KR100819742B1 - Fabrication of solid hydrogen ion electrolyte membrane by low temperature process and development of medium temperature fuel cell system - Google Patents
Fabrication of solid hydrogen ion electrolyte membrane by low temperature process and development of medium temperature fuel cell system Download PDFInfo
- Publication number
- KR100819742B1 KR100819742B1 KR1020060114268A KR20060114268A KR100819742B1 KR 100819742 B1 KR100819742 B1 KR 100819742B1 KR 1020060114268 A KR1020060114268 A KR 1020060114268A KR 20060114268 A KR20060114268 A KR 20060114268A KR 100819742 B1 KR100819742 B1 KR 100819742B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrolyte membrane
- fuel cell
- hydrogen ion
- cell system
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
- H01M8/0208—Alloys
- H01M8/021—Alloys based on iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
본 발명은 저온공정에 의한 열적-기계적 안정성이 우수한 고체 수소이온 전해질막의 제조와 그 전해질막을 장착한 중온형 연료전지 시스템 개발에 관한 것을 제공하는 것으로, 유기금속화합물을 출발물질로 하여 솔-젤 공정에 의한 전해질막을 제조하고, 이 제조한 전해질막을 사용하여 300℃의 중온에서도 운전이 가능한 연료전지 시스템을 구성하였다. The present invention relates to the manufacture of a solid hydrogen ion electrolyte membrane having excellent thermal-mechanical stability by a low temperature process and to the development of a medium temperature type fuel cell system equipped with the electrolyte membrane, and a sol-gel process using an organic metal compound as a starting material. The electrolyte membrane was prepared, and the prepared electrolyte membrane was used to constitute a fuel cell system capable of operating at a medium temperature of 300 ° C.
실온에서 유기금속화합물, 물, 헤테로폴리산(PWA), 알코올을 산촉매 하에서 균질하게 혼합하여 솔을 제조하고, 그 제조한 솔을 건조 및 열처리 과정을 거쳐 수소이온 전도성을 가진 전해질막을 제조한다. 이 전해질막은 열적-기계적 내구성이 우수한 고체 전해질막이 된다. At room temperature, an organometallic compound, water, heteropolyacid (PWA), and alcohol are mixed homogeneously under an acid catalyst to prepare a sol, and the sol is dried and heat treated to prepare an electrolyte membrane having a hydrogen ion conductivity. This electrolyte membrane becomes a solid electrolyte membrane with excellent thermal-mechanical durability.
전해질막의 수소이온 전도도는 전기화학장치를 사용하여 임피던스 측정하였는데 연료전지 셀 온도 90℃에서 약 1.8×10-3 S/cm의 값을 나타냈고, 발생전류는 연료전지 셀 온도 300℃에서 약 0.3mA의 전류가 발생함을 볼 수 있었다. The conductivity of the hydrogen ion of the electrolyte membrane was measured using an electrochemical device, and the value was about 1.8 × 10 -3 S / cm at the fuel cell temperature of 90 ° C. The generated current was about 0.3 mA at the fuel cell temperature of 300 ° C. It can be seen that the current occurs.
Description
제1도는 고체 수소이온 전해질막 제조 방법 1 is a method for producing a solid hydrogen ion electrolyte membrane
제2도는 연료전지 시스템 조합도 2 is a fuel cell system combination diagram
제3도는 SiO2-P2O5-ZrO2-PWA 막의 XRD 분석도3 is an XRD analysis of SiO 2 -P 2 O 5 -ZrO 2 -PWA membrane
제4도는 SiO2-P2O5-ZrO2-PWA 젤의 TGA/DTA 분석도4 shows TGA / DTA analysis of SiO 2 -P 2 O 5 -ZrO 2 -PWA gel
제5도는 SiO2-P2O5-ZrO2-PWA 막의 FT-IR 분석도5 is an FT-IR analysis of the SiO 2 -P 2 O 5 -ZrO 2 -PWA film
제6도는 SiO2-P2O5-ZrO2-PWA 막의 임피던스 측정도6 is an impedance measurement diagram of SiO 2 -P 2 O 5 -ZrO 2 -PWA film
제7도는 SiO2-P2O5-ZrO2-PWA 막의 온도별 발생전류 측정도7 is a measurement chart of generated currents according to temperature of SiO 2 -P 2 O 5 -ZrO 2 -PWA film
본 발명은 저온공정에 의한 열적-기계적 안정성이 우수한 고체 수소이온 전해질막의 제조와 그 전해질막을 장착한 중온형 연료전지 시스템 개발에 관한 것을 제공하는 것으로, 유기금속화합물을 출발물질로 하여 솔-젤 공정에 의한 전해질막을 제조하고, 전해질막-전극촉매(MEA)을 포함한 300℃의 중온에서도 운전 가능한 연료전지 시스템을 구성하였다. The present invention relates to the manufacture of a solid hydrogen ion electrolyte membrane having excellent thermal-mechanical stability by a low temperature process and to the development of a medium temperature type fuel cell system equipped with the electrolyte membrane, and a sol-gel process using an organic metal compound as a starting material. The electrolyte membrane was manufactured, and the fuel cell system which can operate even in the medium temperature of 300 degreeC containing electrolyte membrane electrode catalyst (MEA) was comprised.
연료전지는 연료의 화학에너지를 산화, 환원반응에 의해 전기에너지로 전환을 통한 친환경 신에너지를 제공하는 장치로, 연료극으로 들어온 수소분자는 전극촉매에 의해 수소이온(H+)과 전자로 분리가 일어나고, 수소이온은 전해질막을 통해 반대편으로 이동하고, 공기극에서는 전해질막을 통해 들어오는 수소이온과 외부회를 거처 들어오는 전자가 산소원자와 결합하여 물과 열이 발생한다. 다시 말하면 연료극에서는 계속해서 수소이온이 만들고 공기극에서는 수소이온을 계속적으로 소멸시킴으로 수소이온의 기울기 즉 전위차가 만들어져 수소이온이 전해직막을 통해 이동하게 된다. 한편 수소연료극에서 만들어진 전자는 별도 도선을 지나 일(전기에너지)을 한 뒤에 공기극으로 들어와 수소이온, 산소이온과 결합하여 물이 되면서 소멸하게 된다. A fuel cell is a device that provides eco-friendly new energy by converting chemical energy of fuel into electrical energy by oxidation and reduction reactions. Hydrogen molecules entering the anode are separated into hydrogen ions (H + ) and electrons by an electrode catalyst. Hydrogen ions move to the other side through the electrolyte membrane, and in the air electrode, hydrogen ions entering through the electrolyte membrane and electrons passing through the outer ash combine with oxygen atoms to generate water and heat. In other words, hydrogen ions continue to be produced at the anode and hydrogen ions are continuously dissipated at the cathode, so that the slope of the hydrogen ions, that is, the potential difference, is made to move through the electrolytic membrane. On the other hand, the electrons made in the hydrogen fuel electrode pass through a separate conductor and work (electrical energy), enter the air electrode, combine with hydrogen ions and oxygen ions, and disappear as water.
연료전지는 사용하는 전해질물질 종류에 따라 알카리수용액형(AFC), 인산수용액형(PAFC), 용융탄산염형(MCFC), 고체산화물형(SOFC), 고체고분자형(PEMFC)으로 분류된다. 이 중 고체고분자형에 사용되는 전해질막은 양극간의 차압제어와 가압화가 쉽고, 상온에서 기동할 수 있으며, 고전류밀도와 고출력밀도를 얻을 수 있어 소형-경량화에 적합하며, 현재 시판되고 있는 이온교환막은 다우막(Dow), 나피온막(DuPont), 플레미온(Asahi 초자), 아시프렉스(Asahi Kasei) 등이 있다. 주체인 부분은 파흐르오로 아르킬의 소수성 골격과 친수성인 파흐르오로아르킬에텔과 스르폰산기(SO3H)기를 결합시킨 사이드 체인을 도입한 구조를 가지고 있어 높은 화학적 안전성과 매우 우수한 수소이온 전도성을 가지고 있다. 반면, 가격이 비싸고 기능적인 면에서 100℃ 이상에서 사용이 제한되는 단점을 가지고 있다. Fuel cells are classified into alkaline aqueous solution (AFC), aqueous phosphate (PAFC), molten carbonate (MCFC), solid oxide (SOFC), and solid polymer (PEMFC). Among them, the electrolyte membrane used for the solid polymer type is easy to control the pressure difference between the anode and the pressurization, can be started at room temperature, and can obtain high current density and high output density. Dow, Nafion, Duple, Asamihi, Asahi Kasei and the like. The main chain part has a structure in which the hydrophobic skeleton of fahr-or-aralkyl and the side chain combining hydrophilic fahr-or-aralkylether and a sulfonic acid group (SO 3 H) are introduced. It has conductivity. On the other hand, it is expensive and has a disadvantage in that the use is limited above 100 ℃ in terms of functionality.
본 발명에서 만든 수소이온 전해질막은 솔-젤 공정을 통한 것으로 실온에서 합성이 가능하며, 분자크기의 용액을 출발물질로 하여 간단한 공정을 거쳐 원하는 재료를 만들었다. The hydrogen-ion electrolyte membrane made in the present invention can be synthesized at room temperature through a sol-gel process, and a desired material has been made through a simple process using a solution having a molecular size as a starting material.
실온에서 유기금속화합물, 물, 헤테로폴리산, 알코올, 산촉매를 균질하게 혼합한 솔을 건조 및 열처리(400℃) 과정을 거쳐 제조한 막은 수소이온 전도성을 가지며, 뿐만 아니라 열적-기계적 내구성이 우수한 고체 세라믹 전해질막이 된다. Membrane prepared by drying and heat-treating (400 ℃) sol homogeneously mixed with organometallic compound, water, heteropolyacid, alcohol, and acid catalyst at room temperature has not only hydrogen ion conductivity but also excellent thermal-mechanical durability. It becomes a film.
고체 전해질막 양면에 전극촉매를 접합한 막/전극접합체(MEA; Membrane/Electrode Assembly)는 우선 니켈 메쉬 한쪽 면에 백 금촉매가 담지된 탄소 분말을 코팅하여 전극을 만들고, 이 전극을 전해질막 양면에 접합하여 막/전극 접합체를 만들었다. 이 니켈 메쉬 전극은 연료극과 공기극의 기체의 확산을 최적화시키며, 촉매 층과의 접촉을 용이하게 한다.Membrane / Electrode Assembly (MEA), in which an electrode catalyst is bonded to both sides of a solid electrolyte membrane, first forms an electrode by coating carbon powder on which a nickel catalyst is supported on one side of a nickel mesh, and then forms the electrode on both sides of the electrolyte membrane. To a membrane / electrode assembly. This nickel mesh electrode optimizes the diffusion of gases in the anode and cathode and facilitates contact with the catalyst bed.
스테인레스스틸 판을 가공하여 연료극과 산소극이 기체유로를 만들고, 이 두 스테인레스스틸 판 기체유로 사이에 전해질막/전극접합체를 놓고 네 모서리 부분을 6각 볼트를 사용하여 물리적인 방법으로 막/전극 접합을 유도하였다. 이 연료 극과 산소극 스테인레스스틸 판 양쪽 끝에 백금 와이어를 용접하여 외부회로로 전기가 흐르도록 하였다.The stainless steel plate is processed to produce a gas flow path between the fuel electrode and the oxygen electrode.The electrolyte membrane / electrode assembly is placed between the two stainless steel gas paths, and the four corners are bonded to each other in a physical manner using hexagonal bolts. Induced. Platinum wire was welded to both ends of the fuel electrode and the oxygen electrode stainless steel plate to allow electricity to flow to the external circuit.
본 발명의 고체 수소이온 전해질막의 제조는 실온에서 솔-젤 공정에 의한 유기금속화합물인 테트라에틸오소실리케이트(C8H20O40Si), 테트라브틸오소지르코늄(C16H36O4Zr), 트리메틸퍼스페이트(C3H9O4P), 퍼스포텅스터닉엑시드(H3PW12O40-29H2O)를 출발물질로, 에탄올을 용매로 사용하고, 염산 촉매 하 실온에서 센 교반조작을 통하여 균질한 혼합용액(솔)을 제조하였다. 이 솔을 1~2개월 건조하여 젤을 만든 후 그 젤을 400℃로 열처리하여 두께 0.5~1mm의 고체 수소이온 전해질막을 제조한다. Preparation of the solid hydrogen ion electrolyte membrane of the present invention is an organometallic compound tetraethyl orthosilicate (C 8 H 20 O 40 Si), tetrabutyl ortho zirconium (C 16 H 36 O 4 Zr), by a sol-gel process at room temperature, Trimethyl persulfate (C 3 H 9 O 4 P) and perspoungsternic acid (H 3 PW 12 O 40 -29H 2 O) were used as starting materials, ethanol as a solvent, and stirred at room temperature under hydrochloric acid catalyst. Through operation, a homogeneous mixed solution (sol) was prepared. The brush is dried for 1 to 2 months to form a gel, and the gel is heat-treated at 400 ° C. to prepare a solid hydrogen ion electrolyte membrane having a thickness of 0.5 to 1 mm.
제조한 전해질막의 열적, 구조적 특성은 XRD, TGA/DTA, FT-IR 분석을 통해 실시하였고, 수소이온 전도성 특성 분석은 전기화학장치를 사용하여 임피던스를 측정하였다. Thermal and structural characteristics of the prepared electrolyte membrane were analyzed by XRD, TGA / DTA, and FT-IR analysis, and hydrogen ion conductivity characteristics were measured by using an electrochemical device.
중온형 연료전지 시스템 구성은 백금이 담지된 탄소입자를 슬러리 형태로 하여 니켈 메쉬에 코팅 후 전해질막과 결합하여 전해질막-전극접합체(MEA)를 만들고, 열적 내구성이 우수한 스테인레스 스틸을 사용하여 연료가스와 산소가스의 유로 및 열선을 심을 수 있는 홈을 가공하여 연료전지 단일 스택을 구성하였다. 연료가스와 산소가스의 유입량은 50㎖/min으로 공급하였고, 가습은 미니펌프를 사용하여 연료가스 및 산소가스 공급라인에 연결하여 규칙적으로 연료전지 반응기 안으로 흘려주 었다. 구성한 연료전지 시스템의 성능측정은 온도변화에 따른 OCV 및 발생전류를 측정하였다. The medium-temperature fuel cell system is composed of platinum-carrying carbon particles coated on a nickel mesh and combined with an electrolyte membrane to form an electrolyte membrane-electrode assembly (MEA), and fuel gas using stainless steel with excellent thermal durability. And a single stack of fuel cells was formed by processing grooves for planting oxygen gas flow paths and heating wires. Fuel gas and oxygen gas inflows were supplied at 50ml / min, and humidification was regularly flown into the fuel cell reactor by connecting to the fuel gas and oxygen gas supply lines using a minipump. Performance measurement of the constructed fuel cell system measured the OCV and the generated current according to the temperature change.
XRD 분석을 통해 무정형의 구조를 가지고 있는 것으로 확인할 수 있었고, 이는 재료가 균질하게 혼합 및 결합되었음을 알 수 있다. 또한 헤테로폴리산에 의해 25˚ 부근의 실리카의 브로드한 피크가 오른쪽으로 이동한 것을 확인할 수 있었다. TGA/DTA 분석을 통해 400℃ 이후로 무게변화가 거의 없는 것을 확인하였고 이는 400℃로 열처리 할 경우 열적으로 안정된 전해질막을 얻을 수 있음을 알 수 있었다. FT-IR 분석은 수소이온 전도도의 영향을 주는 히드록시기가 존재함을 확인할 수 있었다. XRD analysis showed that it had an amorphous structure, indicating that the materials were homogeneously mixed and combined. Moreover, it was confirmed that the broad peak of the silica of 25 degree vicinity moved to the right by heteropoly acid. The TGA / DTA analysis confirmed that there was almost no weight change after 400 ° C., which indicates that a thermally stable electrolyte membrane can be obtained by heat treatment at 400 ° C. FT-IR analysis confirmed that the presence of a hydroxyl group affects the hydrogen ion conductivity.
임피던스 측정 결과 제조한 전해질막의 수소이온 전도도 값은 측정 연료전지셀 온도 90℃에서 약 1.8×10-3 s/cm의 값을 나타냈고, 발생전류는 연료전지 셀 온도 300℃에서 약 0.3mA의 전류가 발생함을 볼 수 있었다.As a result of impedance measurement, the hydrogen ion conductivity value of the prepared electrolyte membrane showed a value of about 1.8 × 10 −3 s / cm at the measured fuel cell temperature of 90 ° C., and the generated current was about 0.3 mA at the fuel cell temperature of 300 ° C. Could be seen.
본 발명으로 저온공정을 통한 열적-기계적 안정성이 우수한 수소이온 전해질막을 제조하고, 300℃의 운전조건에서도 연료전지의 활용을 가능하게 함으로써, 소재의 다양화와 함께 경제적인 수소이온 고체 전해질막을 제조하는 방법을 제공한다. According to the present invention, a hydrogen-ion electrolyte membrane having excellent thermal-mechanical stability through a low-temperature process is manufactured, and the fuel cell can be utilized even under operating conditions of 300 ° C., thereby producing an economical hydrogen-ion solid electrolyte membrane with material diversification. Provide a method.
뿐만 아니라 제조된 고체 수소이온 전해질막을 사용하여 중온형 연료전지 시스템을 구성할 경우 소량화가 가능하고, 전해질 막 두께 조절 및 막과 전극촉매 계 면저항의 저감방법을 통해 높은 에너지 효율을 얻을 수 있어, 무공해 차량 동력원, 현지 설치형 발전, 우주선용 전원, 이동용 전원, 군사용 전원 등 중온형 연료전지의 다양한 산업분야 응용이 가능할 것으로 기대된다.In addition, when the medium-temperature fuel cell system is constructed by using the prepared solid hydrogen ion electrolyte membrane, it is possible to reduce the amount and to obtain high energy efficiency through controlling the electrolyte membrane thickness and reducing the membrane and electrode catalyst interface resistance. It is expected to be applicable to various industrial fields of medium-temperature fuel cells, such as vehicle power sources, on-site power generation, spacecraft power, mobile power, and military power.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060114268A KR100819742B1 (en) | 2006-11-20 | 2006-11-20 | Fabrication of solid hydrogen ion electrolyte membrane by low temperature process and development of medium temperature fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060114268A KR100819742B1 (en) | 2006-11-20 | 2006-11-20 | Fabrication of solid hydrogen ion electrolyte membrane by low temperature process and development of medium temperature fuel cell system |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100819742B1 true KR100819742B1 (en) | 2008-04-07 |
Family
ID=39533872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060114268A Expired - Fee Related KR100819742B1 (en) | 2006-11-20 | 2006-11-20 | Fabrication of solid hydrogen ion electrolyte membrane by low temperature process and development of medium temperature fuel cell system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100819742B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101055617B1 (en) * | 2008-10-02 | 2011-08-11 | 연세대학교 산학협력단 | Composite Inorganic Hydrogen Ion Electrolyte Membrane, Manufacturing Method Thereof, Electrolyte Membrane Electrode Assembly (MAA) and Mesophilic Fuel Cell |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040247975A1 (en) | 2001-06-19 | 2004-12-09 | Min-Kyu Song | Composite polymeric electrolyte membrane, preparation method thereof |
US20050271921A1 (en) | 2004-06-07 | 2005-12-08 | Hee-Tak Kim | Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same |
KR20060135205A (en) * | 2005-06-24 | 2006-12-29 | 삼성에스디아이 주식회사 | Polymer electrolyte membrane for fuel cell, manufacturing method thereof and fuel cell system comprising same |
KR20070056324A (en) * | 2005-11-29 | 2007-06-04 | 삼성에스디아이 주식회사 | Polymer electrolyte membrane for fuel cell and fuel cell system comprising same |
-
2006
- 2006-11-20 KR KR1020060114268A patent/KR100819742B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040247975A1 (en) | 2001-06-19 | 2004-12-09 | Min-Kyu Song | Composite polymeric electrolyte membrane, preparation method thereof |
US20050271921A1 (en) | 2004-06-07 | 2005-12-08 | Hee-Tak Kim | Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same |
KR20060135205A (en) * | 2005-06-24 | 2006-12-29 | 삼성에스디아이 주식회사 | Polymer electrolyte membrane for fuel cell, manufacturing method thereof and fuel cell system comprising same |
KR20070056324A (en) * | 2005-11-29 | 2007-06-04 | 삼성에스디아이 주식회사 | Polymer electrolyte membrane for fuel cell and fuel cell system comprising same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101055617B1 (en) * | 2008-10-02 | 2011-08-11 | 연세대학교 산학협력단 | Composite Inorganic Hydrogen Ion Electrolyte Membrane, Manufacturing Method Thereof, Electrolyte Membrane Electrode Assembly (MAA) and Mesophilic Fuel Cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | PEM fuel cell testing and diagnosis | |
Sopian et al. | Challenges and future developments in proton exchange membrane fuel cells | |
Jeong et al. | High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells | |
JP5151074B2 (en) | Solid polymer electrolyte membrane, membrane electrode assembly, and fuel cell using the same | |
US20180013150A1 (en) | Fuel cell catalyst suitable for non-humidified conditions and method for manufacturing the same | |
JPWO2004038839A1 (en) | Fuel cell using layered silicate mineral and its intercalation compound as solid electrolyte membrane | |
CA2582490C (en) | Proton-conducting material, solid polymer electrolyte membrane, and fuel cell | |
JP2012074234A (en) | Carbon-coated catalyst material for solid polymer fuel cell, production method therefor, electrode catalyst layer, and membrane electrode assembly | |
CN113921829A (en) | Anode catalyst layer, membrane electrode and preparation method thereof | |
KR101101497B1 (en) | Manufacturing method of high temperature fuel cell electrode and membrane electrode assembly manufactured by the method | |
KR100819742B1 (en) | Fabrication of solid hydrogen ion electrolyte membrane by low temperature process and development of medium temperature fuel cell system | |
JP4996823B2 (en) | Fuel cell electrode and fuel cell using the same | |
KR100542228B1 (en) | Polymer membrane / electrode assembly for fuel cell and fuel cell comprising same | |
JP2006318755A (en) | Membrane electrode assembly for polymer electrolyte fuel cells | |
Chaurasia et al. | Performance study of power density in PEMFC for power generation from solar energy | |
JP5105928B2 (en) | FUEL CELL ELECTRODE, METHOD FOR PRODUCING FUEL CELL ELECTRODE, AND FUEL CELL | |
JP5368691B2 (en) | POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL INCLUDING THE SAME | |
Yousefi et al. | The effect of operating parameters on the performance of a passive DMFC single cell | |
KR100705553B1 (en) | A method of forming a catalyst layer on a hydrogen ion exchange membrane of a fuel cell membrane electrode assembly | |
Pettersson et al. | Fabrication of bifunctional membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells | |
KR101055617B1 (en) | Composite Inorganic Hydrogen Ion Electrolyte Membrane, Manufacturing Method Thereof, Electrolyte Membrane Electrode Assembly (MAA) and Mesophilic Fuel Cell | |
Dara et al. | Low Cost Hydrogen Fuel Cell | |
KR100347873B1 (en) | electrodes treated to be magnetized and methods for the same | |
KR101100897B1 (en) | Electrolyte Membrane for Direct Methanol Fuel Cell Containing Sulfated Titanium Dioxide and Manufacturing Method Thereof and Membrane Electrode Assembly and Direct Methanol Fuel Cell Using the Same | |
Heinzen et al. | Proton exchange fuel cell: the design, construction and evaluation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20061120 |
|
PA0201 | Request for examination | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20070721 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20070921 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20080306 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20080331 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20080401 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20110401 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20120402 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20130402 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20130402 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140214 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20140214 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160202 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20160202 Start annual number: 9 End annual number: 9 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20180111 |