[go: up one dir, main page]

KR100816495B1 - Separation and Purification of Cephalosporin C Acylase by Non-Cracking Cells - Google Patents

Separation and Purification of Cephalosporin C Acylase by Non-Cracking Cells Download PDF

Info

Publication number
KR100816495B1
KR100816495B1 KR1020060115550A KR20060115550A KR100816495B1 KR 100816495 B1 KR100816495 B1 KR 100816495B1 KR 1020060115550 A KR1020060115550 A KR 1020060115550A KR 20060115550 A KR20060115550 A KR 20060115550A KR 100816495 B1 KR100816495 B1 KR 100816495B1
Authority
KR
South Korea
Prior art keywords
acylase
cpc
cpc acylase
cells
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020060115550A
Other languages
Korean (ko)
Inventor
윤주천
최상용
Original Assignee
(주)누리바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)누리바이오텍 filed Critical (주)누리바이오텍
Priority to KR1020060115550A priority Critical patent/KR100816495B1/en
Application granted granted Critical
Publication of KR100816495B1 publication Critical patent/KR100816495B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01093Glutaryl-7-aminocephalosporanic-acid acylase (3.5.1.93)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 CPC 아실라제의 분리 및 정제방법에 관한 것으로서, 보다 상세하게는 대장균 세포를 pH 5.5 ~ 9.5 및 20 ~ 40℃의 완충액으로 처리하는 단계; 상기 세포에 계면활성제 및 라이소자임을 처리하여 페리플라즘(Periplasm) 내에 존재하는 CPC 아실라제(cephalosporin C acylase)를 세포밖으로 방출시키는 단계; 및 상기 방출된 CPC 아실라제를 한외여과막을 사용하여 탈염 및 농축 정제하는 단계를 포함하는 세포의 비파쇄에 의한 CPC 아실라제의 분리 및 정제방법에 관한 것이다. 본 발명에 의하면 세포내 효소인 세팔로스포린 C 아실라제를 세포를 파쇄하지 않고 추출하여 간단하게 분리 정제함으로써 공정을 단축시켜 유ㆍ무기 복합 고정화 담체에 쉽게 고정화하여 7-아미노세팔로스포란산 제조에 유용하게 사용할 수 있다.The present invention relates to a method for isolating and purifying CPC acylases, and more particularly, to treat E. coli cells with buffers at pH 5.5 to 9.5 and 20 to 40 ° C .; Treating the cells with a surfactant and lysozyme to release CPC acylase (cephalosporin C acylase) present in the periplasm out of the cells; And desalination and concentration purification of the released CPC acylase using an ultrafiltration membrane. According to the present invention, the cephalosporin C acylase, an intracellular enzyme, is extracted without crushing the cells, and is easily separated and purified, thereby shortening the process and easily immobilized on an organic / inorganic complex immobilized carrier to prepare 7-aminocephalosporic acid This can be useful for.

Description

세포의 비파쇄에 의한 세팔로스포린 C 아실라제의 분리 및 정제방법{Separating and Purifying Method of Cephalosporin C Acylase by No Breaking of the Cell}Separating and Purifying Method of Cephalosporin C Acylase by No Breaking of the Cell}

도 1은 7-아미노세팔로스포란산의 제조에 있어서, 1 단계에서 D-아미노산 옥시다제(D-amino acid oxidase)를 사용하여 세팔로스포린 C를 글루타릴-7-아미노세팔로스포란산(Glutaryl-7-aminocephalosporanic acid)으로 전환시킨 후, 2 단계에서 상기 글루타릴-7-아미노세팔로스포란산을 GL-7-ACA 아실라제(GL-7-ACA acylase)를 사용하여 7-아미노세팔로스포란산로 전환시키는 공법을 나타낸 화학식이고, 1 is glutaryl-7-aminocephalosporane in the step 1 using D-amino acid oxidase in the preparation of 7-aminocephalosporranic acid. After conversion to acid (Glutaryl-7-aminocephalosporanic acid), the glutaryl-7-aminocephalosporranic acid was converted to 2 using GL-7-ACA acylase in step 2. -A chemical formula showing a process for converting to aminocephalosporanic acid,

도 2는 세팔로스포린 C를 세팔로스포린 C 아실라제를 사용하여 7-아미노세팔로스포란산으로 직접 전환시키는 공법을 나타낸 화학식이다. Figure 2 is a chemical formula showing a process for directly converting cephalosporin C to 7-aminocephalosporonic acid using cephalosporin C acylase.

본 발명은 세팔로스포린 C로부터 7-아미노세팔로스포란산을 효소반응에 의해 직접 제조하는데 필요한 세팔로스포린 C 아실라제(Cephalosporin C Acylase, 이하 CPC acylase라고 약칭함)의 경제적이며 효율적인 분리 및 정제방법에 관한 것이다.The present invention provides an economical and efficient separation and purification of cephalosporin C acylase (hereinafter, abbreviated as CPC acylase) required for the direct preparation of 7-aminocephalosporranic acid from cephalosporin C by enzymatic reaction. It is about a method.

세팔로스포린 C(Cephalosporin C, 이하 CPC라고 약칭함)는 β-lactam계 항생물질로 일반적으로 아크레모니움 크리소제늄(Acremonium Chrysogenium)과 같은 곰팡이에서 생산되며 그람음성 세균에 대해 세포벽 합성을 저해함으로서 항생력을 나타내나 그 활성이 아주 미약하기 때문에 CPC로부터 아미노 아디포일(D-α-amino adipoyl) 곁가지가 제거된 7-아미노세팔로스포란산(7-aminocephalosporanic acid, 이하 7-ACA라고 약칭함)이 반합성 세팔로스포린계 항제의 원료물질로 사용되고 있다.Cephalosporin C (abbreviated as CPC) is a β-lactam antibiotic that is commonly produced in fungi such as Acremonium Chrysogenium and inhibits cell wall synthesis by gram-negative bacteria. 7-aminocephalosporanic acid (7-ACA), which has antibiotic activity but is very weak and has been removed from the CPC by the amino adipoyl bran. ) Is used as a raw material for semisynthetic cephalosporin-based drugs.

CPC로부터 7-ACA를 제조하는 방법으로는 화학공정에 의한 방법과 효소공정에 의한 방법이 있다. 화학공정에 의한 7-ACA 합성방법은 CPC의 아민(amine)기와 카르복실(carboxyl)기 모두에 실리(silly)기를 보호기로 사용하여 다단계의 초저온 반응이 필요하며, 반응 중에 사용되는 유독성 화학물질과 유기용매가 환경을 오염시키고 생산원가의 상승원인이 되는 문제점을 가지고 있다. 효소공법은 D-amino acid oxidase, GL-7-ACA acylase, CPC acylase 등을 이용하여 7-ACA를 제조하는 것으로 근래 들어 이들 효소들은 형질전환된 재조합 유전자를 대장균(E-coli)에 삽입하여 공업적으로 생산하고 있다.As a method of producing 7-ACA from CPC, there are a chemical process and an enzyme process. The 7-ACA synthesis method by chemical process requires the use of silyl groups as both protecting groups for both amine and carboxyl groups of CPC, and requires multiple stages of cryogenic reactions. Organic solvents have a problem of polluting the environment and causing an increase in production costs. Enzymatic method is to prepare 7-ACA using D-amino acid oxidase, GL-7-ACA acylase, CPC acylase, etc. In recent years, these enzymes insert the transformed recombinant gene into E-coli It is produced by enemy.

D-amino acid oxidase, GL-7-ACA acylase, CPC acylase 등의 종래의 효소 생 산 기술을 설명하면 다음과 같다.Conventional enzyme production techniques such as D-amino acid oxidase, GL-7-ACA acylase and CPC acylase are described as follows.

배양된 대장균 세포안에 존재하는 효소를 원심분리나 막여과를 통하여 균체를 수거하고 수거된 균체를 완충용액에 현탁한 후 현탁액을 물리적으로 호모게나이저(homogenizer)나 초음파 분쇄기(sonicator)를 사용하여 파쇄해 불용성물질과 세포단편(Cell debris)들을 제거하기 위하여 원심분리하여 상등액을 취한다. 취해진 조효소액 상등액에 황산암모늄(ammonium sulfate)을 20 ~ 30% 농도가 되게 첨가하고, 일정시간 교반 후 다시 원심분리를 통하여 침전물을 제거하고 상등액에 황산암모늄을 다시 가하여 최종농도가 50 ~ 60% 되게 한다. 일정시간 교반 후 원심분리하여 상등액을 버리고 조효소 침전물을 회수한다. 회수된 침전물을 완충용액에 현탁한 후 한외여과(Ultra filtration, U/F라 약칭함)나 투석(Dialysis)을 통하여 염성분을 제거한다.The cells in the cultured E. coli cells were collected by centrifugation or membrane filtration, the collected cells were suspended in a buffer solution, and the suspension was physically crushed using a homogenizer or an ultrasonic sonicator. The supernatant is taken by centrifugation to remove the insoluble matter and cell debris. Ammonium sulfate is added to the crude supernatant solution at a concentration of 20-30%. After stirring for a certain time, the precipitate is removed by centrifugation again and ammonium sulfate is added to the supernatant so that the final concentration is 50-60%. do. After stirring for some time, the supernatant was discarded by centrifugation to recover the coenzyme precipitate. The recovered precipitate is suspended in a buffer solution to remove salt components by ultrafiltration (abbreviated as U / F) or dialysis.

염성분이 제거된 조효소액을 음이온 교환수지(anion exchange resin), 양이온 교환수지(cation exchange resin), 겔-여과 수지(gel-filtration resin) 등을 통하여 정제한 후 한외여과장치(U/F)를 이용하여 탈염 및 농축하고 농축액에 아세톤을 사용하여 효소를 침전시켜 건조하여 사용하거나 농축액을 얼려 동결건조(Freeze drying)하여 사용한다. 또한, 효소를 고정화 하기위해서는 정제된 효소를 탈염 및 농축하여 농축액에 담체를 사용하여 고정화시켜 사용한다.The crude enzyme solution from which the salt is removed is purified through anion exchange resin, cation exchange resin, gel-filtration resin, and the ultrafiltration unit (U / F). Desalination and concentration by using acetone in the concentrate to precipitate the enzyme is used to dry or dried or freeze dried (freeze drying) the concentrate is used. In addition, in order to immobilize the enzyme, desalination and concentration of the purified enzyme is used by immobilization using a carrier in the concentrate.

상기한 바와 같이, 효소의 생산을 위해서는 여러 가지 복잡한 분리정제 공정을 필요로 한다.As mentioned above, the production of enzymes requires several complex separation and purification processes.

이에, 본 발명자들은 상기와 같은 종래의 복잡한 효소 분리정제 공정의 문제점을 해결하기 위해 노력하던 중 호모게나이저나 초음파 분쇄기를 사용하여 세포를 파쇄하여 효소를 추출하는 대신 계면활성제와 세포벽 분해효소인 라이소자임(Lysozyme)을 사용하여 pH 및 온도조절에 의해 세포내 효소인 CPC 아실라제를 세포를 파쇄하지 않고 간단하게 추출하는 방법을 개발함으로써 본 발명을 완성하였다.Therefore, the present inventors tried to solve the problems of the conventional complex enzyme purification process as described above, instead of lysing the cells by using a homogenizer or an ultrasonic grinder to extract the enzyme, the lysozyme is a surfactant and cell wall degrading enzyme. The present invention was completed by developing a method of simply extracting the intracellular enzyme CPC acylase without disrupting the cells by controlling the pH and temperature using Lysozyme.

본 발명의 목적은 세포내 효소인 CPC 아실라제를 세포를 파쇄하지 않으면서 분리 및 정제하는 CPC 아실라제의 분리 및 정제방법을 제공하는 것이다.It is an object of the present invention to provide a method for isolating and purifying CPC acylase that separates and purifies the intracellular enzyme CPC acylase without disrupting the cells.

상기 목적을 달성하기 위하여, 본 발명은 대장균(E. coli) 세포를 pH 5.5 ~ 9.5 및 20 ~ 40℃의 완충액으로 처리하는 단계; 상기 세포에 계면활성제 및 라이소자임(Lysozyme)을 처리하여 페리플라즘(Periplasm) 내에 존재하는 CPC 아실라제(cephalosporin C acylase)를 세포밖으로 방출시키는 단계; 및 상기 방출된 CPC 아실라제를 한외여과막을 사용하여 탈염 및 농축 정제하는 단계를 포함하는 세포의 비파쇄에 의한 CPC 아실라제의 분리 및 정제방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of treating E. coli cells with buffer at pH 5.5 ~ 9.5 and 20 ~ 40 ℃; Treating the cells with a surfactant and Lysozyme to release CPC aphalas (cephalosporin C acylase) present in Periplasm out of the cells; And desalting and concentrating the released CPC acylase using an ultrafiltration membrane, thereby providing a method for isolating and purifying CPC acylase by non- disruption of cells.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 CPC acylase 생산시 계면활성제와 라이소자임을 사용하여 pH 및 온도조절에 의해 세포를 파쇄하지 않고 세포벽의 단백질과 지방성분을 분해하여 생성된 구멍을 통해 효소를 추출하는 방법에 관한 것이다.The present invention relates to a method for extracting enzymes through pores generated by decomposing proteins and fat components of cell walls without disrupting cells by pH and temperature control using surfactants and lysozyme during CPC acylase production.

본 발명의 CPC 아실라제의 분리 및 정제방법에 있어서, CPC acylase는 대장균(E. coli) 세포내 페리플라즘(Periplasm) 내에 존재하는 것이 바람직하고, 상기 완충액(pH 조절제)으로는 인산(phosphoric acid), 초산(acetic acid), 구연산(citric acid), 염산(hydrochloride), 황산(sulfuric acid), 가성소다(sodium hydroxide), 트리즈마(Trizma), 일인산칼륨(potassium phosphate monobasic), 이인산칼륨(potassium phosphate dibasic), 일인산소디윰(sodium phosphate monobasic) 및 이인산소디윰(sodium phosphate dibasic)로 이루어진 군중에서 선택되는 것이 바람직하다.In the method for isolating and purifying the CPC acylase of the present invention, the CPC acylase is preferably present in E. coli intracellular Periplasm, and as the buffer (pH regulator), phosphoric acid is used. ), Acetic acid, citric acid, hydrochloride, sulfuric acid, sodium hydroxide, Trizma, potassium phosphate monobasic, potassium diphosphate It is preferably selected from the group consisting of (potassium phosphate dibasic), sodium phosphate monobasic and sodium phosphate dibasic.

또한, 본 발명의 CPC 아실라제의 분리 및 정제방법에 있어서, 상기 계면활성제는 하기 화학식 1의 소디윰도데실설페이트(Sodium dodecyl sulfate), 암모니윰도데실설페이트(Ammonium dodecyl sulfate), 화학식 2의 세틸트리메틸암모니윰브로마이드(Cetyltrim-ethyl ammonium bromide), 세틸트리메틸암모니윰클로라이드(Cetyltrimethyl ammonium chloride), 화학식 3의 라이소레시친(lysolecithin), 화학식 4의 에테르데옥시라이소레시친(ether deoxylysolecithin), 화학식 5의 소디윰 콜레이트(Sodium cholate), 암모니윰 콜레이트(Ammonium cholate), 화학식 6의 소디윰타우로데옥시콜레이트(Sodium taurodeoxy cholate), 화학식 7의 알킬폴리옥시에틸렌(alkylpolyoxyethylene), 화학식 8의 알킬페닐폴리옥시에틸렌(alkyl phenylpolyoxyethylene), 화학식 9의 파라-터시얼리-옥틸페닐폴리옥시에틸렌(p-tert-octylphenylpolyoxyethylene, Triton x-100), 화학식 10의 베타-디-옥틸글루코사이드(β-D-octylglucoside) 및 화학식 11의 폴리옥시에틸렌솔비틀에스터(Polyoxyethylene sorbitol ester)로 이루어진 군중에서 선택되는 것이 바람직하고, 상기 계면활성제의 농도는 0.1 ~ 3.0%인 것이 보다 바람직하다.In addition, in the method for separating and purifying the CPC acylase of the present invention, the surfactant is sodium dodecyl sulfate (Ammonium dodecyl sulfate), ammonium dodecyl sulfate (Cetyl) of formula (2) Cetyltrim-ethyl ammonium bromide, Cetyltrimethyl ammonium chloride, lysolecithin of formula 3, ether deoxylysolecithin of formula 4, of Sodium cholate, Ammonium cholate, Sodium taurodeoxy cholate of formula 6, Alkylpolyoxyethylene of formula 7, Alkylphenylpolyoxy of formula 8 ethylene (alkyl phenylpolyoxyethylene), p of formula (9) - teosi freeze-octylphenyl polyoxyethylene (p- tert-octylphenylpolyoxyethylene, Triton x -100), It is preferably selected from the group consisting of β-D-octylglucoside of Formula 10 and polyoxyethylene sorbitol ester of Formula 11, wherein the concentration of the surfactant is 0.1 to 3.0. It is more preferable that it is%.

Figure 112006085452701-pat00001
,
Figure 112006085452701-pat00002
Figure 112006085452701-pat00001
,
Figure 112006085452701-pat00002

Figure 112006085452701-pat00003
,
Figure 112006085452701-pat00004
Figure 112006085452701-pat00003
,
Figure 112006085452701-pat00004

Figure 112006085452701-pat00005
Figure 112006085452701-pat00005

Figure 112006085452701-pat00006
Figure 112006085452701-pat00006

Figure 112006085452701-pat00007
Figure 112006085452701-pat00007

Figure 112006085452701-pat00008
Figure 112006085452701-pat00008

Figure 112006085452701-pat00009
Figure 112006085452701-pat00009

Figure 112006085452701-pat00010
Figure 112006085452701-pat00010

Figure 112006085452701-pat00011
Figure 112006085452701-pat00011

Figure 112006085452701-pat00012
Figure 112006085452701-pat00012

Figure 112006085452701-pat00013
Figure 112006085452701-pat00013

( x=y+v+w+z, 옥시에틸렌 단위의 수 ) (x = y + v + w + z, number of oxyethylene units)

또한, 본 발명의 CPC 아실라제의 분리 및 정제방법에 있어서, 상기 라이소자임의 농도는 0.01 ~ 0.5%인 것이 바람직하다.In addition, in the method for separating and purifying the CPC acylase of the present invention, the concentration of the lysozyme is preferably 0.01 to 0.5%.

효소공법에 의한 7-ACA의 제조는 도 1에서와 같이 1 단계로 D-아미노산 옥시다제(D-amino acid oxidase)를 사용하여 CPC를 글루타릴-7-아미노세팔로스포란산(Glutaryl-7-aminocephalosporanic acid, 이하 GL-7-ACA라고 약칭함)으로 전환시킨 후 2 단계로 GL-7-ACA 아실라제(GL-7-ACA acylase)를 사용하여 GL-7-ACA를 7-ACA로 전환시키는 공법과 도 2에서와 같이 CPC를 CPC acylase를 사용하여 7-ACA로 직접 전환시키는 공법이 있다. 그러나, 도 1의 2 단계 효소공법은 1 단계 효소 반응시 발생되는 과산화수소에 의해 부산물이 많이 발생되어 수율이 떨어지는 단점이 있다.Production of 7-ACA by the enzymatic method is performed in one step as shown in Figure 1 using D-amino acid oxidase (D-amino acid oxidase) CPC glutaryl-7-aminocephalosporanic acid (Glutaryl- 7-aminocephalosporanic acid (hereinafter abbreviated as GL-7-ACA) and convert GL-7-ACA to 7-ACA using GL-7-ACA acylase in two steps. There is a conversion method and a method of directly converting CPC to 7-ACA using CPC acylase as shown in FIG. 2. However, the two-stage enzymatic method of Figure 1 has a disadvantage in that a lot of by-products are generated by the hydrogen peroxide generated during the one-stage enzymatic reaction, the yield is reduced.

본 발명의 분리 및 정제방법에 의하여 수득된 CPC acylase는 종래 기술에 의한 효소액의 단백질양에 따른 효소의 활성도에 있어서, 효소의 순도면에서 커다란 차이가 없다. CPC acylase의 활성은 7-ACA를 생산하는 효소의 양으로 나타내는데, 계면활성제 중에서 음이온성으로 30% 소디윰도데실설페이트, 30% 암모니윰도데실설페이트, 양이온성으로 30% 세틸트리메틸암모니윰브로마이드, 30% 세틸트리메틸암모니윰클로라이드, 비이온성으로는 30% 파라-터시얼리-옥틸페닐폴리옥시에틸렌(Triton x-100), 30% 폴리옥시에틸렌솔비톨에스터 처리시 높은 활성도를 나타낸다(표 1 참조). 또한, 계면활성제와 라이자임을 병용하여 사용하는 경우 계면활성제를 단독으로 사용시보다 CPC acylase의 활성도가 크게 증가한다(표 2 참조). 아울러, 반응 pH에 따른 CPC acylase의 활성도를 비교하면 소디윰도데실설페이트, 암모니윰도데실설페이트, 세틸트리메틸암모니윰브로마이드, 세틸트리메틸암모니윰클로라이드를 사용시는 pH 7.5~8.5 사이에서 CPC acylase의 활성도가 높고, 파라-터시얼리-옥틸페닐폴리옥시에틸렌(Triton x-100), 폴리옥시에틸렌솔비톨에스터를 사용시는 pH 5.5~9.5 사이에서 CPC acylase의 활성도가 커다란 차이를 보이지 않고 높게 유지된다(표 3 참조).CPC acylase obtained by the separation and purification method of the present invention is not significantly different in terms of the purity of the enzyme in the activity of the enzyme according to the protein amount of the enzyme solution according to the prior art. The activity of CPC acylase is expressed as the amount of 7-ACA-producing enzyme, 30% sodidododecyl sulfate anionic in surfactant, 30% ammonium dodecyl sulfate, 30% cetyltrimethylammonium bromide cationic, 30% cetyltrimethylammonium chloride, nonionic, shows high activity upon treatment with 30% para-terial-octylphenylpolyoxyethylene (Triton x-100), 30% polyoxyethylene sorbitol ester (see Table 1). In addition, when used in combination with a surfactant and lyase, the activity of CPC acylase is significantly increased than when surfactant is used alone (see Table 2). In addition, when comparing the activity of CPC acylase according to the reaction pH, the activity of CPC acylase was observed between pH 7.5 and 8.5 when using Sodido dodecyl sulfate, Ammonium dodecyl sulfate, Cetyltrimethyl ammonium bromide, and Cetyltrimethyl ammonium chloride. When using para-tertiary-octylphenylpolyoxyethylene (Triton x-100) and polyoxyethylene sorbitol esters, the activity of CPC acylase remained high without a significant difference between pH 5.5 and 9.5 (see Table 3). ).

또한, 반응 온도에 따른 CPC acylase의 활성도를 비교하면 20 ~ 35℃ 사이에서 커다란 차이를 나타내지 않고 높게 유지된다(표 4 참조).In addition, comparing the activity of CPC acylase according to the reaction temperature is maintained high without showing a large difference between 20 ~ 35 ℃ (see Table 4).

이하, 본 발명을 실시예를 통해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기 실시예는 본 발명을 구체적으로 예시하는 것일 뿐 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are only illustrative of the present invention specifically, but the content of the present invention is not limited to the following examples.

<실시예 1> CPC acylase의 분리 및 정제Example 1 Isolation and Purification of CPC Acylase

세포의 페리플라즘 내에 CPC acylase가 존재하는 대장균(E. coli BL21(DE3))을 배양한 후 0.1 ~ 5% CaCl2를 처리하고 원심분리하여 세포만 수거하였다. 수거된 세포를 완충용액을 사용하여 pH를 5.5 ~ 9.5로 조정하고, 0.1 ~ 1.0 % 계면활성제 및 0.01 ~ 0.5 % 라이소자임(Lysozyme, 화일약품)을 사용하여 20 ~ 40℃에서 CPC acylase를 세포밖으로 추출하였다. 추출된 CPC acylase는 한외여과막(Ultra filtration membrane, cut off M.W. 50,000 Da)을 이용하여 탈염 및 농축하여 사용하였다.After incubating E. coli BL21 (DE3) with CPC acylase in the periplasm of the cells, only cells were harvested by treatment with 0.1-5% CaCl 2 and centrifugation. The collected cells were adjusted to pH 5.5-9.5 using buffer solution, and CPC acylase was extracted extracellularly at 20-40 ℃ using 0.1-1.0% surfactant and 0.01-0.5% lysozyme (Hylozyme). It was. The extracted CPC acylase was desalted and concentrated using ultra filtration membrane (Ultra filtration membrane, cut off MW 50,000 Da).

그 결과, 본 발명에 따라 제조된 효소액과 세포를 파쇄한 후 황산암모늄에 의한 농축공정 및 이온교환수지공정을 사용한 종래 기술에 의한 효소액의 단백질양에 따른 효소의 활성도(specific activity)를 측정한 결과 각각 13.5 unit/㎎ protein, 13.3 unit/㎎ protein로서 효소의 순도면에서 커다란 차이를 나타내지 않으므로, 종래와 같은 복잡한 분리 및 정제공정을 거치지 않고서도 비슷한 수율과 순도를 얻을 수 있었다.As a result, the enzyme activity prepared according to the present invention and the cells were crushed, and then the activity of the enzyme (specific activity) was measured according to the protein amount of the enzyme solution according to the prior art using a concentration step with ammonium sulfate and an ion exchange resin step. As 13.5 unit / mg protein and 13.3 unit / mg protein, respectively, there was no significant difference in the purity of the enzyme, and thus similar yields and purity were obtained without the complicated separation and purification processes as in the prior art.

<실시예 2> CPC acylase의 활성 측정과정Example 2 Measurement Process of CPC Acylase Activity

100 ㎖ 비이커에 기질인 75 mM CPC(순수한 CPC로 31 g을 0.2 M 인산 완충용액에 녹여 표선을 1 ℓ로 맞춤) 50 ㎖와 상기 실시예 1에서 분리된 활성화된 CPC acylase 상등액 10 ㎖를 넣고 37℃로 교반하면서 0.1 M NaOH로 pH를 7.0~9.0으로 15분간 유지시켰다. 이때, 소모된 NaOH의 양을 측정하여 CPC acylase의 활성도를 구하였다. CPC acylase의 활성도 단위(unit, u/㎖)는 분당 1μ mole의 7-ACA를 생산하는 효소의 양으로 나타내었다.In a 100 ml beaker, add 50 ml of 75 mM CPC (31 g of pure CPC) in 0.2 M phosphate buffer and adjust the mark to 1 L. Then, add 10 ml of the activated CPC acylase supernatant isolated from Example 1, 37 The pH was maintained at 7.0-9.0 for 15 minutes with 0.1 M NaOH while stirring at &lt; RTI ID = 0.0 &gt; At this time, the amount of NaOH consumed was measured to determine the activity of CPC acylase. The activity units of CPC acylase (unit, u / ml) are expressed as the amount of enzyme that produces 1 μmole of 7-ACA per minute.

Figure 112006085452701-pat00014
Figure 112006085452701-pat00014

<실시예 3> 계면활성제 종류 및 사용량에 따른 CPC acylase의 활성도(activity, unit/㎖) 비교<Example 3> Comparison of activity (activity, unit / ml) of CPC acylase according to the type and amount of surfactant

상기 실시예 1에서 분리된 CPC acylase 배양액 100 ㎖에 각각의 계면활성제를 농도별로 첨가하여 상온(20 ~ 25℃)에서 300 rpm으로 30분간 교반시킨후, 반응액을 원심분리하여 상등액의 CPC acylase 활성도(activity)를 측정하였다. 계면활성제 종류 및 사용량에 따른 CPC acylase의 활성도는 하기 표 1에 나타내었다.Each surfactant was added to 100 ml of the CPC acylase culture solution separated in Example 1, stirred at 300 rpm at room temperature (20-25 ° C.) for 30 minutes, and the reaction solution was centrifuged to remove CPC acylase activity of the supernatant. (activity) was measured. The activity of CPC acylase according to the type and amount of surfactant is shown in Table 1 below.

분류Classification 계면활성제Surfactants 사용농도(%)Concentration (%) CPC acylase 활성도 (u/ml)CPC acylase activity (u / ml) 음이온  Negative ion 30% 소디윰도데실설페이트30% Sodidododecyl Sulfate 0.1%0.1% 3535 1.0%1.0% 3030 30% 암모니윰도데실설페이트30% Ammonium Dodecyl Sulfate 0.1%0.1% 3535 1.0%1.0% 3737 양이온  Cation 30% 세틸트리메틸암모니윰브로마이드30% cetyltrimethylammonium bromide 0.1%0.1% 3030 1.0%1.0% 2525 30% 세틸트리메틸암모니윰클로라이드30% cetyltrimethylammonium chloride 0.1%0.1% 3030 1.0%1.0% 2525 양쪽성    Amphoteric 30% 라이소레시틴30% Lysolecithin 0.1%0.1% 2525 1.0%1.0% 2020 30% 에테르데옥시라이소레시틴30% Etherdeoxylysolecithin 0.1%0.1% 2525 1.0%1.0% 1515 30% 소디윰콜레이트30% Sodium Chelate 0.1%0.1% 1515 1.0%1.0% 2020 30% 암모니윰콜레이트30% Ammonium Cholate 0.1%0.1% 2020 1.0%1.0% 1515 30% 소디윰타우로데옥시콜레이트30% Sodipontaurodeoxycholate 0.1%0.1% 2121 1.0%1.0% 2323 비이온성   Nonionic 알킬폴리옥시에틸렌Alkyl Polyoxyethylene 0.1%0.1% 2020 1.0%1.0% 1515 알킬페닐폴리옥시에틸렌Alkylphenyl Polyoxyethylene 0.1%0.1% 2323 1.0%1.0% 2020 파라-터시얼리-옥틸페닐폴리옥시에틸렌Para-tertiary-octylphenylpolyoxyethylene 0.1%0.1% 3333 1.0%1.0% 3030 베타-디-옥틸글루코사이트Beta-di-octylglucosite 0.1%0.1% 2525 1.0%1.0% 2020 폴리옥시에틸렌솔비톨에스터Polyoxyethylene Sorbitol Ester 0.1%0.1% 2020 1.0%1.0% 2525

그 결과, 상기 표 1에서 보는바와 같이, 음이온성으로 30% 소디윰도데실설페이트, 30% 암모니윰도데실설페이트, 양이온성으로 30% 세틸트리메틸암모니윰브로마이드, 30% 세틸트리메틸암모니윰클로라이드, 비이온성으로는 30% 파라-터시얼리-옥틸페닐폴리옥시에틸렌(Triton x-100), 30% 폴리옥시에틸렌솔비톨에스터 처리시 높은 활성도를 나타내었다.As a result, as shown in Table 1, anionic 30% sodidododecyl sulfate, 30% ammonium dodecyl sulfate, cationic 30% cetyltrimethylammonium bromide, 30% cetyltrimethyl ammonium chloride, As the temperature was high, 30% para-tertiary-octylphenylpolyoxyethylene (Triton x-100) and 30% polyoxyethylene sorbitol esters showed high activity.

<실시예 4> 계면활성제와 라이소자임을 병용하여 사용시 라이소자임 농도에 따른 CPC acylase의 활성도 비교Example 4 Comparison of CPC Acylase Activity According to Lysozyme Concentration When Using Surfactant and Lysozyme in Combination

상기 실시예 1에서 분리된 CPC acylase 배양액 100 ㎖에 계면활성제로서 30% 소디윰도데실설페이트, 30% 암모니윰도데실설페이트, 30% 세틸트리메틸암모니윰브로마이드, 30% 세틸트리메틸암모니윰클로라이드, 30% 파라-터시얼리-옥틸페닐폴리옥시에틸렌, 30% 폴리옥시에틸렌솔비톨에스터를 각각 1% 첨가하고 라이소자임의 농도를 0.01%~0.5%로 하여 상온에서 300 rpm으로 30분간 교반시킨후 반응액을 원심분리하여 상등액의 활성도를 하기 표 2에 나타내었다.In 100 ml of the CPC acylase culture isolated in Example 1, 30% sodium dodecyl sulfate, 30% ammonium dodecyl sulfate, 30% cetyltrimethyl ammonium queramide, 30% cetyltrimethyl ammonium chloride, 30% as a surfactant 1% of para-tertiary-octylphenylpolyoxyethylene and 30% polyoxyethylene sorbitol esters were added, and the lysozyme concentration was 0.01% to 0.5%, stirred at 300 rpm at room temperature for 30 minutes, and then the reaction solution was centrifuged. The activity of the supernatant was shown in Table 2 below.

계면활성제 Surfactants 라이소자임 사용농도(%)Lysozyme Concentration (%) CPC acylase 활성도 (u/㎖)CPC acylase activity (u / ml) 30% 소디윰도데실설페이트 1% 30% Sodidododecyl Sulfate 1% 0.010.01 5555 0.10.1 5858 0.50.5 6060 30% 암모니윰도데실설페이트 1% 30% Ammonium dodecyl sulfate 1% 0.010.01 5656 0.10.1 5656 0.50.5 6060 30% 세틸트리메틸암모니윰브로마이드 1% 30% cetyltrimethylammonium bromide 1% 0.010.01 5454 0.10.1 5656 0.50.5 5858 30% 세틸트리메틸암모니윰클로라이드 1% 30% cetyltrimethylammonium chloride 1% 0.010.01 5555 0.10.1 5555 0.50.5 6060 30% 파라-터시얼리-옥틸페닐폴리옥시에틸렌 1% 30% para-tertiary-octylphenylpolyoxyethylene 1% 0.010.01 6060 0.10.1 6363 0.50.5 6565 30% 폴리옥시에틸렌솔비톨에스터 1% 30% polyoxyethylene sorbitol ester 1% 0.010.01 4848 0.10.1 5353 0.50.5 5353

그 결과, 상기 표 2에서 보는바와 같이, 라이소자임을 첨가함으로써 실시예 3의 계면활성제를 단독으로 사용시보다 CPC acylase의 활성도는 크게 증가하였으며 적정농도는 0.01~0.5% 임을 알 수 있었다.As a result, as shown in Table 2, by adding the lysozyme, the activity of the CPC acylase was significantly increased and the appropriate concentration was 0.01 ~ 0.5% than when using the surfactant of Example 3 alone.

<실시예 5> 반응 pH에 따른 CPC acylase의 활성도 비교Example 5 Comparison of CPC Acylase Activity According to Reaction pH

상기 실시예 4와 동일 조건에서 수행하였다. 상기 실시예 1에서 분리된 CPC acylase 배양액 100㎖에 계면활성제로서 30% 소디윰도데실설페이트, 30% 암모니윰도데실설페이트, 30% 세틸트리메틸암모니윰브로마이드, 30% 세틸트리메틸암모니윰클로라이드, 30% 파라-터시얼리-옥틸페닐폴리옥시에틸렌, 30% 폴리옥시에틸렌솔비톨에스터를 각각 1% 첨가하고 라이소자임의 첨가농도를 0.1%로 고정하였다. pH 5.5~7.5 사이는 0.1M 일인산칼륨과 0.1M 이인산칼륨을 사용하여 pH를 조절하였으며 pH 8.5~9.5 사이는 0.1M 트리스(하이드록시메틸)아미노메탄(Tris(hydroxymethyl)amino methane)과 0.1M 염산을 사용하여 pH를 조절하고 상온에서 300 rpm으로 30분간 교반시킨후 반응액을 원심분리하여 상등액의 CPC acylase 활성도를 하기 표 3에 나타내었다.It was carried out under the same conditions as in Example 4. In 100 ml of the CPC acylase culture isolated in Example 1, 30% sodidododecyl sulfate, 30% ammonium dodecyl sulfate, 30% cetyltrimethylammonium bromide, 30% cetyltrimethyl ammonium chloride, 30% Para-tertiary-octylphenylpolyoxyethylene and 30% polyoxyethylene sorbitol ester were added 1%, respectively, and the addition concentration of lysozyme was fixed at 0.1%. The pH was adjusted between pH 5.5 and 7.5 using 0.1 M potassium monophosphate and 0.1 M potassium diphosphate. Between pH 8.5 and 9.5, 0.1 M tris (hydroxymethyl) amino methane and 0.1 The pH was adjusted using M hydrochloric acid and stirred at 300 rpm for 30 minutes at room temperature, and then the reaction solution was centrifuged to show the CPC acylase activity of the supernatant.

계면활성제 Surfactants 라이소자임 사용농도(%)Lysozyme Concentration (%) 사용 pHPH used CPC acylase 활성도 (u/㎖)CPC acylase activity (u / ml) 30% 소디윰도데실설페이트 1%  30% Sodidododecyl Sulfate 1% 0.10.1 5.55.5 5555 6.56.5 6060 7.57.5 6767 8.58.5 7070 9.59.5 6262 30% 암모니윰도데실설페이트 1%  30% Ammonium dodecyl sulfate 1% 0.10.1 5.55.5 5858 6.56.5 5858 7.57.5 6767 8.58.5 6868 9.59.5 6363 30% 세틸트리메틸암모니윰브로마이드 1%  30% cetyltrimethylammonium bromide 1% 0.10.1 5.55.5 6565 6.56.5 6464 7.57.5 6868 8.58.5 6868 9.59.5 6262 30% 세틸트리메틸암모니윰클로라이드 1%  30% cetyltrimethylammonium chloride 1% 0.10.1 5.55.5 6666 6.56.5 6565 7.57.5 6868 8.58.5 7070 9.59.5 6060 30% 파라-터시얼리-옥틸페닐폴리옥시에틸렌 1%  30% para-tertiary-octylphenylpolyoxyethylene 1% 0.10.1 5.55.5 7373 6.56.5 7575 7.57.5 7878 8.58.5 7878 9.59.5 7373 30% 폴리옥시에틸렌솔비톨에스터 1%  30% polyoxyethylene sorbitol ester 1% 0.10.1 5.55.5 7070 6.56.5 7272 7.57.5 7474 8.58.5 7272 9.59.5 7070

그 결과, 상기 표 3에서 보는바와 같이, 소디윰도데실설페이트, 암모니윰도데실설페이트, 세틸트리메틸암모니윰브로마이드, 세틸트리메틸암모니윰클로라이드를 사용시는 pH 7.5~8.5 사이에서 CPC acylase의 활성도가 높았으며, 파라-터시얼리-옥틸페닐폴리옥시에틸렌(Triton x-100), 폴리옥시에틸렌솔비톨에스터를 사용시는 pH 5.5~9.5 사이에서 CPC acylase의 활성도가 커다란 차이를 보이지 않고 높게 유지되었다.As a result, as shown in Table 3, the activity of CPC acylase was high between pH 7.5-8.5 when using sodicetdodecyl sulfate, ammonium dodecyl sulfate, cetyltrimethyl ammonium bromide, and cetyltrimethyl ammonium chloride. , Para-tertiary-octylphenylpolyoxyethylene (Triton x-100) and polyoxyethylene sorbitol esters remained high with no significant difference in CPC acylase activity between pH 5.5 and 9.5.

<실시예 6> 반응온도에 따른 CPC acylase 활성도 비교Example 6 Comparison of CPC Acylase Activity According to Reaction Temperature

상기 실시예 5와 동일 조건에서 수행하였다. 상기 실시예 1에서 분리된 CPC acylase 배양액 100㎖에 30% 파라-터시얼리-옥틸페닐폴리옥시에틸렌 1.0%, 라이소자임 0.1%를 첨가하고 반응 pH 7.5에서 반응온도를 각각 20℃, 25℃, 30℃, 35℃, 40℃로 하여 300 rpm으로 30분간 교반시킨후 반응액을 원심분리하여 상등액의 CPC acylase 활성도를 하기 표 4에 나타내었다.It was carried out under the same conditions as in Example 5. To 100 ml of the CPC acylase culture isolated in Example 1, 30% para-terial-octylphenylpolyoxyethylene 1.0% and lysozyme 0.1% were added, and the reaction temperature was 20 ° C., 25 ° C. and 30 ° C. at a pH of 7.5. After stirring at 300 rpm for 30 minutes at 35 ° C and 40 ° C, the reaction solution was centrifuged to show the CPC acylase activity of the supernatant.

계면활성제 농도(%)Surfactant Concentration (%) 라이소자임 농도(%)Lysozyme concentration (%) 반응 pHReaction pH 반응온도 (℃)Reaction temperature (℃) CPC acylase 활성도(u/㎖)CPC acylase activity (u / ml) 30% 파라-터시얼리-옥틸페닐폴리옥시에틸렌 1%  30% para-tertiary-octylphenylpolyoxyethylene 1% 0.10.1 7.57.5 2020 7575 2525 7272 3030 7272 3535 7070 4040 6060

그 결과, 상기 표 4에 나타낸 바와 같이, 반응온도는 20 ~ 35℃ 사이에서 커다란 차이를 나타내지 않고 높게 유지되었다.As a result, as shown in Table 4 above, the reaction temperature was kept high without showing a large difference between 20 and 35 ° C.

상기에서 살펴본 바와 같이, 본 발명에 의하면 세포내 효소인 세팔로스포린 C 아실라제의 분리 및 정제에 있어서, 황산암모늄에 의한 분리공정, 이온교환수지 사용공정, 겔-수지 사용공정 등을 생략할 수 있어 복잡한 분리 및 정제공정을 간단하게 할 수 있으므로, 유ㆍ무기 복합 고정화 담체에 쉽게 고정화하여 7-아미노세팔로스포란산 제조에 유용하게 사용할 수 있으며, 부가적으로 수지공정 사용에 의한 악성폐수의 발생을 방지 할 수 있는 효과를 나타낸다. As described above, according to the present invention, in the separation and purification of the intracellular enzyme cephalosporin C acylase, the separation step using ammonium sulfate, the ion exchange resin, the gel-resin, etc. can be omitted. Since the complex separation and purification process can be simplified, it can be easily immobilized on an organic / inorganic complex immobilization carrier to be useful for the production of 7-aminocephalosporanic acid. It has the effect of preventing occurrence.

Claims (5)

ⅰ) 대장균(E. coli) 세포를 pH 5.5 ~ 9.5 및 20 ~ 40℃의 완충액으로 처리하는 단계;Iii) treating E. coli cells with buffer at pH 5.5-9.5 and 20-40 ° C .; ⅱ) 상기 세포에 계면활성제 및 라이소자임(Lysozyme)을 처리하여 페리플라즘(Periplasm) 내에 존재하는 CPC 아실라제(cephalosporin C acylase)를 세포밖으로 방출시키는 단계; 및Ii) treating the cells with a surfactant and Lysozyme to release CPC acease present in Periplasm out of the cells; And ⅲ) 상기 방출된 CPC 아실라제를 한외여과막을 사용하여 탈염 및 농축 정제하는 단계를 포함하는 세포의 비파쇄에 의한 CPC 아실라제의 분리 및 정제방법.And v) desalting and concentrating the released CPC acylase using an ultrafiltration membrane. 제 1항에 있어서, 상기 완충액은 인산(phosphoric acid), 초산(acetic acid), 구연산(citric acid), 염산(hydrochloride), 황산(sulfuric acid), 가성소다(sodium hydroxide), 트리즈마(Trizma), 일인산칼륨(potassium phosphate monobasic), 이인산칼륨(potassium phosphate dibasic), 일인산소디윰(sodium phosphate monobasic) 및 이인산소디윰(sodium phosphate dibasic)로 이루어진 군중에서 선택되는 것을 특징으로 하는 CPC 아실라제의 분리 및 정제방법.The method of claim 1, wherein the buffer solution is phosphoric acid, acetic acid, citric acid, hydrochloride, sulfuric acid, sodium hydroxide, Trizma , CPC acylase, characterized in that selected from the group consisting of potassium phosphate monobasic, potassium phosphate dibasic, sodium phosphate monobasic and sodium phosphate dibasic Separation and Purification Methods. 제 1항에 있어서, 상기 계면활성제는 소디윰도데실설페이트(Sodium dodecyl sulfate), 암모니윰도데실설페이트(Ammonium dodecyl sulfate), 세틸트리메틸암모니윰브로마이드(Cetyltrim-ethyl ammonium bromide), 세틸트리메틸암모니윰클로라이드(Cetyltrimethyl ammonium chloride), 라이소레시친(lysolecithin), 에테르데옥시라이소레시친(ether deoxylysolecithin), 소디윰콜레이트(Sodium cholate), 암모니윰콜레이트(Ammonium cholate), 소디윰타우로데옥시콜레이트(Sodium taurodeoxy cholate), 알킬폴리옥시에틸렌(alkylpolyoxyethylen polyoxyethylene), 알킬페닐폴리옥시에틸렌(alkyl phenylpolyoxyethylene), 파라-터시얼리-옥틸페닐폴리옥시에틸렌(p-tert-octylphenylpolyoxyethylene, Triton x-100), 베타-디-옥틸글루코사이드(β-D-octylglucoside) 및 폴리옥시에틸렌솔비틀에스터(Polyoxyethylene sorbitol ester)로 이루어진 군중에서 선택되는 것을 특징으로 하는 CPC 아실라제의 분리 및 정제방법.The method of claim 1, wherein the surfactant is sodium dodecyl sulfate, ammonium dodecyl sulfate, cetyltrim-ethyl ammonium bromide, cetyltrimethyl ammonium chloride (Cetyltrimethyl ammonium chloride), lysolecithin, ether deoxylysolecithin, sodium cholate, ammonium cholate, sodium diurodeoxycholate (Sodium taurodeoxy cholate), alkylpolyoxyethylen polyoxyethylene, alkyl phenylpolyoxyethylene, p- tert-octylphenylpolyoxyethylene (Triton x-100), beta-di-octyl It is selected from the group consisting of glucoside (β-D-octylglucoside) and polyoxyethylene sorbitol ester Separation and purification method of CPC acylase. 제 3항에 있어서, 상기 계면활성제의 농도는 0.1 ~ 3.0%인 것을 특징으로 하는 CPC 아실라제의 분리 및 정제방법.The method of claim 3, wherein the concentration of the surfactant is 0.1 ~ 3.0% CPC acylase separation and purification method. 제 1항에 있어서, 상기 라이소자임의 농도는 0.01 ~ 0.5%인 것을 특징으로 하는 CPC 아실라제의 분리 및 정제방법.The method of claim 1, wherein the concentration of lysozyme is 0.01 ~ 0.5% CPC acylase separation and purification method.
KR1020060115550A 2006-11-22 2006-11-22 Separation and Purification of Cephalosporin C Acylase by Non-Cracking Cells Expired - Fee Related KR100816495B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060115550A KR100816495B1 (en) 2006-11-22 2006-11-22 Separation and Purification of Cephalosporin C Acylase by Non-Cracking Cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060115550A KR100816495B1 (en) 2006-11-22 2006-11-22 Separation and Purification of Cephalosporin C Acylase by Non-Cracking Cells

Publications (1)

Publication Number Publication Date
KR100816495B1 true KR100816495B1 (en) 2008-03-24

Family

ID=39411590

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060115550A Expired - Fee Related KR100816495B1 (en) 2006-11-22 2006-11-22 Separation and Purification of Cephalosporin C Acylase by Non-Cracking Cells

Country Status (1)

Country Link
KR (1) KR100816495B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154429A (en) * 2010-12-28 2011-08-17 哈药集团制药总厂 One-step enzymatic method for preparing 7-aminocephalosporanic acid
CN113832133A (en) * 2020-06-23 2021-12-24 伊犁川宁生物技术有限公司 Fermentation method of cephalosporin C acylase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124256A (en) 1985-11-13 1992-06-23 Labofina, S.A. Process for recovering polypeptides localized in the periplasmic space of yeast without breaking the cell wall by using an non-ionic detergent and a neutral salt
US5766871A (en) 1996-11-27 1998-06-16 Food Industry Research And Development Institute Screening and characterization of glutaryl-7-aminocephalosporanic acid acylase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124256A (en) 1985-11-13 1992-06-23 Labofina, S.A. Process for recovering polypeptides localized in the periplasmic space of yeast without breaking the cell wall by using an non-ionic detergent and a neutral salt
US5766871A (en) 1996-11-27 1998-06-16 Food Industry Research And Development Institute Screening and characterization of glutaryl-7-aminocephalosporanic acid acylase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154429A (en) * 2010-12-28 2011-08-17 哈药集团制药总厂 One-step enzymatic method for preparing 7-aminocephalosporanic acid
CN113832133A (en) * 2020-06-23 2021-12-24 伊犁川宁生物技术有限公司 Fermentation method of cephalosporin C acylase

Similar Documents

Publication Publication Date Title
Amena et al. Production, purification and characterization of L-asparaginase from Streptomyces gulbargensis
EP0631585B1 (en) Protein production
Gaikaiwari et al. Extraction and purification of tannase by reverse micelle system
KR100816495B1 (en) Separation and Purification of Cephalosporin C Acylase by Non-Cracking Cells
DK142373B (en) Process for enzymatic N-deacylation of 7beta-phenoxyacetamidocephalosporins.
FI90563B (en) Use of -glutamyltranspeptidase for enzymatic hydrolysis of glutaryl-7-amino- or ketoadipinylcephalosporanoic acid
JPS5910191B2 (en) Method for producing lactase preparation
KR102208956B1 (en) DEVELOPMENT OF TECHNOLOGY FOR INDUCING AN OVEREXPRESSION OF β-AGARASE DagA ENZYME
JP4774496B2 (en) α-mannosidase
CN1008188B (en) Method of preparing novel thermostable transglucosidase
Mahesh et al. Optimization for the production of extracellular alkaline phosphatase from Proteus mirabilis
US5834288A (en) KDN-specific deminoneuraminidase from Sphingobacterium multivorum
JP3607789B2 (en) α-1,3-Multi-branched dextran hydrolase, process for producing the same, and process for producing cyclic isomaltoligosaccharide
JPS5920360B2 (en) Method for producing 7-aminocephalosporanic acid and its derivatives
JP3076856B2 (en) Degradation method of alginic acid by bacteria
JPS6362195B2 (en)
JP3040976B2 (en) Method for producing saccharified solution containing trehalose
KR100467462B1 (en) Microorganism of Serratia genus producing serratiopeptidase
JPH0898683A (en) 7-aminocephalosporanic acid esterase
JP3014950B2 (en) Method for producing trehalose
JP3027449B2 (en) Novel cyclomaltodextrinase, method for producing the same, and microorganism producing the enzyme
JP3025067B2 (en) Method for Producing Glyoxalase I
JPS58152481A (en) Novel phospholipase d-p and preparation thereof
JP3055041B2 (en) α-1,2-mannosidase, method for producing the same, and bacteria producing the same
EP0183776B2 (en) A process for isolating and activating a substantially insoluble polypeptide using non-ionic detergents.

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20061122

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20070727

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20080226

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20080318

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20080318

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
G170 Re-publication after modification of scope of protection [patent]
PG1701 Publication of correction
PR1001 Payment of annual fee

Payment date: 20110308

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20120307

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20120307

Start annual number: 5

End annual number: 5

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee