[go: up one dir, main page]

KR100821133B1 - Removal method of sodium cyanide in the sea oji refining process - Google Patents

Removal method of sodium cyanide in the sea oji refining process Download PDF

Info

Publication number
KR100821133B1
KR100821133B1 KR1020010070553A KR20010070553A KR100821133B1 KR 100821133 B1 KR100821133 B1 KR 100821133B1 KR 1020010070553 A KR1020010070553 A KR 1020010070553A KR 20010070553 A KR20010070553 A KR 20010070553A KR 100821133 B1 KR100821133 B1 KR 100821133B1
Authority
KR
South Korea
Prior art keywords
buffer
solution
cog
tank
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020010070553A
Other languages
Korean (ko)
Other versions
KR20030039588A (en
Inventor
조경철
유계수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010070553A priority Critical patent/KR100821133B1/en
Publication of KR20030039588A publication Critical patent/KR20030039588A/en
Application granted granted Critical
Publication of KR100821133B1 publication Critical patent/KR100821133B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/408Cyanides, e.g. hydrogen cyanide (HCH)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Removal Of Specific Substances (AREA)
  • Treating Waste Gases (AREA)
  • Industrial Gases (AREA)

Abstract

본 발명은 COG 정제 공정에서의 시안화나트륨 제거방법에 관한 것으로서, COG 중의 황화수소(H₂S)를 흡수정제하고 재생탑에서 산화재생시키며, 산화재생 반응에 의해 분리된 자유황을 자유황 이송관을 통해 용해조로 이동시키는 제 1 단계; 용해조로 이동시킨 자유황을 가성소다 공급관으로부터 유입되는 가성소다와 반응시켜 다유화나트륨을 생성하는 제 2 단계; 용해조는 다유화나트륨인 용해조 배출액의 양을 설정된 비율로 조절하여 완충조행 용해액과 흡수탑행 용해액으로 나누어 완충조와 흡수탑에 분배하는 제 3 단계; 완충조에서는 용해조로부터 공급되는 완충조행 용해액과 재생탑으로부터 자유황 월류관을 통해 월류되는 용액을 반응시켜 반응물을 생성하고, 반응물인 흡수탑행 완충조배출액을 흡수탑으로 이동시키는 제 4 단계; 흡수탑에 공급된 흡수탑행 용해액과 흡수탑행 완충조배출액을 시안화수소(HCN)를 흡수정제한 시안화나트륨(NaCN) 오염액과과 반응시키면서 재생탑으로 이동시키고, 재생탑에서 로단화 반응시켜 시안화나트륨(NaCN)을 로단염(NaSCN)으로 변화시키는 제 5 단계를 구비한다.The present invention relates to a method for removing sodium cyanide in a COG purification process, which absorbs and purifies hydrogen sulfide (H₂S) in COG, oxidizes and regenerates in a regeneration tower, and dissolves the free sulfur separated by an oxidative regeneration reaction through a free sulfur transfer tube. Moving to a first step; A second step of reacting the free sulfur transferred to the dissolution tank with caustic soda flowing from the caustic soda feed pipe to produce sodium polysulfide; The dissolving tank is a third step of dividing the dissolution tank discharge liquid, which is sodium polysulfide, in a predetermined ratio, and divides the buffer solution into a buffer solution and an absorption column solution, and distributes the solution to a buffer tank and an absorption tower; In the buffer tank, a fourth step of producing a reactant by reacting the buffer solution solution supplied from the dissolution tank and the solution that flows from the regeneration tower through the free sulfur uptake pipe, and moves the absorption tower buffer buffer solution, which is a reactant, to the absorption tower; The absorption column dissolution solution and absorption column buffer bath discharged to the absorption tower were transferred to the regeneration tower while reacting with sodium cyanide (NaCN) contaminant absorbed and purified by hydrogen cyanide (HCN), and the reductant was reacted with sodium cyanide in the regeneration tower. A fifth step of converting (NaCN) to rodan salt (NaSCN).

흡수탑,재생탑,완충조,용해조,자유황 이송관,시안화나트륨,다유화나트륨,가성소다Absorption tower, regeneration tower, buffer tank, melting tank, free sulfur transfer pipe, sodium cyanide, sodium polysulfide, caustic soda

Description

씨오지 정제 공정에서의 시안화나트륨 제거방법{The Method For Elimination Of NaCN By COG Purification Process} The method for elimination of NaCN by COG purification process             

도 1은 종래기술에 따른 COG 정제 공정에서의 불순물 정제방법에 사용되는 습식탈유장치의 구성도.1 is a block diagram of a wet deoiling apparatus used in the impurity purification method in the COG purification process according to the prior art.

도 2는 본 발명의 COG 정제 공정에서의 시안화나트륨 제거방법에 사용되는 습식탈유장치의 구성도.Figure 2 is a block diagram of a wet deoiling apparatus used in the method for removing sodium cyanide in the COG purification process of the present invention.

도 3은 본 발명에 따른 COG 정제 공정에서의 시안화나트륨 제거방법을 나타낸 흐름도.
Figure 3 is a flow chart showing a method for removing sodium cyanide in the COG purification process according to the present invention.

**도면의 주요 부분에 대한 부호의 설명**           ** Description of the symbols for the main parts of the drawings **

1 : 오염액 이송관 1a : 용해조행 오염액1: Contaminant Transfer Pipe 1a: Dissolution Operation Contaminant

2 : 순환 정제액 3 : 자유황 월류관2: circulating purified liquid 3: free sulfur overflow pipe

4 : 완충조 배출액 5 : 용해조 배출액4: buffer tank discharge liquid 5: dissolution tank discharge liquid

10 : 흡수탑 20 : 재생탑10: absorption tower 20: regeneration tower

21 : 순환 정제액 쿨러(Cooler) 30 : 완충조21: circulating purified liquid cooler (Cooler) 30: buffer tank

40 : 용해조 50 : 용융황 탱크 40: dissolution tank 50: molten sulfur tank                 

100 : 자유황 이송관 200 : 흡수탑행 용해액100: free sulfur transfer pipe 200: absorption column solution

300 : 완충조행 용해액 400 : 흡수탑행 완충조배출액300: buffering solution lysis solution 400: absorption column buffer bath discharge liquid

500 : 가성소다 공급관
500: caustic soda supply pipe

본 발명은 COG(Coke Oven Gas) 중의 불순물(H₂S, HCN)을 흡수 정제하는 공정에서 시안화나트륨(NaCN)을 제거하는 방법에 관한 것으로서, 구체적으로는 COG 중의 불순물을 정제한 오염액의 산화재생시 분리된 자유황(S)을 용해조로 보내 다유화나트륨 생성을 향상시킴으로써 맹독성의 시안화나트륨 제거 효율을 향상시키도록 하는 COG 정제 공정에서의 시안화나트륨 제거방법에 관한 것이다.The present invention relates to a method for removing sodium cyanide (NaCN) in the process of absorbing and purifying impurities (H₂S, HCN) in COG (Coke Oven Gas), specifically, during oxidation and regeneration of the contaminated liquid in which impurities in COG are purified. The present invention relates to a method for removing sodium cyanide in a COG refining process that sends separated free sulfur (S) to a dissolution tank to improve sodium polysulfide production, thereby improving the efficiency of removal of highly toxic sodium cyanide.

도 1은 종래기술에 따른 COG 정제 공정에서의 불순물 정제방법에 사용되는 습식탈유장치의 구성도를 나타낸 것으로서, COG 정제 공정에서의 불순물 정제방법을 살펴보면 다음과 같다.Figure 1 shows the configuration of the wet de-oiling apparatus used in the impurity purification method in the COG purification process according to the prior art, looking at the impurity purification method in the COG purification process as follows.

종래의 습식탈유설비는 도 1에 도시된 바와 같이 COG 중의 불순물(H₂S, HCN)을 흡수정제하기 위해 가성소다(NaOH)를 순환정제액(2)으로 흡수탑(10), 재생탑(20), 완충조(30), 용해조(40), 용융황탱크(Molten Sulphur Tank;50)로 구성되어 있으며, 하기와 같은 반응에 의해 COG 중의 불순물(H₂S, HCN)을 제거하며, 그 공정은 크게 황화수소를 제거하기 위한 황화수소 제거공정과 시안화수소를 제거하기 위한 시안화수소 제거공정으로 나뉘어진다.In the conventional wet desulfurization facility, as shown in FIG. 1, the absorption tower 10 and the regeneration tower 20 are converted into caustic soda (NaOH) as a circulating purification solution 2 to absorb and purify impurities (H 2 S and HCN) in COG. , Buffer tank 30, dissolution tank 40, molten sulfur tank (Molten Sulfur Tank; 50), and removes impurities (H₂S, HCN) in COG by the following reaction, the process is largely hydrogen sulfide It is divided into hydrogen sulfide removal process for removing hydrogen cyanide and hydrogen cyanide removal process for removing hydrogen cyanide.

먼저, [화학식 1] 내지 [화학식 3]은 COG 중의 황화수소(H₂S) 제거공정을 나타낸 것으로서, 흡수탑(10)에서 순환정제액(2)으로 COG 중의 황화수소(H₂S)를 흡수하고 다시 재생탑(20)에서 산화 재생시켜 순환정제액(2)으로 사용하는 공정을 나타낸 것이다.First, [Formula 1] to [Formula 3] shows the hydrogen sulfide (H₂S) removal process in the COG, absorbing hydrogen sulfide (H₂S) in the COG with the circulating purification solution (2) in the absorption tower 10 and again regeneration tower ( 20 shows the process of oxidative regeneration to use as circulating purification liquid (2).

NaOH + H₂S → NaHS + H₂O ............ (흡수반응)NaOH + H₂S → NaHS + H₂O ............ (Absorbing reaction)

NaHS + ½O₂+ 촉매제 → NaOH + S

Figure 112001029472380-pat00001
(자유황) ............. (재생반응)NaHS + ½O₂ + Catalyst → NaOH + S
Figure 112001029472380-pat00001
(Free sulfur) ............. (regeneration reaction)

2NaHS + 2O₂ → Na₂S₂O₃+ H₂O ............. (부반응)2NaHS + 2O₂ → Na₂S₂O₃ + H₂O ............. (side reaction)

또한, 하기의 [화학식 4] 내지 [화학식 6]은 COG 중의 시안화수소(HCN) 제거공정을 나타낸 것으로서, 흡수탑(10)에서 순환정제액(2)으로 흡수한 시안화수소(HCN)를 재생탑(20)에서 무해한 로단염(NaSCN)으로 변화시키는 공정을 나타낸 것이다.In addition, the following [Formula 4] to [Formula 6] shows a hydrogen cyanide (HCN) removal process in the COG, regeneration tower of hydrogen cyanide (HCN) absorbed into the circulating purification solution (2) in the absorption tower (10) (20) shows a process for changing to harmless rodan salt (NaSCN).

NaOH + HCN → NaCN + H₂O ................... (흡수반응)NaOH + HCN → NaCN + H₂O ................... (Absorbing reaction)

2NaOH + H₂S + XS → Na₂SX+1 + 2H₂O ........... (다유화반응)2NaOH + H₂S + XS → Na₂S X + 1 + 2H₂O ........... (polyemulsification)

NaCN + Na₂SX+1 → NaSCN + Na₂SX ............. (로단화반응)NaCN + Na₂S X + 1 → NaSCN + Na₂S X .............

이에따라 도 1을 참조하여 종래기술에 따른 COG 정제 공정에서의 불순물 정제방법을 살펴보면 다음과 같다.Accordingly, referring to FIG. 1, the impurity purification method in the COG purification process according to the prior art is as follows.

먼저, COG 유입구로부터 공급되는 COG는 흡수탑(10) 내부 충진물(HEILEX)에서 흡수탑(10) 상부 분사 노즐을 통해 분사되는 순환정제액(2)과 접촉하여 COG중의 불순물(H₂S, HCN)이 흡수정제(흡수반응)된다. First, the COG supplied from the COG inlet comes into contact with the circulating purification liquid 2 injected through the upper injection nozzle of the absorption tower 10 in the HEILEX inside the absorption tower 10, whereby impurities (H₂S and HCN) in the COG are discharged. Absorption purification (absorption reaction).

흡수탑(10)에서 COG 중의 황화수소(H₂S) 불순물을 흡수정제한 정제액(이하, 오염액)은 오염액 이송관(1)을 통해 재생탑(20)으로 보내어져 재생탑(20)에서 압축공기 중의 산소와 촉매제에 의해 산화재생(재생반응)된 다음 흡수탑(10)으로 이동되어 흡수탑(10)에서 순환 정제액(2)으로 재사용된다. 이때, 산화 재생시 발생된 반응열을 제거하기 위해 순환정제액 쿨러(Cooler;21)에서는 일정 온도(40℃ 이하)로 흡수탑(10) 상부로 물을 공급하여 반응열을 제거하며, 이러한 과정을 반복 수행하므로 COG 중의 불순물을 제거한다.Purified liquid (hereinafter, contaminated liquid) absorbing and purifying hydrogen sulfide (H₂S) impurities in COG in the absorption tower 10 is sent to the regeneration tower 20 through the contaminant transport pipe 1 and compressed in the regeneration tower 20. Oxidation and regeneration (regeneration) by oxygen in the air and a catalyst is then carried to the absorption tower 10 and reused as the circulating purification liquid 2 in the absorption tower 10. At this time, in order to remove the reaction heat generated during the oxidation and regeneration the circulating purification liquid cooler (Cooler) 21 to remove the reaction heat by supplying water to the upper portion of the absorption tower 10 at a predetermined temperature (40 ℃ or less), repeating this process As a result, impurities in the COG are removed.

한편, COG 중의 시안화수소(HCN) 불순물을 흡수정제한 오염액에서 시안화나트륨을 제거하기 위해 오염액 이송관(1)에서 용해조행 오염액(1a)을 용해조(40)로 보내고, 용해조(40)에서 용융황탱크(50)로부터 용해조(40)로 공급된 용융황과 혼합시켜 다유화나트륨(Na₂SX+1 ; 다유화반응)을 생성한 후 그 생성물인 용해조 배출액(4)을 완충조(30)로 공급하고, 완충조 배출액(4)을 재생탑(20)으로 보내어 COG 중의 불순물인 시안화수소(HCN)를 흡수한 오염액 중의 맹독성 시안화나트륨(NaCN)을 무해한 로단염(NaSCN ; 로단화반응)으로 변화시키며, 재생탑(20)의 일정한 수위 관리를 위해 자유황 월류관(3)을 통해 잉여 유량을 완충조(30)로 순환시킨다. 이와 같은 공정을 반복 수행하여 COG 중의 불순물을 흡수 정제하면, 계내 순환정제액(2)의 농도가 상승하여 일정량의 순환정제액(2)을 폐수처리로 보내어 폐수처리 하게되며, 순환정제액(2)의 부족분은 흡수탑(10)과 오염액 이송관(1)으로 각각 담수와 가성소다를 보충하여 설비가 운영되게 된다.Meanwhile, in order to remove sodium cyanide from the contaminant obtained by absorbing and purifying hydrogen cyanide (HCN) impurities in COG, the contaminant transport contaminant 1a is sent from the contaminant transport pipe 1 to the dissolution tank 40, and the dissolution tank 40 is used. Mixed with molten sulfur supplied from the molten sulfur tank 50 to the dissolution tank 40 to produce sodium polysulfate (Na₂S X + 1 ; polyemulsification reaction), and then the dissolution tank discharge liquid 4, which is the product, is buffered ( 30), and the buffer tank discharge liquid (4) is sent to the regeneration tower (20), and the poisonous sodium cyanide (NaCN) in the contaminated liquid absorbing hydrogen cyanide (HCN), which is an impurity in COG, is harmless to rhodan salt (NaSCN; Rodan). Oxidization reaction), and the surplus flow rate is circulated to the buffer tank (30) through the free sulfur overflow pipe (3) for constant water level management of the regeneration tower (20). Repeatedly performing such a process to absorb and purify the impurities in the COG, the concentration of the circulating purification liquid (2) in the system rises to send a certain amount of circulating purification liquid (2) to the wastewater treatment to treat the wastewater, circulating purification liquid (2 The shortage of) is to supplement the fresh water and caustic soda into the absorption tower 10 and the contaminant transport pipe (1), respectively, to operate the facility.

그러나, 이와같은 종래의 방법에서 용융황탱크(50)에서 용해조(40)로 115℃의 온도로 용융황을 공급하더라도 용해조(40) 내부의 차가운 용액(40℃ 이하)과 접촉되는 순간 용융황이 응고되어 용해되지 않으므로 이용율이 매우 낮아 맹독성의 시안화나트륨(NaCN) 제거율이 낮다. 이는 순환정제액(2)을 폐수처리로 이송하는 관로에서 채취하여 분석한 로단염의 농도로 알 수 있다.However, even when molten sulfur is supplied from the molten sulfur tank 50 to the melting tank 40 at a temperature of 115 ° C. in the conventional method, the molten sulfur solidifies the instant of contact with the cold solution (40 ° C. or lower) inside the melting tank 40. As it is not dissolved, the utilization rate is very low and the removal rate of sodium cyanide (NaCN) of high toxicity is low. This can be seen as the concentration of rhodan salt collected and analyzed in the pipeline for circulating purified liquid (2) to be sent to the wastewater treatment.

또한, 자유황 월류관(3)을 통해 완충조(30)로 넘어온 자유황이 축적되어 자유황 농도가 상승하므로 발포현상 - 완충조 배출액(4) 중 자유황 성분의 농도과다로 재생탑(2)에서 압축공기에 의한 산화재생시 유황거품이 발생하여 설비운영이 불가능한 현상 - 이 발생하여 설비 운용에 문제가 발생하게 된다.
In addition, the free sulfur accumulated in the buffer tank 30 through the free sulfur overflow pipe 3 accumulates and the free sulfur concentration is increased. ), The operation of the facility is not possible due to the generation of sulfur bubbles during oxidation and regeneration by compressed air.

따라서, 본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출 된 것으로, 재생탑에서 산화 재생시 분리된 자유황(S)을 용해조로 보내 다유화나트륨(Na₂SX+1)을 생성한 후 용해조에서 배출되는 용해조 배출액을 흡수탑과 완충조 두부분으로 나누어 유량을 조절하면서 공급하고, 완충조에서는 용해조로부터 공급되는 완충조행 용해액과 자유황 이송관을 통해 월류되는 용액을 혼합하여 흡수탑으로 공급함으로써 COG 중의 시안화수소를 흡수정제한 오염액 중의 시안화나트륨 제거율을 향상시키도록 하는 COG 정제 공정에서의 시안화나트륨 제거방법을 제공함을 목적으로 한다.Therefore, the present invention was devised to solve the problems of the prior art as described above, after the free sulfur (S) separated during oxidation and regeneration in the regeneration tower to produce a sodium polysulfide (Na₂S X + 1 ) The discharging tank discharged from the dissolution tank is divided into two parts of the absorption tower and the buffer tank, and the flow rate is controlled. In the buffer tank, the buffer solution dissolved in the dissolution tank and the solution flowing through the free sulfur transfer pipe are mixed into the absorption tower. It is an object of the present invention to provide a method for removing sodium cyanide in a COG refining process that improves the removal rate of sodium cyanide in a contaminated solution obtained by absorbing and purifying hydrogen cyanide in COG by supplying.

본 발명의 다른 목적은 재생탑에서 산화 재생시 분리된 자유황을 용해조로 보내어 다유화나트륨(Na₂SX+1)을 생성한 후 흡수탑으로 공급하여 시안화수소를 흡수정제하여 생성된 시안화나트륨 오염액과 반응시키면서 재생탑으로 이동시켜 로단화 반응시킴으로써 시안화나트륨을 무해한 로단염으로 변화시켜 시안화나트륨 제거율을 향상시키도록 하는 COG 정제 공정에서의 시안화나트륨 제거방법을 제공함을 목적으로 한다.
Another object of the present invention is to send the free sulfur separated during the oxidation and regeneration in the regeneration tower to produce a sodium polysulfide (Na₂S X + 1 ) and then supply to the absorption tower absorbed and purified hydrogen cyanide produced sodium cyanide contamination It is an object of the present invention to provide a method for removing sodium cyanide in a COG refining process to improve the removal rate of sodium cyanide by converting sodium cyanide into harmless rhodan salt by moving to a regeneration tower while reacting with a resonant.

이러한 목적을 달성하기 위한 본 발명의 COG 정제 공정에서의 시안화나트륨 제거방법은, 산화재생 반응에 의해 분리된 자유황을 자유황 이송관을 통해 용해조로 이동시키는 제 1 단계; 용해조로 이동시킨 자유황을 가성소다 공급관으로부터 유입되는 가성소다와 반응시켜 다유화나트륨을 생성하는 제 2 단계; 용해조는 다유 화나트륨인 용해조 배출액의 양을 설정된 비율로 조절하여 완충조행 용해액과 흡수탑행 용해액으로 나누어 완충조와 흡수탑에 분배하는 제 3 단계; 완충조에서는 용해조로부터 공급되는 완충조행 용해액과 재생탑으로부터 자유황 월류관을 통해 월류되는 용액을 반응시켜 반응물을 생성하고, 반응물인 흡수탑행 완충조배출액을 흡수탑으로 이동시키는 제 4 단계; 흡수탑에 공급된 흡수탑행 용해액과 흡수탑행 완충조배출액을 시안화수소(HCN)를 흡수정제한 시안화나트륨(NaCN) 오염액과과 반응시키면서 재생탑으로 이동시키고, 재생탑에서 로단화 반응시켜 시안화나트륨(NaCN)을 로단염(NaSCN)으로 변화시키는 제 5 단계를 구비하는 것을 특징으로 한다.Sodium cyanide removal method in the COG purification process of the present invention for achieving this object, the first step of moving the free sulfur separated by the oxidation and regeneration reaction to the dissolution tank through a free sulfur transfer pipe; A second step of reacting the free sulfur transferred to the dissolution tank with caustic soda flowing from the caustic soda feed pipe to produce sodium polysulfide; The dissolving tank is a third step of dividing the dissolution tank discharge liquid, which is polysodium sulfide, in a predetermined ratio, and divides the buffer solution into a buffer solution and an absorption column solution, and distributes the solution to a buffer tank and an absorption tower; In the buffer tank, a fourth step of producing a reactant by reacting the buffer solution solution supplied from the dissolution tank and the solution that flows from the regeneration tower through the free sulfur uptake pipe, and moves the absorption tower buffer buffer solution, which is a reactant, to the absorption tower; The absorption column dissolution solution and absorption column buffer bath discharged to the absorption tower were transferred to the regeneration tower while reacting with sodium cyanide (NaCN) contaminant absorbed and purified by hydrogen cyanide (HCN), and the reductant was reacted with sodium cyanide in the regeneration tower. And a fifth step of converting (NaCN) to rodanol (NaSCN).

이하, 첨부된 도면을 참조하여 본 발명에 관하여 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 COG 정제 공정에서의 시안화나트륨 제거방법에 사용되는 습식탈유장치의 구성도를 나타낸 것이고, 도 3은 본 발명에 따른 COG 정제 공정에서의 시안화나트륨 제거방법을 나타낸 것이다. Figure 2 shows the configuration of the wet deoiling apparatus used in the sodium cyanide removal method in the COG purification process of the present invention, Figure 3 shows a sodium cyanide removal method in the COG purification process according to the present invention.

도 2 내지 도 3을 참조하여 본 발명에 따른 COG 정제 공정에서의 시안화나트륨 제거방법을 살펴보면 다음과 같다.Looking at the method for removing sodium cyanide in the COG purification process according to the present invention with reference to Figures 2 to 3 as follows.

우선, 흡수탑(10) 저부로부터 COG(Coke Oven Gas)가 유입되면, 흡수탑(10) 내부 충진물(Heilex)에서 흡수탑(10) 상부 분사노즐을 통해 분사되는 순환 정제액(2)과 접촉하여 COG 중의 불순물(H₂S, HCN)이 흡수정제(흡수반응)되게 된다(S10,S20).First, when COG (Coke Oven Gas) is introduced from the bottom of the absorption tower 10, the contact with the circulating purification liquid (2) that is injected through the upper injection nozzle of the absorption tower 10 in the absorption (Heilex) inside the absorption tower (10). As a result, impurities (H2S and HCN) in COG are absorbed and purified (absorption reaction) (S10 and S20).

흡수탑(10)에서 COG 중의 불순물(H₂S, HCN)을 흡수 정제한 오염액은 오염액 이송관(1)을 통해 재생탑(20)으로 보내지게 되고, 이 오염액 중 황화수소 불순물(H₂S)을 흡수 정제한 오염액은 재생탑(20)에서 압축공기 중의 산소와 계외에서 보급되는 촉매제에 의해 산화 재생된 후 흡수탑(10)으로 이동되어 흡수탑(10)에서 순환 정제액(2)으로 재사용된다(S30). 이러한 산화 재생과정을 순환 반복함으로써 COG 중의 불순물을 제거한다. 이때, 산화 재생시 발생된 반응열을 제거하기 위해 순환정제액 쿨러(Cooler;21)에서는 일정 온도(40℃ 이하)로 흡수탑(10) 상부로 물을 공급하여 반응열을 제거한다.The contaminant obtained by absorbing and purifying impurities (H₂S and HCN) in COG in the absorption tower 10 is sent to the regeneration tower 20 through the contaminant transport pipe 1, and hydrogen sulfide impurities (H₂S) in the contaminant are transferred. The contaminated liquid that has been absorbed and purified is oxidized and regenerated by oxygen in the compressed air in the regeneration tower 20 and a catalyst supplied out of the system and then moved to the absorption tower 10 and reused as the circulating purification liquid 2 in the absorption tower 10. It becomes (S30). By repeating this oxidative regeneration process, impurities in COG are removed. At this time, in order to remove the reaction heat generated during the oxidation and regeneration the circulating purification liquid cooler (Cooler) 21 to remove the heat of reaction by supplying water to the upper portion of the absorption tower 10 at a predetermined temperature (40 ℃ or less).

한편, 위의 과정에서 흡수탑(10)에서 재생탑(20)으로 보내어진 시안화수소 불순물(HCN)을 흡수 정제한 오염액을 제거하는 과정을 살펴보면, COG중의 시안화수소를 흡수정제한 오염액중의 시안화나트륨 제거를 위해 자유황 월류관(3)에서 분기된 자유황 이송관(100)을 통해 재생탑(20)에서 산화 재생시 분리된 자유황 10㎥/hr를 용해조(40)로 보내 용해조(40)에서 가성소다 공급관(500)을 통해 공급된 가성소다와 혼합하여 알칼리도를 높혀 다유화나트륨(Na₂SX+1)을 생성시킨 후 그 생성물인 용해조 배출액(5)의 완충조분액비(용해조 배출액(5)양에 대한 완충조행 용해액(300)양의 비, 즉 완충조행 용해액/용해조 배출액)를 0.6~0.4로 하여 완충조(30)와 흡수탑(10) 두부분으로 나누어 공급한다(S40~S50).On the other hand, the process of removing the contaminated liquid absorbed and purified by hydrogen cyanide impurities (HCN) sent from the absorption tower 10 to the regeneration tower 20 in the above process, in the contaminated liquid absorbed and purified hydrogen cyanide in COG 10 m3 / hr of free sulfur separated during the oxidation and regeneration in the regeneration tower 20 through the free sulfur transfer pipe 100 branched from the free sulfur overflow pipe 3 to remove sodium cyanide from the dissolution tank 40 Mixing with the caustic soda supplied through the caustic soda supply pipe 500 in (40) to increase the alkalinity to produce sodium polysulfide (Na₂S X + 1 ) and then the buffer bath liquid ratio (dissolution tank) of the product dissolution tank discharge (5) The ratio of the amount of buffer solution dissolved liquid (300) to the amount of discharge liquid (5), that is, the buffer solution solution dissolved in solution / dissolution tank) is 0.6 to 0.4, and is divided into two parts of the buffer tank 30 and the absorption tower 10. (S40 to S50).

이때, 자유황 이송관(100)의 유량이 10㎥/hr 보다 적을시에는 로단염 농도가 낮아 시안화나트륨 제거율이 낮게되므로 순환정제액 중에 자유황 농도가 상승하여 발포현상이 발생하게 되고, 자유황 이송관(100)의 유량이 10㎥/hr 보다 많을시에는 로단염 농도가 상승(시안화나트륨 제거율이 높다)하여 부반응이 진행되므로 약품비가 상승하여 운전비용이 증가하게 된다.At this time, when the flow rate of the free sulfur transfer pipe 100 is less than 10 ㎥ / hr, the concentration of rodan salt is low and the sodium cyanide removal rate is low. Thus, the free sulfur concentration increases in the circulating purification liquid and foaming occurs. When the flow rate of the transfer pipe 100 is more than 10 ㎥ / hr, the rodan salt concentration increases (sodium cyanide removal rate is high), so that the side reaction proceeds, the chemical cost increases and the operating cost increases.

또한, 완충조 분액비가 0.6보다 높으면 자유황의 이용율이 낮아 로단염 농도가 낮고, 완충조 분액비가 0.4보다 낮으면 로단염의 농도가 상승하여 부반응이 진행되므로 약품비가 상승하게 된다.In addition, when the buffer tank separation ratio is higher than 0.6, the utilization rate of free sulfur is low, so that the concentration of rhodan salt is low, and when the buffer tank separation ratio is lower than 0.4, the concentration of rhodan salt rises and a side reaction proceeds, thereby increasing the drug cost.

한편, 용해조(40)로부터 완충조(30)로 공급된 완충조행 용해액(300)은 재생탑(20)에서 산화재생시 분리되어 자유황 월류관(3)을 통해 월류되는 용액과 혼합하여 그 생성물인 흡수탑행 완충조배출액(400)을 흡수탑(10) 저부로 공급한다(S60).On the other hand, the buffer bath solution 300 supplied from the dissolution tank 40 to the buffer tank 30 is separated during the oxidation and regeneration in the regeneration tower 20 and mixed with the solution that is overflowed through the free sulfur uptake pipe (3) Absorption column buffer tank discharge liquid 400 as a product is supplied to the bottom of the absorption tower (10) (S60).

이상과 같이 흡수탑(10)으로 이송되는 용해조 배출액(5)인 흡수탑행 용해액(200)과 흡수탑행 완충조배출액(400)을 공급받은 흡수탑(10)에서는, COG 유입구로 부터 유입된 COG중의 시안화수소를 흡수정제해서 생성된 시안화나트륨의 농도가 높은 오염액과 반응시키면서 오염액 이송관(1)을 통해 재생탑(20)으로 보내고, 이에 따라 흡수탑(10)과 재생탑(20)에서 반응시간(15~16분)이 충분히 확보되어 시안화나트륨을 로단염으로 반응시킬 시간이 확보되므로 로단염 농도가 60~70g/l를 이룬다(S70~S80). 이때, 재생탑(20)으로 용액을 보내는 이유는 흡수탑(10)과 재생탑(20)에서 반응시간을 15~16분이 유지되게끔 하여 충분한 로단화 반응시간을 유지하기 위함이다.As described above, in the absorption tower 10 supplied with the absorption tower dissolving liquid 200 and the absorption tower buffer discharging liquid 400, which are the discharging tank discharge liquid 5 which is transferred to the absorption tower 10, it is introduced from the COG inlet. Absorption and purification of hydrogen cyanide in the COG is sent to the regeneration tower 20 through the contaminant transport pipe 1 while reacting with the high concentration of the sodium cyanide, and thus the absorption tower 10 and the regeneration tower 20. ), The reaction time (15 ~ 16 minutes) is secured enough to secure the time to react sodium cyanide with rhodan salt, so the rhodium salt concentration is 60 ~ 70 g / l (S70 ~ S80). At this time, the reason for sending the solution to the regeneration tower 20 is to maintain the sufficient reaction time to keep the reaction time 15 to 16 minutes in the absorption tower 10 and the regeneration tower 20.

이러한 공정을 반복 수행하여 계내 순환정제액(2)의 농도가 상승하면 종래와 같이 일정량의 순환정제액(2)을 폐수처리로 보내어 폐수처리하게 되며, 순환정제액(2)의 부족분은 흡수탑(10)으로 담수를 보충한다. When the concentration of the circulating purification liquid 2 in the system is increased by repeatedly performing this process, a predetermined amount of circulating purification liquid 2 is sent to the wastewater treatment to treat the wastewater as in the prior art, and the deficiency of the circulating purification liquid 2 is absorbed in the absorption tower. Replenish fresh water with (10).                     

위와 같이 로단염의 농도를 60~70g/l으로 관리하는 이유는 로단염 농도가 60g/l 이하가 되면 계내 순환정제액(2) 중 자유황 농도가 상승하여 발포현상이 발생하게 되고, 폐수처리로 보내는 순환정제액(2) 중의 시안화나트륨 농도가 높아 폐수처리시 장애를 유발하기 때문이다. 또한, 로단염 농도가 70g/l 이상이 되면 부반응이 진행되어 약품비가 상승하게 된다.The reason why the concentration of rhodan salt is controlled at 60 to 70 g / l as above is that when the concentration of rhodan salt is less than 60 g / l, the free sulfur concentration in the circulating purification liquid (2) in the system rises and foaming occurs. This is because the concentration of sodium cyanide in the circulating refining liquid (2) is high, which causes disturbances in wastewater treatment. In addition, when the concentration of rhodan salt is 70g / l or more side reactions proceed to increase the drug costs.

이하, 본 발명에 따른 COG 중의 불순물(H₂S, HCN) 제거공정은 크게 황화수소(H₂S) 제거공정과 시안화수소(HCN) 제거공정으로 나뉘어지는데, 이를 일반적으로 사용되는 [화학식 1] 내지 [화학식 6]에 근거하여 살펴보면 다음과 같다.Hereinafter, impurities (H₂S, HCN) removal process in COG according to the present invention is largely divided into hydrogen sulfide (H₂S) removal process and hydrogen cyanide (HCN) removal process, it is generally used [Formula 1] to [Formula 6] Based on the following.

먼저, [화학식 1] 내지 [화학식 3]은 COG 중의 황화수소 제거공정을 나타낸 것으로서, [화학식 1]의 흡수반응에서는 재생탑(20)에서 재생된 수산화나트륨(NaOH)과 COG에서 유입된 황화수소(H₂S)가 반응하여 황화수소나트륨(NaHS)과 물(H₂O)이 생성된다. First, [Formula 1] to [Formula 3] shows the hydrogen sulfide removal process in COG, in the absorption reaction of [Formula 1] sodium hydroxide (NaOH) regenerated in the regeneration tower 20 and hydrogen sulfide (H₂S introduced from COG) ) Reacts to produce sodium hydrogen sulfide (NaHS) and water (H₂O).

[화학식 2] 내지 [화학식 3]에서의 재생반응은 흡수반응에서 생성된 황화수소나트륨(NaHS)과 외부 압축공기(½O₂)와 촉매제가 반응하여 수산화나트륨(NaOH)과 자유황(S)이 생성된다. 여기서, 부반응인 황화수소나트륨(NaHS)과 산소(2O₂)가 결합하여 삼산화황나트륨(Na₂S₂O₃)과 물(H₂O)이 생성된다.In the regeneration reactions of [Formula 2] to [Formula 3], sodium hydrogen sulfide (NaHS) produced by the absorption reaction, external compressed air (½O₂), and a catalyst react with sodium hydroxide (NaOH) and free sulfur (S). . Here, a side reaction of sodium hydrogen sulfide (NaHS) and oxygen (2O₂) is combined to produce sodium trioxide (Na₂S₂O₃) and water (H₂O).

[화학식 4] 내지 [화학식 6]은 COG 중의 시안화수소 제거공정을 나타낸 것으로서, [화학식 4]의 흡수반응에서는 재생탑(20)에서 재생된 수산화나트륨(NaOH)이 COG에서 유입된 시안화수소(HCN)와 결합하여 시안화나트륨(NaCN)과 물(H₂O)이 생성된다. [Formula 4] to [Formula 6] shows the hydrogen cyanide removal process in the COG, in the absorption reaction of [Formula 4] sodium cyanide (NaOH) regenerated in the regeneration tower 20 is hydrogen cyanide (HCN) introduced from the COG ) Is combined with sodium cyanide (NaCN) and water (H₂O).                     

하기 [화학식 5b]에서의 다유화반응은 용해조(40)에서 수산화나트륨(NaOH)과 재생탑(20)에서 발생된 자유황(S)을 결합하여 다유화나트륨(Na₂SX+1)을 생성시킨다. The polyemulsification in the following Chemical Formula 5b combines sodium hydroxide (NaOH) and free sulfur (S) generated in the regeneration tower 20 in the dissolution tank 40 to produce sodium polysulphate (Na₂S X + 1 ). .

Na₂SX + S → Na₂SX+1 ........................ (다유화반응)Na₂S X + S → Na₂S X + 1 ........................ (Polymulsification)

이때, 그 생성물인 용해조 배출액(5)을 0.6~0.4의 완충조분액비(용해조 배출액양에 대한 완충조행 용해액(300)양의 비)로 완충조(30)와 흡수탑(10) 두부분으로 나누어 공급하게 된다. 그 후, 완충조(30)로 이동된 다유화나트륨(Na₂SX+1)을 흡수탑(10)으로 이동시키게 된다.At this time, the product dissolution tank discharge liquid (5) to the buffer tank 30 and the absorption tower (10) in a buffer tank liquid ratio (ratio of the buffer solution solution 300 to the amount of the dissolution tank discharge liquid) of 0.6 ~ 0.4. It will be divided and supplied. Thereafter, the sodium polysulfide (Na₂S X + 1 ) moved to the buffer tank 30 is moved to the absorption tower 10.

[화학식 6]에서의 로단화반응은 용해조(100)에서 배출되어 흡수탑(10)으로 이동된 배출액(5)인 다유화나트륨(Na₂SX+1)과 완충조(30)에서 이동된 다유화나트륨(Na₂SX+1)을, COG 유입구에서 유입된 시안화수소(HCN)를 흡수반응에 의해 흡수정제하여 생성한 시안화나트륨(NaCN)과 반응시키면서 재생탑(20)으로 이동하여 재생탑(20)에서 로단화반응시킴으로써 시안화나트륨(NaCN)을 무해한 로단염(NaSCN)으로 변화시킨다.In the chemical formula [6], the rhodanization reaction is discharged from the dissolution tank 100 and moved in the sodium polyhydride (Na₂S X + 1 ) and the buffer tank 30 which are discharged liquids 5 moved to the absorption tower 10. Sodium emulsion (Na₂S X + 1 ) is reacted with sodium cyanide (NaCN) generated by absorption and purification of hydrogen cyanide (HCN) introduced from the COG inlet by absorption reaction, and then moves to the regeneration tower (20). ), Sodium cyanide (NaCN) is converted to harmless rhodan salt (NaSCN).

이하 비교예와 실시예를 통하여 본 발명을 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail with reference to comparative examples and examples.                     

[비교예][Comparative Example]

Figure 112001029472380-pat00005
Figure 112001029472380-pat00005

비교예는 종래기술에 따른 불순물 정제방법을 사용한 실험치를 나타낸 것으로서, 종래 방법에서는 본 발명의 시안화나트륨 제거방법을 사용할 때 보다 계내 자유황 농도가 상당히 높고 로단염의 농도가 낮음을 알 수 있다. 이는 시안화나트륨 제거율이 낮다는 것을 나타내는 것이다.Comparative Example shows the experimental value using the impurity purification method according to the prior art, it can be seen that in the conventional method, the concentration of free sulfur in the system and the concentration of rhodan salt is lower than when using the sodium cyanide removal method of the present invention. This indicates that the sodium cyanide removal rate is low.

또한, 시안화나트륨 제거에 필요한 반응 시간이 본 발명의 15~16분 보다 상당히 부족함을 알 수 있다.In addition, it can be seen that the reaction time required to remove sodium cyanide is considerably shorter than 15 to 16 minutes of the present invention.

[실시예1]Example 1

Figure 112001029472380-pat00006
Figure 112001029472380-pat00006

자유황 이송관(100)의 유량이 변화함에 따라 로단염의 농도가 변화함을 알 수 있는데, 자유황 이송관(100)의 유량이 적으면 다유화나트륨 생성에 필요한 유황이 부족하여 로단염 농도가 낮고(시안화나트륨 제거율이 낮다), 자유황 이송관(200)의 유량이 많으면 로단염의 농도가 상승(시안화나트륨 제거율이 높다)하여 약품비가 상승함을 알 수 있다. 자유황 이송관(100)의 유량이 10㎥/hr에서 로단염의 농도가 범위안에 있고 순환정제액(2)의 지유황 농도가 일정하게 유지됨을 보여주고 있다.It can be seen that the concentration of rhodan salt changes as the flow rate of the free sulfur transfer pipe 100 changes. If the flow rate of the free sulfur transfer pipe 100 is small, the sulfur concentration required for the production of sodium polysulfide is insufficient. If the low (sodium cyanide removal rate is low) and the flow rate of the free sulfur transfer pipe 200 is high, the concentration of the rodan salt is increased (sodium cyanide removal rate is high), it can be seen that the chemical cost increases. It is shown that the flow rate of the free sulfur transfer pipe 100 is 10 m 3 / hr, and the concentration of rodan salt is in the range, and the concentration of liposulfur in the circulating purification liquid 2 is kept constant.

[실시예2]Example 2

Figure 112001029472380-pat00008
Figure 112001029472380-pat00008

자유황 이송관(100)의 유량이 10㎥/hr로 일정할 때 완충조분액비(완충조행 용해액 유량/용해조 배출액 유량)가 증가할수록 로단염 농도가 낮고(시안화나트륨 제거율이 낮다), 완충조 분액비가 낮을수록 로단염의 농도가 상승(시안화나트륨 제거율이 높다)하여 약품비가 상승됨을 알 수 있다. 특히, 완충조분액비가 0.6~0.4에서는 자유황농도가 일정하게 유지되고 로단염농도 범위안에서 유지되고 있음을 보여주고 있다.When the flow rate of the free sulfur transfer pipe 100 is constant at 10 m 3 / hr, as the buffer tank liquid ratio (buffer solution solution flow rate / dissolution tank discharge flow rate) increases, rhodan salt concentration is lower (lower sodium cyanide removal rate), and buffering. The lower the crude fraction, the higher the concentration of rhodan salt (the higher the sodium cyanide removal rate), and the higher the drug ratio. In particular, the buffer bath ratio is 0.6 ~ 0.4 to show that the free sulfur concentration is kept constant and within the range of rodan salt concentration.

[실시예3]Example 3

Figure 112001029472380-pat00010
Figure 112001029472380-pat00010

자유황 이송관(100)의 유량이 10㎥/hr으로 일정하고 완충조분액비가 0.6~0.4에서 계내 자유황의 농도가 일정하고 로단염 농도가 범위안에서 일정하게 유지됨을 보여주고 있다(시안화나트륨 제거율이 높다). 특히, 완충조 분액비가 0.5일 때 로단염의 농도가 가장 좋게 유지됨을 알 수 있다.The flow rate of the free sulfur transfer pipe 100 is constant at 10㎥ / hr, the buffer bath liquid ratio is 0.6-0.4, and the concentration of free sulfur in the system is constant and the rhodan salt concentration is kept constant within the range (sodium cyanide removal rate is high). In particular, it can be seen that the concentration of rhodan salt is best maintained when the buffer separation ratio is 0.5.

이상 설명한 내용을 통해 당업자라면 본 발명의 기술적 사상을 일탈하지 않는 범위내에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 첨부한 도면과 명세서의 상세한 설명에 기재된 내용으로 한정되는 것은 아니다.
Those skilled in the art will appreciate that various changes and modifications can be made without departing from the technical spirit of the present invention. Therefore, the technical scope of the present invention is not limited to the contents described in the accompanying drawings and the detailed description of the specification.

상술한 바와 같이 본 발명에 의하면, 별도의 설비로 용융황을 첨가할 필요없이 재생탑에서 산화재생시 분리된 자유황을 이용하여 다유화나트륨을 생성시켜 순 환정제액 중의 시안화나트륨 제거 효율을 높임과 동시에 순환 정제액 중의 자유황 농도를 일정하게 낮게 유지할 수 있어 발포현상을 방지할 수 있는 탁월한 효과가 있다.As described above, according to the present invention, sodium polysulfide is produced using free sulfur separated during oxidation and regeneration in a regeneration tower without the need for adding molten sulfur as a separate facility, thereby increasing the efficiency of removing sodium cyanide in the circulating filtration solution. At the same time, the free sulfur concentration in the circulating purification liquid can be kept constant low, thereby having an excellent effect of preventing foaming.

Claims (5)

COG 중의 불순물(H₂S, HCN)을 흡수 정제하는 방법에 있어서,In the method for absorbing and purifying impurities (H₂S, HCN) in COG, 상기 COG 중의 황화수소(H₂S)를 흡수정제하고, 재생탑(20)에서 산화재생시키며, 상기 산화재생 반응에 의해 분리된 자유황을 자유황 이송관(100)을 통해 용해조(40)로 이동시키는 제 1 단계;Absorbs and purifies hydrogen sulfide (H₂S) in the COG, and oxidized and regenerated in the regeneration tower 20, the agent for moving the free sulfur separated by the oxidation and regeneration reaction to the dissolution tank 40 through the free sulfur transfer pipe 100. Stage 1; 상기 용해조(40)로 이동시킨 자유황을 가성소다 공급관(500)으로부터 유입되는 가성소다와 반응시켜 다유화나트륨(Na₂SX+1)을 생성하는 제 2 단계;A second step of reacting the free sulfur transferred to the dissolution tank 40 with caustic soda flowing from the caustic soda supply pipe 500 to produce sodium polysulfide (Na₂S X + 1) ; 상기 용해조(40)는 다유화나트륨인 용해조 배출액(5)의 양을 설정된 비율로 조절하여 완충조행 용해액(300)과 흡수탑행 용해액(200)으로 나누어 완충조(30)와 흡수탑(10)에 분배하는 제 3 단계;The dissolution tank 40 is divided into a buffer tank dissolution liquid 300 and the absorption tower dissolution liquid 200 by adjusting the amount of the dissolution tank discharge liquid 5, which is sodium polysulfide, at a set ratio, the buffer tank 30 and the absorption tower ( 10) distributing to; 상기 완충조(30)에서는 상기 용해조(40)로부터 공급되는 완충조행 용해액(300)과 상기 재생탑(20)으로부터 자유황 월류관(3)을 통해 월류되는 용액을 반응시켜 반응물을 생성하고, 상기 반응물인 흡수탑행 완충조배출액(400)을 상기 흡수탑(10)으로 이동시키는 제 4 단계;In the buffer tank 30 reacts the buffer solution flow solution 300 supplied from the dissolution tank 40 and the solution flowing through the free sulfur flow pipe (3) from the regeneration tower 20 to produce a reactant, A fourth step of moving the reactant absorption column buffer tank discharge liquid 400 to the absorption tower 10; 상기 흡수탑(10)에 공급된 상기 흡수탑행 용해액(200)과 상기 흡수탑행 완충조배출액(400)을 시안화수소(HCN)를 흡수정제한 시안화나트륨(NaCN) 오염액과 반응시키면서 재생탑(20)으로 이동시키고, 상기 재생탑(20)에서 로단화 반응시켜 시안화나트륨(NaCN)을 로단염(NaSCN)으로 변화시키는 제 5 단계를 구비하는 것을 특징으로 하는 COG 정제 공정에서의 시안화나트륨 제거방법.The absorption tower dissolution solution 200 and the absorption tower buffer bath solution 400 supplied to the absorption tower 10 were reacted with sodium cyanide (NaCN) contaminant absorbed and purified by hydrogen cyanide (HCN) while regeneration tower ( 20), and a method for removing sodium cyanide in the COG purification process, comprising a fifth step of changing the sodium cyanide (NaCN) to the rhodium salt (NaSCN) by subjecting it to a rotamation reaction in the regeneration tower (20). . 제 1 항에 있어서, 상기 제 1 단계에서, 상기 자유황 이송관(100)을 통해 상기 용해조(40)로 이동되는 자유황의 유량을 10㎥/hr로 조절하는 것을 특징으로 하는 COG 정제 공정에서의 시안화나트륨 제거방법.The method of claim 1, wherein in the first step, in the COG refining process, the flow rate of free sulfur moved to the dissolution tank 40 through the free sulfur transfer pipe 100 is adjusted to 10 ㎥ / hr How to remove sodium cyanide. 제 1 항에 있어서, 상기 제 3 단계에서, 상기 완충조(30)와 상기 흡수탑(10)에 분배되는 용해조 배출액(5)의 비율은 완충조분액비(용해조 배출액양에서 완충조행 용해액양의 비)가 0.6~0.4가 되도록 조절하는 것을 특징으로 하는 COG 정제 공정에서의 시안화나트륨 제거방법.The method of claim 1, wherein in the third step, the ratio of the dissolution tank discharge liquid 5 distributed to the buffer tank 30 and the absorption tower 10 is equal to the buffer tank liquid ratio (the amount of buffer operation solution dissolved in the dissolution tank discharge liquid amount). Sodium cyanide removal method in the COG purification process characterized in that the b) is adjusted to 0.6 ~ 0.4. 제 1 항에 있어서, 상기 제 5 단계에서, 상기 로단화 반응이 흡수탑(10)과 재생탑(20)을 거치면서 15~16분 동안 이루어지도록 로단화 반응시간을 조절하는 것을 특징으로 하는 COG 정제 공정에서의 시안화나트륨 제거방법.[Claim 2] The COG of claim 1, wherein in the fifth step, the rhonetization reaction is controlled to be performed for 15 to 16 minutes while passing through the absorption tower 10 and the regeneration tower 20. Method for removing sodium cyanide in the purification process. 제 1 항에 있어서, 상기 제 5 단계에서 시안화나트륨(NaCN)은, COG 유입구에서 유입된 시안화수소(HCN)를 흡수반응에 의해 흡수 정제하여 생성하는 것을 특징으로 하는 COG 정제 공정에서의 시안화나트륨 제거방법.According to claim 1, Sodium cyanide (NaCN) in the fifth step, sodium cyanide removal in the COG purification process, characterized in that the hydrogen cyanide (HCN) introduced from the COG inlet by absorption absorption purification produced by Way.
KR1020010070553A 2001-11-13 2001-11-13 Removal method of sodium cyanide in the sea oji refining process Expired - Fee Related KR100821133B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010070553A KR100821133B1 (en) 2001-11-13 2001-11-13 Removal method of sodium cyanide in the sea oji refining process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010070553A KR100821133B1 (en) 2001-11-13 2001-11-13 Removal method of sodium cyanide in the sea oji refining process

Publications (2)

Publication Number Publication Date
KR20030039588A KR20030039588A (en) 2003-05-22
KR100821133B1 true KR100821133B1 (en) 2008-04-11

Family

ID=29569276

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010070553A Expired - Fee Related KR100821133B1 (en) 2001-11-13 2001-11-13 Removal method of sodium cyanide in the sea oji refining process

Country Status (1)

Country Link
KR (1) KR100821133B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277443A (en) * 1993-03-30 1994-10-04 Sumikin Chem Co Ltd Gas liquid treatment method
KR960003939A (en) * 1994-07-01 1996-02-23 조엘 에이취 너스범 Elongated Moulding End Forming Method of Thermoplastics
JPH1121567A (en) * 1997-07-02 1999-01-26 Sumikin Chem Co Ltd Regeneration method of wet desulfurization absorption liquid
KR100282069B1 (en) * 1996-12-24 2001-04-02 이구택 Polysulfide reaction accelerator and method for the coke oven gas purifier
KR20010045636A (en) * 1999-11-05 2001-06-05 이구택 an eleminating method of hydrogen sulfate, hydrogen cyanide and ammonia in cokes' gases

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277443A (en) * 1993-03-30 1994-10-04 Sumikin Chem Co Ltd Gas liquid treatment method
KR960003939A (en) * 1994-07-01 1996-02-23 조엘 에이취 너스범 Elongated Moulding End Forming Method of Thermoplastics
KR100282069B1 (en) * 1996-12-24 2001-04-02 이구택 Polysulfide reaction accelerator and method for the coke oven gas purifier
JPH1121567A (en) * 1997-07-02 1999-01-26 Sumikin Chem Co Ltd Regeneration method of wet desulfurization absorption liquid
KR20010045636A (en) * 1999-11-05 2001-06-05 이구택 an eleminating method of hydrogen sulfate, hydrogen cyanide and ammonia in cokes' gases

Also Published As

Publication number Publication date
KR20030039588A (en) 2003-05-22

Similar Documents

Publication Publication Date Title
JP2637898B2 (en) Process for selectively producing aqueous streams containing water-soluble inorganic sulfides to the corresponding sulfates
RU2241527C2 (en) Gas desulfurization process
EP0279667B1 (en) Process for the removal of hydrogen sulfide and optionally carbon dioxide from gaseous streams
RU2664929C1 (en) Method of biological transformation of bisulphide into elemental sulfur
CN100577776C (en) Wet gas purification method and system
KR101462054B1 (en) Apparatus for Eliminating Hydrogen Sulfide and Harmful Gas
JP4594602B2 (en) Method for oxidative desulfurization of liquid petroleum products
CN105985814B (en) The treatment process of hydrogen sulfide, hydrogen cyanide and ammonia is removed from coal gas
UA126145C2 (en) Sulfur dioxide scrubbing system and process for producing potassium products
US10351456B2 (en) Process for treatment of sour water generated from coal gasification
HUT77892A (en) Anaeorobic method for removing of sulfur compounds from waste waters
US5139753A (en) Continuous process for mass transfer of a liquid reagent with two different gases
CN102059038A (en) Treatment process and device of waste gas containing hydrogen sulfide and carbon dioxide
JP6684539B2 (en) Method and apparatus for treating acid gas
US5215728A (en) Method and apparatus for removal of h2s from a process gas, including thiosulfate and/or cyanide salt decomposition
US3773662A (en) Treatment of a thiosulfate solution with hydrogen sulfide
KR100821133B1 (en) Removal method of sodium cyanide in the sea oji refining process
CN105441140A (en) Coke oven gas purifying system
KR900000187B1 (en) Sulphur recovery process
US3855390A (en) Process for purifying a gas containing hydrogen cyanide
EP1156867B1 (en) Method for conversion of hydrogen sulfide to elemental sulfur
CN105542873A (en) A purification process system for coke oven gas
AU684906B2 (en) A method for removing hydrogen sulfide from gas streams
US5167940A (en) Process and apparatus for removal of H2 S from a process gas including polyvalent metal removal and decomposition of salts and complexes
CN105329859A (en) Treatment process for sulfur-containing tail gas

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20011113

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20061113

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20011113

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20070927

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20080327

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20080403

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20080404

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20110405

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20120403

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20130401

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20140404

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20140404

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20160331

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20160331

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20170308

Start annual number: 10

End annual number: 10

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20190114