA-PEO block copolymer.

상기 b) 단계의 반응은 30~50 ℃의 온도에서 0.5~2 시간 동안 격렬히 교반시켜 수행될 수 있다. The reaction of step b) may be carried out by vigorously stirring for 0.5-2 hours at a temperature of 30 ~ 50 ℃.

상기 c) 단계의 수열 반응은 80~100 ℃의 온도에서 20~24 시간 동안 정치시켜 수행될 수 있다. The hydrothermal reaction of step c) may be performed by standing for 20 to 24 hours at a temperature of 80 ~ 100 ℃.

상기 c) 단계에 있어서 반응 용기의 증발을 허용하고 증발 속도를 조절함으로써 최종 물질로서 막을 얻을 수 있다. In step c), the membrane can be obtained as the final material by allowing evaporation of the reaction vessel and adjusting the evaporation rate.

상기 d) 단계의 여과는 여과 장치에 의해 수행되고, 상기 세척은 각 100~500 mL의 에탄올, 증류수 및 아세톤을 20~30분 동안 차례로 여과 장치에 흘려주거나 침전물 1 g 당 250~300 mL의 에탄올과 36% 염산 수용액 5~15 g을 사용하여 7~10 시간 동안 교반하여 수행될 수 있다.The filtration of step d) is performed by a filtration device, and the washing is performed by sequentially flowing 100 to 500 mL of ethanol, distilled water and acetone into the filtration device for 20 to 30 minutes, or 250 to 300 mL of ethanol per 1 g of precipitate. And 36% hydrochloric acid aqueous solution of 5-15 g may be carried out by stirring for 7-10 hours.

본 발명의 다른 측면은 본 발명에 따른 방법에 의해 제조되는 것을 특징으로 하는 메조포러스 유기-실리카 물질에 관한 것이다. Another aspect of the invention relates to a mesoporous organo-silica material characterized by being produced by the process according to the invention.

상기 유기-실리카 물질은 에탄-실리카 물질, 티오펜-실리카 물질 또는 페닐렌-실리카 물질일 수 있다. The organo-silica material may be an ethane-silica material, a thiophene-silica material or a phenylene-silica material.

또한, 상기 유기-실리카 물질은 유기-실리카 분말 또는 유기-실리카 막일 수 있다. In addition, the organo-silica material may be an organo-silica powder or an organo-silica membrane.

또한, 상기 유기-실리카 물질은 500~2,000 m2/g의 표면적을 갖고 5~10 nm 크기의 기공들이 규칙적인 육방형으로 배열되어 있는 것일 수 있다. In addition, the organic-silica material may have a surface area of 500 ~ 2,000 m 2 / g and the pores of 5 ~ 10 nm size are arranged in a regular hexagon.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. Since these examples are only for illustrating the present invention, the scope of the present invention is not to be construed as being limited by these examples.

<실시예 1><Example 1>

PEOPEO -- PLGAPLGA -- PEOPEO 삼중블록공중합체의Of triblock copolymer 합성 synthesis

1,000 mL 삼각 플라스크에 칼슘 하이드라이드(CaH2)로 정제된 에틸아세테이트 500 mL를 70 ℃로 가열하고, D,L-락타이드 100 g을 넣어 교반하면서 완전히 용해시켰다. 500 mL 흡입 플라스크를 사용하여 락타이드 용액을 아르곤 가스 하에서 여과시키고, 걸러진 용액과 침전물들을 온도를 높여 다시 완전히 용해시킨 후, 스티로폼 상자와 냉장고에 순차적으로 넣어 재결정하였다. 50 g의 글리콜라이드에 대해서도 60 ℃에서 에틸 아세테이트 300 mL를 사용하여 재결정시켰다. 분자량 750의 메톡시기가 한쪽 말단에 위치한 폴리에틸렌 글리콜 40.5 g을 700 mL 톨루엔이 담긴 1,000 mL 용량의 삼구 둥근바닥 플라스크에 녹여 120 ℃에서 증류하였다. 정제된 락타이드와 글리콜라이드 각각 54. 6 g과 4.9 g을 준비하여 폴리에틸렌 글리콜이 담긴 1,000 mL 둥근바닥 플라스크에 상온에서 60 ℃의 온도 내에서 넣어주고 완전히 용해시켰다. 스타노스 옥토에이트(Stannous octoate) 0.6 g을 넣어준 후, 120 ℃의 온도에서 24시가 아르곤 가스 분위기에서 마그네틱 바로 교반하여 반응시 켰다. 반응온도를 40 ℃로 낮추고 4.37 mL 헥사메틸렌 디아이소시아네이트(hexamethylene diisocianate)를 넣어 24시간 동안 아르곤 분위기에서 반응시켰다.500 mL of ethyl acetate purified with calcium hydride (CaH 2 ) was heated to 70 ° C. in a 1,000 mL Erlenmeyer flask, and 100 g of D, L-lactide was added to dissolve completely with stirring. The lactide solution was filtered under argon gas using a 500 mL suction flask, and the filtered solution and precipitates were dissolved again by raising the temperature and completely recrystallized into a styrofoam box and a refrigerator. 50 g of glycolide was also recrystallized at 300C using 300 mL of ethyl acetate. 40.5 g of polyethylene glycol having a molecular weight of 750 methoxy group at one end was dissolved in a 1,000 mL three-necked round bottom flask containing 700 mL toluene and distilled at 120 ° C. 54. 6 g and 4.9 g of purified lactide and glycolide, respectively, were prepared and placed in a 1000 mL round bottom flask containing polyethylene glycol at a temperature of 60 ° C. at room temperature and completely dissolved. After adding 0.6 g of Stannos octoate, the reaction was performed by stirring a magnetic bar in an argon gas atmosphere at a temperature of 120 ° C. for 24 hours. The reaction temperature was lowered to 40 ° C and 4.37 mL hexamethylene diisocianate was added and reacted in an argon atmosphere for 24 hours.

반응기 내에 얻어진 물질을 디클로로메탄 200 mL에 녹여 디에틸렌 에테르 3,000~4,500 mL가 담긴 5,000 mL 플라스크에 넣고 2일 정치시켜 침전시켰다. 침전된 용액을 250 mL 폴리에틸렌 용기에 넣어 드라이기로 수증기를 거의 제거한 다음, 데시케이터에서 진공 상태로 10일 정도 유지하여 침전물 내의 잔류물을 완전히 제거하였다. 블록 분율이 다른 블록공중합체를 합성하기 위해 반응에 참여하는 락타이드, 글리콜리드, 에틸렌 글리콜의 함량을 변화시켜서 중합하여 같은 실험 과정으로 최종 물질을 얻을 수 있었다. 이중블록공중합체를 제조하는 경우 상기 실시예의 헥사메틸렌 디아이소시아네이트 반응 단계를 제외해 주면 된다. The material obtained in the reactor was dissolved in 200 mL of dichloromethane and placed in a 5,000 mL flask containing 3,000 to 4,500 mL of diethylene ether, and allowed to stand for 2 days to precipitate. The precipitated solution was placed in a 250 mL polyethylene container to remove almost water vapor with a dryer and then kept in vacuum for about 10 days to completely remove the residue in the precipitate. In order to synthesize block copolymers having different block fractions, polymerization was performed by changing the contents of lactide, glycolide, and ethylene glycol participating in the reaction to obtain a final material in the same experimental procedure. When preparing the diblock copolymer, the hexamethylene diisocyanate reaction step of the above embodiment may be excluded.

상기 실시예로 얻어진 중합체의 수소원자 핵자기 공명 분광분석 스펙트럼의 피크 정량분석 결과, 사슬 내에 존재하는 락틱애시드(lactic acid)와 클리콜릭애시드(glycolic acid)의 블록의 단위 수는 각각 30 및 4였으며, 삼중블록공중합체 양쪽에 위치한 에틸렌 옥사이드 블록의 단위 수는 16이었다. PLGA 블록 내 락틱애시드의 몰비는 0.89였고, 폴리에틸렌 블록의 무게비는 전체 블록 무게의 37 %였다. 겔투과 크로마토그래피로 확인한 폴리에틸렌 왁스의 수평균 분자량과 중합 분산도(PDI)는 각각 5,200 달톤 및 1.26였다. As a result of peak quantitative analysis of the hydrogen atom nuclear magnetic resonance spectroscopy spectrum of the polymer obtained in the above example, the number of blocks of lactic acid and glycolic acid in the chain was 30 and 4, respectively. The number of units of ethylene oxide blocks located on both sides of the triblock copolymer was 16. The molar ratio of lactic acid in the PLGA block was 0.89 and the weight ratio of the polyethylene block was 37% of the total block weight. The number average molecular weight and the degree of polymerization dispersion (PDI) of the polyethylene wax identified by gel permeation chromatography were 5,200 Daltons and 1.26, respectively.

<실시예 2><Example 2>

메조포러스Mesoporous 실리카 물질의 제조 Preparation of Silica Materials

상기 실시예 1에서 제조된 EO16(L30G4)EO16 삼중블록공중합체 0.5 g을 16.55 g의 증류수, 1.5 g의 에탄올 및 4.45 g의 37 중량% 염산과 혼합하고, 0.98~1.30 g의 TEOS를 첨가하여 30 ℃의 반응온도로 30분 동안 마그네틱 교반하였다. 흰 침전물을 95 ℃ 수조에서 24시간 동안 반응시킨 후, 침전물을 에탄올, 증류수 및 아세톤으로 흡입 플라스크를 이용하여 여과하여 블록공중합체를 제거했다. 소각 X-선 산란 실험 결과 d-spacing이 91.0~93.8 Å이고, (100), (110), (200)의 피크들이 각각 결정 격자의 위치에 존재하는 2차원 육방형 실린더 구조를 나타내었다. 질소 흡착-탈착 등온선을 얻어 흡착 등온선으로부터 구한 BET 표면적, BJH(Barett-Joyner-Halenda) 기공 부피, 기공 크기는 각각 970~990 m2/g, 1.60~1.80 cm3/g, 8.4~9 nm의 값을 보였다. 0.5 g of the EO 16 (L 30 G 4 ) EO 16 triblock copolymer prepared in Example 1 was mixed with 16.55 g of distilled water, 1.5 g of ethanol and 4.45 g of 37% by weight of hydrochloric acid, and 0.98 to 1.30 g of TEOS was added and stirred for 30 minutes at a reaction temperature of 30 ° C. The white precipitate was reacted in a 95 ° C. water bath for 24 hours, and then the precipitate was filtered through a suction flask with ethanol, distilled water and acetone to remove the block copolymer. As a result of incineration X-ray scattering experiment, the d-spacing was 91.0∼93.8 Å and the two-dimensional hexagonal cylinder structure with peaks of (100), (110), and (200) existed at the positions of the crystal lattice, respectively. The BET surface area, Barett-Joyner-Halenda (BJH) pore volume and pore size obtained from the adsorption isotherm obtained by nitrogen adsorption-desorption isotherm were 970-990 m 2 / g, 1.60-1.80 cm 3 / g, 8.4-9 nm, respectively. Value was shown.

<실시예 3><Example 3>

메조포러스Mesoporous 에탄-실리카 물질의 제조 Preparation of Ethane-Silica Materials

상기 실시예 1을 통해 제조된 EO16(L30G4)EO16 또는 EO16(L29G7)EO16 삼중블록공중합체 0.5 g을 18.78~19.78 g의 증류수, 0.5~1.5 g의 에탄올, 2.22 g의 37 중량% 염산과 혼합하고, 0.80~1.11 g의 1,2-비스(트리에톡시실릴)에탄(1,2-bis(triethoxysilyl)ethane; BTESE)를 첨가하여 45~50 ℃의 반응온도로 30분 동안 마그네틱 교반하였다. 흰 침전물을 95 ℃ 수조에서 24시간 동안 반응시킨 후, 침전물을 에탄올, 증류수, 아세톤으로 흡입 플라스크를 이용하여 여과하여 블록공중 합체를 제거했다. 소각 X-선 산란 실험 결과 d-spacing이 96.7~106.3 Å이고, (100), (110), (200)의 피크들이 각각 결정 격자의 위치에 존재하는 2차원 육방형 실린더 구조를 나타내었다. 질소 흡착-탈착 등온선을 얻어 흡착 등온선으로부터 구한 BET 표면적, BJH(Barett-Joyner-Halenda) 기공 부피, 기공 크기는 각각 1,496~1,797 m2/g, 2.34~2.77 cm3/g, 7.6~8.5 nm의 값을 보였다. 에탄 실리카 물질의 높은 표면적은 본 발명에서 사용한 PEO-PLGA-PEO 블록공중합체의 선택적 효율성을 나타낸다.0.5 g of EO 16 (L 30 G 4 ) EO 16 or EO 16 (L 29 G 7 ) EO 16 triblock copolymer prepared in Example 1 was 18.78 to 19.78 g of distilled water, 0.5 to 1.5 g of ethanol, Mixed with 2.22 g of 37% by weight hydrochloric acid and reacted at 45-50 ° C. by adding 0.80-1.11 g of 1,2-bis (triethoxysilyl) ethane (BTESE) Magnetic stirring for 30 minutes at temperature. After reacting the white precipitate in a 95 ℃ water bath for 24 hours, the precipitate was filtered through a suction flask with ethanol, distilled water, acetone to remove the block copolymer. As a result of incineration X-ray scattering experiment, the d-spacing was 96.7 ~ 106.3 Å and the two-dimensional hexagonal cylinder structure in which the peaks of (100), (110), and (200) existed at the position of the crystal lattice, respectively. The BET surface area, Barett-Joyner-Halenda (BJH) pore volume and pore size obtained from the adsorption isotherm obtained by nitrogen adsorption-desorption isotherm were 1,496-1,797 m 2 / g, 2.34-2.77 cm 3 / g, and 7.6-8.5 nm, respectively. Value was shown. The high surface area of the ethane silica material indicates the selective efficiency of the PEO-PLGA-PEO block copolymers used in the present invention.

<실시예 4><Example 4>

메조포러스Mesoporous 티오펜-실리카 물질의 제조 Preparation of Thiophene-Silica Materials

상기 실시예 1을 통해 제조된 EO16(L30G4)EO16 또는 EO16(L29G7)EO16 삼중블록공중합체 0.5 g을 20.69~22.28 g의 증류수, 0~0.7 g의 에탄올, 0.22~1.11 g의 37 중량% 염산과 혼합하고, 0.73~0.76 g의 2,5-비스(트리에톡시실릴)티오펜(2,5-bis(triethoxysilyl)thiophene; BTEST)를 첨가하여 40 ℃의 반응온도로 60분 동안 마그네틱 교반하였다. 흰 침전물을 95 ℃ 수조에서 24시간 동안 반응시킨 후, 침전물 1 g 당 250 mL 정도의 에탄올과 36% 염산 용액 9 g을 사용하여 8시간 정도 교반하여 구조 유도체인 블록공중합체를 제거했다. 95 ℃로 반응하는 동안 용액 증발을 가능하게 하여 증발 속도를 조절하면 1~3 mm의 막을 얻을 수 있었다. 소각 X-선 산란 실험 결과 d-spacing이 81.7~84.8 Å이고, (100), (110), (200)의 피크 들이 각각 결정 격자의 위치에 존재하는 2차원 육방형 실린더 구조를 나타내었다. 질소 흡착-탈착 등온선을 얻어 흡착 등온선으로부터 구한 BET 표면적, BJH(Barett-Joyner-Halenda) 기공 부피, 기공 크기는 각각 492~760 m2/g, 0.65~0.80 cm3/g, 5.7~6.5 nm의 값을 보였다. 0.5 g of EO 16 (L 30 G 4 ) EO 16 or EO 16 (L 29 G 7 ) EO 16 triblock copolymer prepared in Example 1 was 20.69 to 22.28 g of distilled water, 0 to 0.7 g of ethanol, Mixed with 0.22 to 1.11 g of 37% by weight hydrochloric acid, and 0.73 to 0.76 g of 2,5-bis (triethoxysilyl) thiophene (BTEST) was added at 40 캜. Magnetic stirring was performed for 60 minutes at the reaction temperature. The white precipitate was reacted in a 95 ° C. water bath for 24 hours, and then stirred for about 8 hours using about 250 mL of ethanol and 9 g of 36% hydrochloric acid solution per g of precipitate to remove the block copolymer as a structural derivative. The evaporation rate was controlled by allowing solution evaporation during the reaction at 95 ° C., resulting in a membrane of 1 to 3 mm. The results of incineration X-ray scattering showed that the d-spacing was 81.7-84.8 Å and the two-dimensional hexagonal cylinder structure where the peaks of (100), (110), and (200) existed at the positions of the crystal lattice, respectively. The BET surface area, Barett-Joyner-Halenda (BJH) pore volume and pore size obtained from the adsorption isotherm obtained by nitrogen adsorption-desorption isotherm were 492 ~ 760 m 2 / g, 0.65 ~ 0.80 cm 3 / g, and 5.7 ~ 6.5 nm, respectively. Value was shown.

<실시예 5><Example 5>

메조포러스Mesoporous 페닐렌Phenylene -실리카 물질의 제조Preparation of Silica Materials

상기 실시예 1을 통해 제조된 EO16(L30G4)EO16 또는 EO16(L29G7)EO16 삼중블록공중합체 0.5 g을 20.69~21.98 g의 증류수, 0.3~0.7 g의 에탄올, 0.22~1.11 g의 37 중량% 염산과 혼합하고, 0.72~0.83 g의 2,5-비스(트리에톡시실릴)벤젠(2,5-bis(triethoxysilyl)benzene; BTESB)를 첨가하여 40 ℃의 반응온도로 60~80분 동안 마그네틱 교반하였다. 흰 침전물을 95 ℃ 수조에서 24시간 동안 반응시킨 후, 침전물 1 g 당 250 mL 정도의 에탄올과 36% 염산 용액 9 g을 사용하여 8시간 정도 교반하여 구조 유도체인 블록공중합체를 제거했다. 95 ℃로 반응하는 동안 용액 증발을 가능하게 하여 증발 속도를 조절하면 1~3 mm의 막을 얻을 수 있었다. 0.5 g of EO 16 (L 30 G 4 ) EO 16 or EO 16 (L 29 G 7 ) EO 16 triblock copolymer prepared in Example 1 was 20.69 to 21.98 g of distilled water, 0.3 to 0.7 g of ethanol, Mix with 0.22 to 1.11 g of 37% by weight hydrochloric acid, and add 0.72 to 0.83 g of 2,5-bis (triethoxysilyl) benzene (BTESB) to react at 40 ° C. Magnetic stirring was carried out at a temperature of 60-80 minutes. The white precipitate was reacted in a 95 ° C. water bath for 24 hours, and then stirred for about 8 hours using about 250 mL of ethanol and 9 g of 36% hydrochloric acid solution per g of precipitate to remove the block copolymer as a structural derivative. The evaporation rate was controlled by allowing solution evaporation during the reaction at 95 ° C., resulting in a membrane of 1 to 3 mm.

도 1은 본 실시예에서 제조된 메조포러스 페닐렌-실리카 물질의 소각 X-선 산란 스펙트럼을 나타낸 것이다. 도 1에 나타낸 바와 같이, 소각 X-선 산란 실험 결과 d-spacing이 84.8~90.0 Å이고, (100), (110), (200)의 피크들이 각각 결정 격자의 위치에 존재하는 2차원 육방형 실린더 구조를 나타내었다.Figure 1 shows the incineration X-ray scattering spectrum of the mesoporous phenylene-silica material prepared in this example. As shown in Fig. 1, the results of incineration X-ray scattering experiments show that the d-spacing is 84.8 to 90.0 Hz, and the two-dimensional hexagonal shape in which the peaks of (100), (110), and (200) exist at the positions of the crystal lattice, respectively. The cylinder structure is shown.

도 2는 본 실시예에서 제조된 메조포러스 페닐렌-실리카 물질의 질소 흡착-탈착 등온선(adsorption-desorption isotherm)을 나타낸 것이고, 도 3은 상기 질소의 흡착 등온선으로부터 BJH(Barret-Joyner-Halenda) 방법을 이용하여 구한 기공크기 분포곡선(pore size distribution curve)을 나타낸 것이다. 도 2 및 3에 나타낸 바와 같이, 질소 흡착-탈착 등온선을 얻어 흡착 등온선으로부터 구한 BET 표면적, BJH(Barett-Joyner-Halenda) 기공 부피, 기공 크기는 각각 646~996 m2/g, 0.76~1.02 cm3/g, 6.4~7.0 nm의 값을 보였다.Figure 2 shows the nitrogen adsorption-desorption isotherm of the mesoporous phenylene-silica material prepared in this embodiment, Figure 3 is a Barret-Joyner-Halenda (BJH) method from the adsorption isotherm of the nitrogen It shows the pore size distribution curve obtained by using (pore size distribution curve). As shown in Figs. 2 and 3, the BET surface area, the Barett-Joyner-Halenda (BJH) pore volume, and the pore size obtained from the adsorption isotherm by nitrogen adsorption-desorption isotherms are respectively 646 to 996 m 2 / g, 0.76 to 1.02 cm 3 / g, the value was 6.4 ~ 7.0 nm.

도 4는 본 발명의 일 실시예에서 제조된 메조포러스 페닐렌-실리카 물질의 고체상 실리콘 원자핵자기 공명분광분석 스펙트럼을 나타낸 것이다. 도 4에 나타낸 바와 같이, Q 피크는 나타나지 않았고 T 결합 위주의 실리카 결합 형태를 확인할 수 있었다. Figure 4 shows the solid-state silicon nuclear magnetic resonance spectroscopy spectrum of the mesoporous phenylene-silica material prepared in one embodiment of the present invention. As shown in FIG. 4, the Q peak did not appear and the form of T-bonded silica was confirmed.

위 실시예의 결과들에서 알 수 있는 바와 같이, 본 발명은 종래에 통상적으로 사용되는 PEO-PPO-PEO 블록공중합체를 이용한 메조포러스 유기-실리카 물질의 제조 방법에 비해 소수성이 보강된 PLGA 블록이 도입된 블록공중합체를 사용함으로써 표면적이 500~2,000 m2/g으로 크고 5~10 nm 크기의 기공들이 규칙적인 육방형으로 배열되어 있는 메조포러스 유기-실리카 물질의 유기물을 다양하게 도입시킬 수 있고, 사용 용도에 따라 분말 및 막으로 제조할 수 있다. As can be seen from the results of the above embodiment, the present invention is a PLGA block reinforced with hydrophobicity compared to the method for producing a mesoporous organo-silica material using a conventionally used PEO-PPO-PEO block copolymer By using the prepared block copolymer, it is possible to introduce various organic materials of mesoporous organo-silica material having a surface area of 500 to 2,000 m 2 / g and large pores of 5 to 10 nm in a regular hexagonal arrangement. Depending on the intended use, it may be prepared from powders and membranes.

상기에서 본 발명은 기재된 구체예를 중심으로 상세히 설명되었지만, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다. While the invention has been described in detail above with reference to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the scope and spirit of the invention, and such modifications and variations fall within the scope of the appended claims. It is also natural.

상기에서 살펴본 바와 같이, 본 발명에 따르면, 500~2,000 m2/g의 표면적을 갖고 5~10 nm 크기의 기공들이 규칙적인 육방형으로 배열되어 있는 메조포러스 유기-실리카 물질을 제공할 수 있다. 또한, 본 발명에 따르면, 상기 메조포러스 유기-실리카 물질은 사용 용도에 따라 분말 및 막으로 제조될 수 있다. As described above, according to the present invention, it is possible to provide a mesoporous organo-silica material having a surface area of 500 to 2,000 m 2 / g and 5 to 10 nm pores arranged in a regular hexagon. In addition, according to the present invention, the mesoporous organo-silica material may be prepared into a powder and a film depending on the intended use.

Claims (13)

화학식 1로 표시되는 PEO-PLGA-PEO 블록공중합체를 구조유도체로 사용하여 메조포러스 유기-실리카 물질을 제조하는 방법:Method for preparing a mesoporous organo-silica material using the PEO-PLGA-PEO block copolymer represented by Formula 1 as a structural derivative: <화학식 1><Formula 1>
Figure 112007078901949-pat00004
Figure 112007078901949-pat00004
상기 식에서, x, y 및 z는 각각 고분자 블록의 단위수이며,In the above formula, x, y and z are each the number of units of the polymer block, 상기 블록공중합체의 블록의 단위수 x는 16이고, y는 3~7의 정수이고, z는 25~35의 정수이며, 블록공중합체의 수평균 분자량은 3,500~7,000 달톤이다.The number of units of blocks of the block copolymer x is 16, y is an integer of 3 to 7, z is an integer of 25 to 35, and the number average molecular weight of the block copolymer is 3,500 to 7,000 Daltons.
삭제delete 제 1항에 있어서,The method of claim 1, a) 화학식 1로 표시되는 PEO-PLGA-PEO 블록공중합체를 증류수, 알코올 및 산과 혼합하여 수용액을 제조하는 단계;a) preparing an aqueous solution by mixing PEO-PLGA-PEO block copolymer represented by Chemical Formula 1 with distilled water, alcohol and acid; b) 상기 수용액에 유기-실리카 전구물질을 혼합하여 반응하는 단계;b) reacting the organic-silica precursor mixed with the aqueous solution; c) 상기 b) 단계에서 얻어진 물질을 수열 반응하는 단계; 및c) hydrothermally reacting the material obtained in step b); And d) 상기 c)단계에서 얻어진 물질을 여과 및 세척하여 블록공중합체를 제거하고 최종 물질을 건조하는 단계;d) filtering and washing the material obtained in step c) to remove the block copolymer and to dry the final material; 를 포함하며,Including; 상기 유기-실리카 전구물질은 화학식 2로 표시되는 물질들 및 화학식 3으로 표시되는 물질들로 이루어진 군에서 선택되는 하나 이상의 물질인 것을 특징으로 하는 방법: Wherein the organo-silica precursor is at least one material selected from the group consisting of materials represented by Formula 2 and materials represented by Formula 3: <화학식 2><Formula 2> R1 iR2 jMO4-i-j R 1 i R 2 j MO 4-ij <화학식 3><Formula 3> R1 kR2 lO3-k-lMSMO3-k-lR1 kR2 l R 1 k R 2 l O 3-kl MSMO 3-kl R 1 k R 2 l 상기 식에서 R1 R2는 각각 독립적으로 탄소수 1~10의 알킬기이고; O는 탄소수 1~5의 알콕시기이고; M은 Si 또는 Ti 원자이고; S는 탄소수 1~15의 알킬렌기, 또는 탄소수 5~40의 티오펜기, 알킬티오펜기, 페닐렌기, 알킬페닐렌기, 아릴페닐렌기, 아릴렌기, 알킬아릴렌기 또는 아릴알킬렌기이고; i 및 j는 각각 독립적으로 0 ≤ i + j ≤3을 만족시키는 0 내지 3의 정수이고, k 및 l은 각각 독립적으로 0 ≤ k + l ≤ 2를 만족시키는 0 내지 2의 정수이다.In which R 1 And Each R 2 is independently an alkyl group having 1 to 10 carbon atoms; O is an alkoxy group having 1 to 5 carbon atoms; M is Si or Ti atom; S is an alkylene group having 1 to 15 carbon atoms, or a thiophene group having 5 to 40 carbon atoms, an alkylthiophene group, a phenylene group, an alkylphenylene group, an arylphenylene group, an arylene group, an alkylarylene group or an arylalkylene group; i and j are each independently integers of 0 to 3 satisfying 0 ≦ i + j ≦ 3, and k and l are each independently integers of 0 to 2 satisfying 0 ≦ k + l ≦ 2. 제 3항에 있어서,The method of claim 3, wherein 상기 블록공중합체의 블록의 단위수 x는 16이고, y는 3~7의 정수이고, z는 25~35의 정수이며, 수평균 분자량은 3,500~7,000 달톤으로 지정된 삼중블록공중합체와 분자량 및 블록 상대 비가 상기 범위에 속하는 경우, 화학식 1로 표시되는 PEO-PLGA-PEO 블록공중합체 이외에 상기 화학식 1과 물리적 형태가 다른 PLGA-PEO 이중블록공중합체 또는 PLGA-PEO-PLGA 형태의 삼중블록공중합체를 구조 유도체로 사용 가능한 방법.The unit number of blocks of the block copolymer x is 16, y is an integer of 3 to 7, z is an integer of 25 to 35, the number average molecular weight is a triblock copolymer and the molecular weight and block specified as 3,500 ~ 7,000 Daltons When the relative ratio falls within the above range, in addition to the PEO-PLGA-PEO block copolymer represented by the formula (1), a PLGA-PEO diblock copolymer or a triblock copolymer of the PLGA-PEO-PLGA type different in physical form from the formula (1) Method usable as structural derivatives. 제 3항에 있어서,The method of claim 3, wherein 상기 a) 단계에서 제조되는 수용액은 PEO-PLGA-PEO 블록공중합체 2~2.5 중량%, 산 0.3~7.4 중량% 및 알코올 0~6.7 중량%를 포함하는 것을 특징으로 하는 방법.The aqueous solution prepared in step a) is characterized in that it comprises 2 to 2.5% by weight of PEO-PLGA-PEO block copolymer, 0.3 to 7.4% by weight acid and 0 to 6.7% by weight alcohol. 삭제delete 제 3항에 있어서, The method of claim 3, wherein 상기 유기-실리카 전구물질은 PEO-PLGA-PEO 블록공중합체 1몰 기준으로 15~100 몰의 범위로 혼합되는 것을 특징으로 하는 방법.The organo-silica precursor is mixed in the range of 15 to 100 moles based on 1 mole of PEO-PLGA-PEO block copolymer. 제 3항에 있어서, The method of claim 3, wherein 상기 b) 단계의 반응은 30~50 ℃의 온도에서 0.5~2 시간 동안 격렬히 교반시켜 수행되는 것을 특징으로 하는 방법.The reaction of step b) is carried out by vigorously stirring for 0.5 to 2 hours at a temperature of 30 ~ 50 ℃. 제 3항에 있어서, The method of claim 3, wherein 상기 c) 단계의 수열 반응은 80~100 ℃의 온도에서 20~24 시간 동안 정치시켜 수행되는 것을 특징으로 하는 방법.The hydrothermal reaction of step c) is carried out by standing for 20 to 24 hours at a temperature of 80 ~ 100 ℃. 제 9항에 있어서, The method of claim 9, 반응 용기의 증발을 허용하고 증발 속도를 조절함으로써 최종 물질로서 막을 얻는 것을 특징으로 하는 방법. Allowing the evaporation of the reaction vessel and controlling the rate of evaporation to obtain a membrane as final material. 제 3항에 있어서, The method of claim 3, wherein 상기 d) 단계의 여과는 흡입 플라스크를 포함한 여과 장치에 의해 수행되고, 상기 세척은 각 100~500 mL의 에탄올, 증류수 및 아세톤을 20~30분 동안 차례로 여과 장치에 흘려주거나 침전물 1 g 당 250~300 mL의 에탄올과 36중량% 염산 수용액 5~15 g을 사용하여 7~10 시간 동안 교반하여 수행되는 것을 특징으로 하는 방법.The filtration of step d) is carried out by a filtration device including a suction flask, and the washing is performed by sequentially passing 100 to 500 mL of ethanol, distilled water and acetone into the filtration device for 20 to 30 minutes or 250 to 1 g of precipitate. Using 300 mL of ethanol and 5-15 g of 36% aqueous hydrochloric acid solution by stirring for 7-10 hours. 제 1항에 있어서, The method of claim 1, 상기 유기-실리카 물질은 유기-실리카 분말 또는 유기-실리카 막인 것을 특징으로 하는 방법.Wherein said organo-silica material is an organo-silica powder or an organo-silica membrane. 삭제delete
KR1020050098230A 2005-10-18 2005-10-18 Method for producing mesoporous organosilica material using PEO-PLLA-PEO block copolymer and mesoporous organosilica material produced thereby Expired - Fee Related KR100828720B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050098230A KR100828720B1 (en) 2005-10-18 2005-10-18 Method for producing mesoporous organosilica material using PEO-PLLA-PEO block copolymer and mesoporous organosilica material produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050098230A KR100828720B1 (en) 2005-10-18 2005-10-18 Method for producing mesoporous organosilica material using PEO-PLLA-PEO block copolymer and mesoporous organosilica material produced thereby

Publications (2)

Publication Number Publication Date
KR20070042377A KR20070042377A (en) 2007-04-23
KR100828720B1 true KR100828720B1 (en) 2008-05-09

Family

ID=38177263

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050098230A Expired - Fee Related KR100828720B1 (en) 2005-10-18 2005-10-18 Method for producing mesoporous organosilica material using PEO-PLLA-PEO block copolymer and mesoporous organosilica material produced thereby

Country Status (1)

Country Link
KR (1) KR100828720B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12128117B2 (en) 2018-04-26 2024-10-29 Amorepacific Corporation Method for manufacturing porous inorganic particle and light-reflecting composition comprising porous inorganic particle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900392B1 (en) * 2007-05-23 2009-06-02 성균관대학교산학협력단 Multicomponent Periodic Mesoporous Organosilica Material Prepared Using Block Copolymer and Method for Making the Same
KR101538460B1 (en) * 2014-04-11 2015-07-23 서울과학기술대학교 산학협력단 Hexagonally periodic mesoporous thiophene-silicas and thoiphene-silicas using the same
KR101713279B1 (en) * 2016-03-24 2017-03-07 삼성전자주식회사 Mesoporous complex catalyst and process for preparing the same
KR102076902B1 (en) * 2018-02-27 2020-02-12 서울과학기술대학교 산학협력단 Hydrothermally stable mesoporous ethane-silica and the preparation method thereof
CN115364904A (en) * 2022-07-07 2022-11-22 福建省蓝光节能科技有限公司 Photocatalyst for volatile organic pollutants and use method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334988B1 (en) 1998-08-21 2002-01-01 The University Of Vermont And State Agricultural College Mesoporous silicates and method of making same
JP2003335506A (en) 2002-05-16 2003-11-25 Japan Science & Technology Corp Synthesis of mesoporous oxides with three-dimensional high regularity
US20050031520A1 (en) 2001-11-01 2005-02-10 Luc Fortier Method of preparing highly ordered mesoporous molecular sieves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334988B1 (en) 1998-08-21 2002-01-01 The University Of Vermont And State Agricultural College Mesoporous silicates and method of making same
US20050031520A1 (en) 2001-11-01 2005-02-10 Luc Fortier Method of preparing highly ordered mesoporous molecular sieves
JP2003335506A (en) 2002-05-16 2003-11-25 Japan Science & Technology Corp Synthesis of mesoporous oxides with three-dimensional high regularity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
한국결정학회 02정기총회 및 추계학술연구발표회, p49, 2002.*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12128117B2 (en) 2018-04-26 2024-10-29 Amorepacific Corporation Method for manufacturing porous inorganic particle and light-reflecting composition comprising porous inorganic particle

Also Published As

Publication number Publication date
KR20070042377A (en) 2007-04-23

Similar Documents

Publication Publication Date Title
KR100900392B1 (en) Multicomponent Periodic Mesoporous Organosilica Material Prepared Using Block Copolymer and Method for Making the Same
Bao et al. A novel route toward the synthesis of high-quality large-pore periodic mesoporous organosilicas
Wahab et al. Periodic mesoporous organosilica materials incorporating various organic functional groups: synthesis, structural characterization, and morphology
US8227363B2 (en) Highly porous and mechanically strong ceramic oxide aerogels
Morell et al. Synthesis and characterization of highly ordered thiophene-bridged periodic mesoporous organosilicas with large pores
Hunks et al. Periodic Mesoporous Organosilicas with Phenylene Bridging Groups, 1, 4-(CH2) n C6H4 (n= 0− 2)
JP5583026B2 (en) Spiro compounds
Kimura Oligomeric surfactant and triblock copolymer syntheses of aluminum organophosphonates with ordered mesoporous structures
Asuncion et al. The selective dissolution of rice hull ash to form [OSiO 1.5] 8 [R 4 N] 8 (R= Me, CH 2 CH 2 OH) octasilicates. Basic nanobuilding blocks and possible models of intermediates formed during biosilicification processes
EP2566873A2 (en) Highly porous ceramic oxide aerogels having improved flexibility
KR100828720B1 (en) Method for producing mesoporous organosilica material using PEO-PLLA-PEO block copolymer and mesoporous organosilica material produced thereby
Liu et al. High-temperature synthesis of stable and ordered mesoporous polymer monoliths with low dielectric constants
Hunks et al. Single‐Source Precursors For Synthesizing Bifunctional Periodic Mesoporous Organosilicas
CN100488614C (en) Noval double-structure surfactant and method for producing mesoporous materials with the same
US20140206832A1 (en) Poly oligosiloxysilane
Manchanda et al. Synthesis of xylylene-bridged periodic mesoporous organosilicas and related hollow spherical nanoparticles
Chatelet et al. Immobilization of a N-substituted azaphosphatrane in nanopores of SBA-15 silica for the production of cyclic carbonates
Kruk et al. Mesoporous silicate− surfactant composites with hydrophobic surfaces and tailored pore sizes
JPH09110989A (en) Formed organopolysiloxane containing sulfonate and mercapto groups, production thereof, and condensation catalyst and bisphenol a synthesis catalyst which comprise the oranosiloxane or contain it
US5474681A (en) Synthesis of inorganic membranes
US20070249744A1 (en) Template-Directed Synthesis of Porous Materials Using Dendrimer Precursors
Li et al. Synthesis and characterization of rod-like periodic mesoporous organosilica with the 1, 4-diureylenebenzene moieties
Kruk et al. Synthesis and characterization of methyl-and vinyl-functionalized ordered
Wei et al. Functionalization of periodic mesoporous organosilica with ureidopropyl groups by a direct synthesis method
Noble et al. Polysiloxane-modified mesoporous materials

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20051018

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20061115

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20051018

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20070903

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20080305

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20080502

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20080506

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee