KR100815799B1 - High yield ratio cold rolled steel with excellent weatherability - Google Patents
High yield ratio cold rolled steel with excellent weatherability Download PDFInfo
- Publication number
- KR100815799B1 KR100815799B1 KR1020060126488A KR20060126488A KR100815799B1 KR 100815799 B1 KR100815799 B1 KR 100815799B1 KR 1020060126488 A KR1020060126488 A KR 1020060126488A KR 20060126488 A KR20060126488 A KR 20060126488A KR 100815799 B1 KR100815799 B1 KR 100815799B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- rolled steel
- yield ratio
- steel
- high yield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000011651 chromium Substances 0.000 claims abstract description 23
- 239000011572 manganese Substances 0.000 claims abstract description 23
- 239000010949 copper Substances 0.000 claims abstract description 22
- 239000010955 niobium Substances 0.000 claims abstract description 15
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 14
- 229910052802 copper Inorganic materials 0.000 claims abstract description 13
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 9
- 229910052796 boron Inorganic materials 0.000 claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000010941 cobalt Substances 0.000 claims abstract description 6
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 239000011593 sulfur Substances 0.000 claims abstract description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 67
- 239000010959 steel Substances 0.000 claims description 67
- 238000000137 annealing Methods 0.000 claims description 20
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 8
- 230000009466 transformation Effects 0.000 claims description 7
- 238000005097 cold rolling Methods 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 16
- 239000000203 mixture Substances 0.000 abstract description 9
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 49
- 239000000463 material Substances 0.000 description 42
- 230000007797 corrosion Effects 0.000 description 27
- 238000005260 corrosion Methods 0.000 description 27
- 238000001816 cooling Methods 0.000 description 14
- 238000005098 hot rolling Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 238000004804 winding Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000003303 reheating Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910017816 Cu—Co Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 229910000870 Weathering steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
일본 공개특허공보 평7-207408호Japanese Laid-Open Patent Publication No. 7-207408
일본 공개특허공보 평11-21622호Japanese Patent Application Laid-Open No. 11-21622
일본 공고특허공보 평6-104858호Japanese Patent Application Laid-open No. Hei 6-104858
본 발명은 건축, 철도 차량, 컨테이너 등에 사용되는 고강도 내후성 냉연 강판과 그 제조방법에 관한 것으로서, 보다 상세하게는 고항복비의 특성을 갖는 고강도 내후성 냉연강판과 그 제조방법에 관한 것이다. The present invention relates to a high strength weather resistant cold rolled steel sheet used in construction, railroad cars, containers, and the like, and more particularly, to a high strength weather resistant cold rolled steel sheet having a high yield ratio and a method of manufacturing the same.
종래부터 컨테이너 또는 철도차량 등의 경량화 및 사용 수명 연장을 목적으로 스테인레스 또는 알루미늄 등의 소재들이 사용되어 왔다. 이와 같은 제품들에 요구되는 특성으로는 굽힘가공성, 용접성, 내구성 등이 있다. 또한 운송용 구조물의 경우 화물의 선적 및 적치시 충격을 받는 경우가 많으므로 충격에 의한 변형을 억제하는 것이 필요하며 이를 위해서는 고항복비를 가지는 소재를 적용하는 것이 좋다. Conventionally, materials such as stainless steel or aluminum have been used for the purpose of reducing the weight and extending the service life of a container or a railway vehicle. Characteristics required for such products include bendability, weldability and durability. In addition, in the case of transport structures, it is often necessary to suppress the deformation due to impact because the cargo is often impacted when loading and loading the cargo. For this purpose, it is recommended to apply a material having a high yield ratio.
항복비(Yield-ratio)란 인장시험을 통해 얻은 재질값 중 항복강도에 대한 인장 강도의 비로 정의되며, 동일한 인장강도 수준에서 항복비가 높다는 것은 소재의 항복강도가 높다는 것을 의미한다. 즉, 고항복비를 가지는 강은 탄성영역의 재질 특성인 항복강도가 높음에 따라 충격을 받았을 경우에도 변형에 대한 저항력이 증가하여 변형을 억제하는 능력이 커지는 것이다. 컨테이너 등의 용도에 사용되는 경우 80% 이상의 항복비를 확보하는 것이 바람직하며, 특히 컨테이너 등은 수송 여건에 따라 해양 또는 육상의 다양한 기후 조건을 견디어야 하기 때문에 내후성이 우수한 강의 사용이 요구되고 있었다. Yield-ratio is defined as the ratio of the tensile strength to the yield strength of the material values obtained through the tensile test, and the higher yield ratio at the same tensile strength level means that the yield strength of the material is higher. In other words, the steel having a high yield ratio increases the ability to suppress the deformation by increasing the resistance to deformation even when subjected to high impact strength, which is a material property of the elastic region. When used in a container or the like, it is desirable to secure a yield ratio of 80% or more. In particular, a container or the like has been required to use steel having excellent weatherability because it must withstand various climatic conditions of the ocean or the land depending on the transport conditions.
일례로, 종래에는 내후성 압연 강재인 SPA-C(공업 규격 KS-D3542 및 JIS-G3125)가 사용되어 왔으나, 이들 강은 인장강도가 50kg/mm2급으로 낮음에 따라 보다 큰 제품을 만드는 경우 자체의 중량으로 인한 수송비 상승 등이 제약 요인이 되었다. 또한, 자동차의 구조부재용으로 인장강도 60~80kg/mm2급의 고강도 냉연 강재가 있기는 하지만 이들 소재의 경우에도 강도 특성을 중시하여 제조함에 따라 목적으로 하는 내후성을 발휘하지는 못하는 문제점이 있었다. For example, in the past, weather resistant rolled steel, SPA-C (Industrial Standards KS-D3542 and JIS-G3125), has been used, but these steels have a low tensile strength of 50 kg / mm 2 and thus have their own products when making larger products. Increasing transportation costs due to weight has been a limiting factor. In addition, although there are high-strength cold-rolled steel having a tensile strength of 60 ~ 80kg / mm 2 grade for the structural member of the vehicle, even in the case of these materials, there is a problem in that it does not exhibit the desired weather resistance as the emphasis on strength characteristics.
최근, 컨테이너 산업에 있어서도 원가 절감 및 환경 문제에 대응하기 위해 컨테이너의 자체 중량을 크게 감소시켜 보다 큰 컨테이너를 제작하고, 이에 따라 수송의 효율성을 크게 증가시키기 위한 시도가 진행되고 있다. 특히, 내후성 및 80kg/mm2 이상의 고강도를 가지는 강판에 대한 요구 및 이들 소재의 제조 방법에 관한 기술들이 제안되고 있다. In recent years, in the container industry, in order to cope with cost reduction and environmental problems, attempts have been made to significantly reduce the weight of containers and to produce larger containers, thereby greatly increasing the efficiency of transportation. In particular, there is a demand for steel sheets having weather resistance and high strength of 80 kg / mm 2 or more, and techniques related to the manufacturing method of these materials have been proposed.
일례로, 일본 공개특허공보 평 7-207408호의 경우 C 0.008% 이하, Si 0.5~2.5%, Mn 0.1~3.5%, P 0.03~0.20%, S 0.01% 이하, Cu 0.05~2.0%, Al 0.005~0.1% 및 N 0.008% 이하, Cr 0.05~6.0%, Ni 0.05~2.0% 및 Mo 0.05~3.0%, B 0.0003~0.002%를 함유한 강을 1100~1300℃에서 가열하고 800~950℃에서 압연 종료하여 400~700℃로 권취 하는 것을 특징으로 하는 열연강대의 제조 방법을 제안하였다. 그러나, 이 기술에서 극히 일부의 실시 예만이 인장강도 60~70kg/mm2급이며 대부분의 경우 인장강도는 50kg/mm2급을 나타내고 있어 80kg/mm2급의 인장강도를 확보할 수 없는 것으로 나타났다. 또한, 성분 구성 요소 중 Cr, Mo 등의 경화능 향상 원소를 다량 첨가함에 따라 용접성이 열화되고 제조 비용이 상승하는 문제점이 있었다. For example, in Japanese Patent Laid-Open No. 7-207408, C 0.008% or less, Si 0.5-2.5%, Mn 0.1-3.5%, P 0.03-0.20%, S 0.01% or less, Cu 0.05-2.0%, Al 0.005- Steels containing 0.1% and N 0.008% or less, Cr 0.05-6.0%, Ni 0.05-2.0% and Mo 0.05-3.0%, B 0.0003-0.002% are heated at 1100-1300 ° C and the rolling ends at 800-950 ° C. A method for producing a hot rolled steel strip, characterized in that the winding to 400 ~ 700 ℃. However, in this technology, only a few embodiments show that the tensile strength is 60-70kg / mm 2 and in most cases, the tensile strength is 50kg / mm 2 , so that it is impossible to secure the 80kg / mm 2 tensile strength. . In addition, there is a problem in that weldability is deteriorated and manufacturing cost is increased by adding a large amount of hardenability improving elements such as Cr and Mo among the component components.
또 다른 일례로, 일본 공개특허공보 평11-21622호는 C 0.15% 이하, Si 0.7% 이하, Mn 0.2~1.5%, P 0.03~0.15%, S 0.02% 이하, Cu 0.4% 이하, Al 0.01~0.1% 및 Cr 0.1% 이하, Ni 0.4~4.0% 및 Mo 0.1~1.5%를 함유한 강을 1050~1300℃로 가열하여 950℃ 이상에서 40% 이상의 열간압연을 행한 후 900~750℃에서 압연 종료하고 공냉 을 시행하는 방법을 제안하였다. 그러나, 이때에도 인장강도가 대부분 50kg/mm2급으로 극히 일부만이 60kg/mm2급의 인장특성을 나타내었으며, 이 기술은 주로 인장강도 50kg/mm2급 강판에 적용하는 기술이라 할 수 있다. 또한, P을 0.03~0.15%로 다량 첨가하여 해수 분위기에서의 내식성을 향상하는 효과를 언급하고는 있으나, P의 다량 첨가는 냉연재의 중심편석 등을 유발하여 강판의 가공성을 급격히 떨어뜨리는 문제점이 있었다.As another example, Japanese Patent Laid-Open No. 11-21622 discloses C 0.15% or less, Si 0.7% or less, Mn 0.2-1.5%, P 0.03-0.15%, S 0.02% or less, Cu 0.4% or less, Al 0.01- or less. Steels containing 0.1% and less than 0.1% Cr, 0.4 to 4.0% Ni and 0.1 to 1.5% Mo are heated to 1050-1300 ° C, hot rolled at 40% or more at 950 ° C or more, and then rolling finished at 900-750 ° C. And air cooling is proposed. However, even at this time, most of the tensile strength is 50kg / mm 2 grade, only a few showed the tensile characteristics of 60kg / mm 2 grade, this technique can be said to be mainly applied to 50kg / mm grade 2 steel sheet. In addition, although the effect of improving the corrosion resistance in the seawater atmosphere by adding a large amount of P to 0.03 ~ 0.15% is mentioned, the addition of a large amount of P causes a central segregation of the cold rolled material, such that the workability of the steel sheet is drastically deteriorated there was.
또한, 일본 공개특허공보 평6-104858호는 C 0.02~0.12%, Si 0.5% 이하, Mn 0.1~2.0%, P 0.07~0.15%, S 0.02% 이하, Cu 0.25~0.55% 이하, Al 0.01~0.05% 및 Cr 0.3~1.25%, N2 0.006% 이하, Ti 0.06~0.20%를 함유한 강을 12.1Xti,eff(%)/Mn(%)>1.0 범위로 제어하고 1180℃이상에서 재가열, 880~950℃로 열간압연 후 650℃이하로 권취하는 기술을 제공하고 있다. 이 기술은 석출물 제어 원소로서 Ti의 함량을 Mn 첨가량에 연계하여 첨가하고 있다. 그러나, 이 기술의 실시예도 인장강도가 60kg/mm2급으로 본 발명에서 목표로 하는 80kg/mm2급 보다 낮다. In addition, Japanese Patent Laid-Open No. 6-104858 discloses C 0.02 to 0.12%, Si 0.5% or less, Mn 0.1 to 2.0%, P 0.07 to 0.15%, S 0.02% or less, Cu 0.25 to 0.55% or less, Al 0.01 to Steels containing 0.05% and Cr 0.3-1.25%, N 2 0.006% or less, Ti 0.06-0.20% are controlled in the range 12.1X ti, eff (%) / Mn (%)> 1.0 and reheated at 1180 ° C. or higher, After hot rolling at 880 ~ 950 ℃, it provides the technology of winding below 650 ℃. This technique adds Ti content in conjunction with the amount of Mn added as a precipitate control element. However, embodiments of this technique also have a tensile strength of 60 kg / mm 2 , which is lower than the 80 kg / mm 2 target targeted in the present invention.
이에, 본 발명에서는 상기와 같은 문제점을 해결하기 위한 것으로, 80kg/mm2 이상의 고강도 특성을 가지는 내후성과 고항복비 특성을 확보하고자 하는 것이다. Thus, in the present invention to solve the above problems, it is to ensure the weather resistance and high yield ratio characteristics having a high strength characteristics of 80kg / mm 2 or more.
상기 목적을 달성하기 위한 본 발명의 고항복비형 내후성 냉연강판은, High yield ratio weather resistant cold rolled steel sheet of the present invention for achieving the above object,
중량%로, 탄소(C) 0.08~0.20%, 실리콘(Si) 0.1~0.5%, 망간(Mn) 0.9~2.0%, 인(P) 0.02% 이하, 황(S) 0.01% 이하, 알루미늄(Al) 0.02~0.07%, 니오븀(Nb) 0.03~0.06%, 니켈(Ni) 0.05~0.30%, 구리(Cu) 0.2~0.5%, 크롬(Cr) 0.3~0.6%, 보론(B) 0.001~0.004%, 코발트(Co) 0.02~0.08%를 포함하고 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것이다. By weight%, carbon (C) 0.08 to 0.20%, silicon (Si) 0.1 to 0.5%, manganese (Mn) 0.9 to 2.0%, phosphorus (P) 0.02% or less, sulfur (S) 0.01% or less, aluminum (Al ) 0.02 to 0.07%, niobium (Nb) 0.03 to 0.06%, nickel (Ni) 0.05 to 0.30%, copper (Cu) 0.2 to 0.5%, chromium (Cr) 0.3 to 0.6%, boron (B) 0.001 to 0.004% , Cobalt (Co) 0.02 ~ 0.08% and will be composed of the remaining Fe and other unavoidable impurities.
상기 냉연강판의 인장강도는 80kg/mm2 이상이 바람직하다. The tensile strength of the cold rolled steel sheet is preferably 80kg / mm 2 or more.
또한, 본 발명의 냉연강판 제조방법은, 중량%로, 탄소(C) 0.08~0.20%, 실리콘(Si) 0.1~0.5%, 망간(Mn) 0.9~2.0%, 인(P) 0.02% 이하, 황(S) 0.01% 이하, 알루미늄(Al) 0.02~0.07%, 니오븀(Nb) 0.03~0.06%, 니켈(Ni) 0.05~0.30%, 구리(Cu) 0.2~0.5%, 크롬(Cr) 0.3~0.6%, 보론(B) 0.001~0.004%, 코발트(Co) 0.02~0.08%를 포함하고 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강을 1150~1300℃로 재가열하여 850~950℃의 마무리압연온도 조건으로 열간압연하고 초당 20~40℃의 냉각속도로 냉각하여 500~650℃의 온도에서 권취한 다음, 냉간압연한 후 500℃이상~A1 변태점이하에서 연속소둔 하는 것을 포함하여 구성된다. In addition, the cold rolled steel sheet manufacturing method of the present invention, in weight%, 0.08 to 0.20% carbon (C), 0.1 to 0.5% silicon (Si), 0.9 to 2.0% manganese (Mn), 0.02% or less of phosphorus (P), Sulfur (S) 0.01% or less, Aluminum (Al) 0.02-0.07%, Niobium (Nb) 0.03-0.06%, Nickel (Ni) 0.05-0.30%, Copper (Cu) 0.2-0.5%, Chromium (Cr) 0.3- Finish rolling temperature condition of 850 ~ 950 ℃ by reheating the steel containing 0.6%, boron (B) 0.001 ~ 0.004%, cobalt (Co) 0.02 ~ 0.08% and consisting of remaining Fe and other unavoidable impurities to 1150 ~ 1300 ℃ It is composed of hot rolling and cooling at a cooling rate of 20-40 ° C. per second, wound up at a temperature of 500-650 ° C., followed by cold rolling, followed by continuous annealing at 500 ° C. or higher and A 1 transformation point.
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명자들은, 다양한 가공특성과 함께 내후성을 만족하고 또한, 고강도의 특성과 함께 고항복비의 특성을 확보하기 위한 연구 및 실험을 거듭하여 본 발명을 완성시킨 것이다. 본 발명은 Cu-Co의 내후성 성분계에서 Cr, B, Nb 등의 첨가량을 제어하여 고강도의 특성과 함께 고항복비를 확보하는 것이다. MEANS TO SOLVE THE PROBLEM The present inventors completed this invention by repeating research and experiment to satisfy | fill weatherability with various processing characteristics, and to ensure the characteristic of high yield ratio with the characteristic of high strength. The present invention is to control the addition amount of Cr, B, Nb, etc. in the weathering component system of Cu-Co to secure a high yield ratio with high strength characteristics.
탄소(C)는 0.08-0.20중량%(이하, 간단히 %로 표기함)가 바람직하다.The carbon (C) is preferably 0.08-0.20% by weight (hereinafter, simply expressed as%).
C는 강판의 강도 향상을 위해 첨가되는 원소로서 첨가량이 증가할수록 인장 및 항복강도는 증가되나, 과잉 첨가되면 소재의 가공성이 저하되므로 그 상한은 0.20%가 바람직하다. 한편, C량이 0.08%미만이면 충분한 석출 강화 효과를 얻을 수 없는 문제가 있다.C is an element added to improve the strength of the steel sheet, and the tensile strength and yield strength increase as the amount added increases. However, the upper limit is preferably 0.20% because excessive workability decreases the workability of the material. On the other hand, when the amount of C is less than 0.08%, there is a problem in that sufficient precipitation strengthening effect cannot be obtained.
실리콘(Si)은 0.1-0.5%가 바람직하다.Silicon (Si) is preferably 0.1-0.5%.
Si은 용강 탈산 및 고용강화 효과를 제공할 뿐 아니라, 고온에서 강의 표층에 Fe와 함께 Fe2SiO4의 치밀한 산화물을 형성시켜 내식성을 향상시키는 역할도 하는 원소로써 이들 효과를 얻기 위해서는 최소 0.1% 이상의 첨가가 바람직하다. 따라서, Si은 내후성 향상을 위해서 첨가되어야 하지만, 과잉 첨가되면 용접성이 저하하는 문제가 있고 도금성을 떨어뜨리므로 0.5% 이하로 첨가하는 것이 바람직하다.Si not only provides molten steel deoxidation and solid solution strengthening effect, but also forms a dense oxide of Fe 2 SiO 4 together with Fe in the surface layer of the steel at high temperature to improve corrosion resistance. Addition is preferred. Therefore, Si should be added to improve weather resistance, but if excessively added, there is a problem that the weldability is lowered and the plating property is degraded. Therefore, it is preferable to add Si at 0.5% or less.
망간(Mn)은 0.9-2.0%가 바람직하다.As for manganese (Mn), 0.9-2.0% is preferable.
Mn은 고용에 의해 강화시키는데 효과적인 원소로서 강의 강도를 높이고 열간 가공성을 향상시키는 중요한 원소이지만, MnS형성에 의한 소재의 연성 및 가공성를 저해하는 원소이기도 하다. Mn의 함량이 적으면 가공성에는 유리하지만 강도에 문제가 있기 때문에 목표 강도를 확보하기 위해서는 0.9% 이상 첨가가 바람직하다. 반면에 Mn이 과잉 첨가되면 고가의 합금원소 다량 첨가에 의한 경제성 저하 및 용접성을 해치는 문제점이 있으므로 상한은 2.0%가 바람직하다. Mn is an element that is effective for strengthening by solid solution and is an important element for increasing the strength of steel and improving hot workability, but is also an element that inhibits the ductility and workability of a material due to MnS formation. If the content of Mn is small, it is advantageous for workability but there is a problem in strength. Therefore, it is preferable to add 0.9% or more to secure the target strength. On the other hand, when Mn is excessively added, the upper limit is preferably 2.0% because there is a problem of deterioration in economics and weldability due to the addition of a large amount of expensive alloying elements.
인(P)은 0.02%이하가 바람직하다.Phosphorus (P) is preferably 0.02% or less.
P은 강의 내식성을 향상시키는 역할을 하기 때문에 내식성 측면에서는 다량 첨가되는 것이 바람직하지만, 주조시 중심 편석을 가장 크게 일으키는 원소이므로 다량 첨가할 경우 용접성 및 인성을 저하시키는 요인이 된다. 따라서, 그 함량은 0.02% 이하로 제한하는 것이 바람직하다.Since P plays a role of improving the corrosion resistance of the steel, it is preferable to add a large amount in terms of corrosion resistance. However, since P is the element causing the largest segregation of the core during casting, a large amount of P decreases weldability and toughness. Therefore, the content is preferably limited to 0.02% or less.
황(S)은 0.01%이하가 바람직하다.Sulfur (S) is preferably 0.01% or less.
S은 내식성 향상에 효과 있는 원소로 알려져 있지만, 강중 Mn과 결합해 부식 개시점 역할을 하는 비금속 개재물을 형성하므로, 가능한 한 그 함량을 감소시키는 것이 바람직하다. 따라서, S량은 0.01% 이하로 한정하는데, 보다 바람직하게는 0.005% 이하로 관리하는 것이 좋다.Although S is known as an element effective in improving corrosion resistance, it is preferable to reduce the content as much as possible because it combines with Mn in steel to form a nonmetallic inclusion serving as a corrosion start point. Therefore, the amount of S is limited to 0.01% or less, more preferably 0.005% or less.
알루미늄(Al)은 0.02-0.07%가 바람직하다.As for aluminum (Al), 0.02-0.07% is preferable.
Al은 일반적으로 용강 탈산 및 내식성 향상에도 효과가 있는 원소이지만, 과잉 첨가되면 강중 개재물량을 증가시켜 가공성을 저하하는 문제점이 있으므로 그 함량을 0.02~0.07%로 설정하는 것이 바람직하다.Al is generally an element which is effective in improving deoxidation and corrosion resistance of molten steel, but when it is added excessively, there is a problem of decreasing workability by increasing the amount of inclusions in the steel, so the content is preferably set at 0.02 to 0.07%.
니오븀(Nb)은 0.03-0.06%가 바람직하다.Niobium (Nb) is preferably 0.03-0.06%.
Nb은 페라이트의 재결정을 지연시키는 효과를 나타낼 뿐만 아니라 강중 C, N2 등과 결합하여 석출함으로써 강판의 강도를 상승시키는 효과를 나타내는 원소로서 목표로 하는 강도 확보를 위해서는 0.03% 이상의 첨가가 바람직하다. 반면에 0.06% 이상으로 Nb가 첨가되면 제조원가 상승 및 열연작업성 저하의 요인이 될 수 있다.Nb is not only an effect of delaying the recrystallization of ferrite, but also an element showing the effect of increasing the strength of the steel sheet by being precipitated in combination with C, N 2, etc. in steel, and the addition of 0.03% or more is preferable for securing the target strength. On the other hand, when Nb is added in an amount of more than 0.06%, it may cause a rise in manufacturing cost and a decrease in hot rolling workability.
니켈(Ni)은 0.05-0.3%가 바람직하다.Nickel (Ni) is preferably 0.05-0.3%.
Ni은 일반적으로 Cu 첨가강에서 주조시 발생하는 주조 균열을 방지하는 역할 뿐만 아니라 내식성을 향상시키는 원소로서, 이와 같은 효과를 발휘하기 위해서는 0.05% 이상의 첨가가 바람직하다. 그러나 Ni의 함량이 0.3%를 초과하면 오히려 내식성을 나쁘게 할 뿐만 아니라 고가의 합금원소를 과다 사용함에 따른 원가가 상승하게 된다. Ni is generally an element that improves corrosion resistance as well as preventing casting cracks generated during casting in Cu-added steel. In order to exert such effects, addition of 0.05% or more is preferable. However, when the Ni content exceeds 0.3%, not only the corrosion resistance is deteriorated but also the cost is increased due to the excessive use of expensive alloy elements.
구리(Cu)는 0.2-0.5%가 바람직하다.Copper (Cu) is preferably 0.2-0.5%.
Cu는 부식 분위기에서 안정적인 녹층을 형성하여 내부식성을 향상시키는 원소로서 목표로 하는 내식성을 확보하기 위해서는 0.2% 이상의 첨가가 바람직하다. 그러나, Cu의 첨가량이 0.5%을 초과하면 연주시 입계 균열의 요인이 될 뿐만 아니라 열연 강판의 표면상태를 거칠게 할 우려가 있다.Cu is an element which forms a stable rust layer in a corrosive atmosphere and improves corrosion resistance, and in order to ensure target corrosion resistance, addition of 0.2% or more is preferable. However, when the added amount of Cu exceeds 0.5%, not only does it cause grain boundary cracking during the play, but also there is a fear that the surface state of the hot rolled steel sheet is roughened.
크롬(Cr)은 0.3-0.6%가 바람직하다.Chromium (Cr) is preferably 0.3-0.6%.
Cr은 Cu와 같이 안정적인 녹층을 형성시키는 역할을 하는 원소로서 내식성을 확보하고 강도를 얻기 위해서는 0.3% 이상의 첨가가 바람직하다. 또한, Cr의 첨가량이 0.6%초과하면 오히려 구멍부식성을 유발하는 요인으로 작용할 뿐만 아니라 제조원가를 급격히 상승시키게 된다.Cr is an element that plays a role of forming a stable rust layer, such as Cu, is preferably 0.3% or more in order to secure corrosion resistance and obtain strength. In addition, when the amount of Cr is more than 0.6%, it not only acts as a factor causing hole corrosion but also rapidly increases the manufacturing cost.
보론(B)은 0.001-0.004%가 바람직하다.The boron (B) is preferably 0.001-0.004%.
B은 강의 경화능을 향상시킬 뿐만 아니라 페라이트상의 재결정을 지연시키는 원소로써 저온 영역에서 목표로 하는 강도 수준을 얻기 위해서는 0.001% 이상의 첨가가 바람직하다. 반면에 B의 함량이 0.004%초과면 소입성의 증가에 의해 열간압연 공정에서 베이나이트와 같은 경질상의 생성을 촉진하여 냉간 압연성을 확보할 수 없게 된다.B is an element that not only improves the hardenability of the steel but also delays the recrystallization of the ferrite phase, and in order to obtain a target level of strength in the low temperature region, addition of 0.001% or more is preferable. On the other hand, if the B content exceeds 0.004%, the hardenability is increased by promoting the formation of a hard phase such as bainite in the hot rolling process by the increase of the hardenability.
코발트(Co)는 0.02-0.08%가 바람직하다.Cobalt (Co) is preferably 0.02-0.08%.
Co의 경우 강중 내식성을 확보하기 위해 첨가되는 Cu 및 Cr 등과 반응하여 표면층 부식 억제 생성물의 형성을 촉진하는 원소로써, 이와 같은 효과를 얻기 위해서는 최소 0.02% 이상의 첨가가 바람직하다. 그러나, Co의 첨가량이 0.08%초과하면 내식성 향상 효과의 기여 효과보다는 제조 원가의 상승 요인으로 작용하게 된다.Co is an element that reacts with Cu, Cr, etc., added to secure corrosion resistance in steel, and promotes formation of a surface layer corrosion inhibiting product. In order to obtain such an effect, at least 0.02% or more is preferable. However, when the amount of Co added is more than 0.08%, it will act as an increase factor of the manufacturing cost rather than the effect of improving the corrosion resistance.
본 발명의 강은 상기한 성분을 포함하면서 불가피한 불순물과 나머지 Fe로 되는 것이다. 필요에 따라 내후성강에서 특성향상을 첨가하는 합금원소가 첨가될 수 있는 것이며, 본 발명의 실시예에서 밝히지 않은 합금원소가 첨가되었다 하여 본 발명의 범위에서 제외되는 것으로 해석하지는 않는다.The steel of the present invention is composed of the above-mentioned components and inevitable impurities and the remaining Fe. If necessary, an alloying element may be added to the weathering steel to add a property improvement, and an alloying element not disclosed in the embodiment of the present invention is added and is not interpreted as being excluded from the scope of the present invention.
본 발명의 냉연강판은 고강도와 함께 고항복비의 특성을 갖는 것이다. 본 발명의 일실시예에 따르면 인장강도는 80kg/mm2 이상이면 되는 것으로, 예를 들면 대략 80~110 kg/mm2 정도의 인장강도를 갖는 것이다. 항복비는 80%이상이면 되는 것으로, 예를 들면 대략 85-94%이다. 또한, 연성은 10%이상의 특성을 갖는다.The cold rolled steel sheet of the present invention has high yield ratio and high yield ratio. According to one embodiment of the present invention, the tensile strength may be 80 kg / mm 2 or more, and for example, has a tensile strength of about 80 to 110 kg / mm 2 . The yield ratio should be 80% or more, for example, approximately 85-94%. In addition, the ductility has a property of 10% or more.
이러한 특성은 상기한 성분계를 만족하면서 후술하는 본원발명의 저온소둔에 의해 얻어지는 것이다. 저온소둔에 의하여 압연변형립이 전부가 회복하지 않고 일부가 미세조직에 존재하게 된다. 본 발명의 미세조직은 페라이트 또는 페라이트와 펄라이트의 혼립조직일 수 있으며, 여기에 제한되는 것은 아니다. These characteristics are obtained by low temperature annealing of the present invention described below while satisfying the above component system. Due to low temperature annealing, all of the rolled deformation grains do not recover and some of them exist in the microstructure. The microstructure of the present invention may be ferrite or a hybrid structure of ferrite and perlite, but is not limited thereto.
이하, 본 발명의 냉연강판의 제조방법에 대하여 설명한다. Hereinafter, the manufacturing method of the cold rolled steel sheet of this invention is demonstrated.
상기와 같이 조성된 강을 제조하는 방법을 일실시예를 통하여 구체적으로 설명한다. 상기의 화학조성을 지닌 강은 1150~1300℃에서 재가열하고 마무리 열간압연을 850~950℃에서 실시하고 20~40℃/초의 냉각속도로 냉각하여 500~650℃로 권취 후 냉연 및 열처리시 500~A1변태점 이하의 온도로 연속소둔함으로써 내후성이 우수한 인장강도 80kg/mm2 이상의 고항복비형 냉연강판을 제조하는 방법에 관한 것이다. It will be described in detail through an embodiment a method for producing a steel composition as described above. Steel with the above chemical composition is reheated at 1150 ~ 1300 ℃, finish hot rolling at 850 ~ 950 ℃, cooled at 20 ~ 40 ℃ / sec cooling rate and wound up at 500 ~ 650 ℃, then cold rolled and heat treated 500 ~ A 1 Tensile strength excellent in weatherability by continuous annealing at the temperature below transformation point 80kg / mm 2 The present invention relates to a method for producing a high yield ratio cold rolled steel sheet.
재가열온도가 1150℃미만에서는 주조시 형성된 응고조직의 파괴가 불충분하여 중심 편석이 잘 발달되기 때문에, 최종 형성된 결정립의 혼립이 발생되어 가공성 및 충격 인성이 현저히 저하된다. 또한 재가열온도가 1300℃를 넘으면 산화에 의한 스케일 형성이 촉진되어 슬라브의 두께 감소량이 크고 재가열시 결정립 조대화에 따라 충격인성이 저하되는 단점이 있으며, 가열 원단위의 상승으로 인한 경제적인 손실이 크므로 관리 범위는 1150~1300℃로 한정한다.If the reheating temperature is less than 1150 ° C., the breakage of the solidified structure formed during casting is insufficient, so that the center segregation is well developed, resulting in the mixing of the finally formed crystal grains and the workability and impact toughness are significantly reduced. In addition, if the reheating temperature exceeds 1300 ℃, the formation of scale by oxidation is promoted, and the slab thickness decreases and the impact toughness decreases due to the coarsening of grains when reheating. The management range is limited to 1150-1300 degreeC.
마무리 열연온도가 950℃보다 높으면 두께 전반에 걸쳐 균일한 열간압연이 이루어지지 않아 결정립 미세화가 불충분하게 되고, 이에 따라 결정립 조대화에 기인한 충격 인성의 저하가 나타난다. 반대로, 마무리열연온도 850℃ 미만에서는 저온 영역에서 열간압연이 마무리됨에 따라 결정립의 혼립화가 급격히 진행되어 내식성 및 가공성의 저하를 초래하므로 마무리 열연 온도를 850~950℃로 제한하는 것이 바람직하다. If the finish hot rolling temperature is higher than 950 ° C, uniform hot rolling is not performed throughout the thickness, resulting in insufficient grain refinement, resulting in a drop in impact toughness due to grain coarsening. On the contrary, as the hot rolling is finished in the low temperature region at the finishing hot rolling temperature of 850 ° C, it is preferable to limit the finishing hot rolling temperature to 850 ° C to 950 ° C as the hybridization of crystal grains proceeds rapidly, resulting in deterioration of corrosion resistance and workability.
상기와 같이 열간압연한 후에 냉각은 20-40℃가 바람직하다. 즉, 마무리 열연후 런-아웃-테이블(ROT, Run-out-table)에서의 냉각속도가 초당 20℃미만이면 결정립 성장의 촉진에 의해 상대적으로 조대 결정립이 형성되어 강도 저하의 요인이 되므로 하한을 초당 20℃로 하는 것이 바람직하다. 반면에 냉각속도가 초당 40℃ 초과하면 베이나이트와 같은 경한 제2상을 형성하여 냉간 압연성을 현저히 떨어뜨리므로 냉각 속도는 초당 20~40℃로 설정하는 것이 바람직하다. After hot rolling as described above, the cooling is preferably 20-40 ° C. That is, if the cooling rate in the run-out-table (ROT) after finishing hot rolling is less than 20 ° C per second, coarse grains are formed by promoting grain growth, which is a factor of lowering strength. It is preferable to set it as 20 degreeC per second. On the other hand, if the cooling rate exceeds 40 ℃ per second to form a hard second phase, such as bainite to significantly reduce the cold rollability, the cooling rate is preferably set to 20 ~ 40 ℃ per second.
상기와 같이 냉각하고 권취하는데, 권취온도는 500-650℃가 바람직하다. 열연 권취온도가 650℃ 초과하면 충분한 석출 효과가 얻어지지 않음에 따라 소재 강도가 감소하여 목표 강도인 80kg/mm2의 안정적인 확보가 곤란하다. 반면에 500℃ 미만의 권취온도에서는 냉각 및 유지하는 동안 경질상이 생성되어 냉간압연 공정에서 압연기의 롤-포스(Roll force)가 상승함에 따라 압연성을 확보할 수 없는 문제점이 있으므로 권취온도의 관리 범위를 500~650℃로 한정하는 것이 바람직하다. Cooling and winding as described above, the winding temperature is preferably 500-650 ℃. If the hot rolled coil temperature exceeds 650 ° C., a sufficient precipitation effect is not obtained, thereby making it difficult to secure a stable target strength of 80 kg / mm 2 . On the other hand, at winding temperatures of less than 500 ° C, a hard phase is generated during cooling and holding, and thus rolling properties cannot be secured as the roll force of the rolling mill rises in the cold rolling process. It is preferable to limit to 500-650 degreeC.
열간압연이 끝난 소재는 통상의 냉간 압연조건으로 압연을 실시하고 연속소둔 공정을 거치게 된다. 이때 목표로 하는 재질 특성을 확보하기 위해서는 소둔온도를 적절히 관리하는 것이 필요하다. 연속소둔공정에서 소둔온도가 500℃ 보다 낮은 경우 냉간압연시의 변형립이 그대로 남아 있어 연성이 급격히 떨어지므로 가공성이 저하 되는 문제점이 있다. 반면에 A1 변태점 이상의 소둔온도에서는 소둔후 냉각시 변태에 의해 마르텐사이트 상이 형성되어 항복강도가 저하하여 항복비가 60% 이하로 낮아짐에 따라 변형에 대한 저항성을 확보할 수 없었으므로 소둔온도의 상한선은 A1 변태점으로 하는 것이 바람직하다. 본 발명에서는 저온소둔에 의해 냉연강판에 압연변형립을 일부 잔존시킬 수 있다. The hot rolled material is subjected to rolling under normal cold rolling conditions and subjected to a continuous annealing process. At this time, it is necessary to properly manage the annealing temperature in order to secure the target material properties. If the annealing temperature is lower than 500 ° C. in the continuous annealing process, the deformation grains during cold rolling remain as it is, and thus the ductility drops sharply. On the other hand, at the annealing temperature above the A 1 transformation point, the martensite phase is formed by transformation during cooling after annealing, and the yield strength is lowered. As the yield ratio is lowered below 60%, resistance to deformation cannot be secured, so the upper limit of the annealing temperature is it is preferred that the a 1 transformation point. In the present invention, it is possible to leave some part of the rolling strain on the cold rolled steel sheet by low temperature annealing.
이하, 실시 예를 통해 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.
[실시예 1] Example 1
표 1과 같이 조성된 강에 대하여, 규격화된 부식저항지수(CI)값에 대한 평가 및 내후성 시험을 실시한 후 그 평가 결과를 [표 2]에 나타내었다. 내후성 시험은 30℃의 5% 염수(NaCl 용액) 조건에서 480시간 동안 염수 분무시험(SST, Salt Spray Test)을 실시한 결과이다. 여기에서, 부식저항지수(CI)는 ASTM G101에 규정된 내후성 관련 평가 지수로써 이 값이 높을수록 강의 내후성은 좋은 것으로 알려져 있으며, 이는 주로 합금원소를 바탕으로 산출한 지수로써 다음과 같이 정의된다.For steels prepared as shown in Table 1, after evaluation and weather resistance test for standardized corrosion resistance index (CI) values were performed, the evaluation results are shown in [Table 2]. The weather resistance test is the result of a salt spray test (SST) for 480 hours in a 5% salt solution (NaCl solution) at 30 ℃. Here, the corrosion resistance index (CI) is a weather-related evaluation index specified in ASTM G101, and the higher this value, the better the weather resistance of the steel, which is mainly calculated based on alloying elements and is defined as follows.
즉, 부식저항지수(CI) = 26.01(%Cu) + 3.88(%Ni) + 1.2(%Cr) + 1.49(%Si) + 17.28(%P) - 7.29(%Cu)(%Ni) - 9.10(%Ni)(%P) - 33.39(%Cu)2 Corrosion Resistance Index (CI) = 26.01 (% Cu) + 3.88 (% Ni) + 1.2 (% Cr) + 1.49 (% Si) + 17.28 (% P)-7.29 (% Cu) (% Ni)-9.10 (% Ni) (% P)-33.39 (% Cu) 2
표 2에 나타난 바와 같이 비교강(2)는 부식저항지수는 낮고 부식감량이 커서 내후성 측면에서 적용이 곤란하였으며, 비교강(3) 및 비교강(4)는 CI값도 다소 높았지만 염수분무 실험에 의한 부식감량이 0.030g/cm2 이상을 나타내어 내후성이 떨어졌다. 반면에 발명강(1)과 (2) 및 비교강(1)의 경우 부식 감량과 부식저항 지수 측면에서 우수한 내후성을 나타냄을 알 수 있었다. As shown in Table 2, the comparative steel (2) had a low corrosion resistance index and a large corrosion loss, making it difficult to apply in terms of weather resistance. The comparative steel (3) and the comparative steel (4) had slightly higher CI values, but the salt spray test was performed. Corrosion loss by showed 0.030 g / cm <2> or more, and the weather resistance fell. On the other hand, the inventive steels (1), (2) and comparative steels (1) showed excellent weather resistance in terms of corrosion loss and corrosion resistance index.
[실시예 2]Example 2
실시예 1의 표 1에서 발명강(1), (2) 및 비교강(1)~(4)들을 이용하여, 표 3과 같은 조건으로 작업하여 냉연 강판을 제조한 후 각각의 소재에 대하여 기계적 성질 및 가공 특성을 평가한 결과를 표 4에 나타내었다.In Table 1 of Example 1, using the invention steel (1), (2) and comparative steels (1) to (4), by working under the same conditions as Table 3 to produce a cold-rolled steel sheet mechanical for each material Table 4 shows the results of evaluating the properties and processing characteristics.
표 4에 나타난 바와 같이, 화학성분 및 제조조건이 본 발명 방법의 범위를 만족하는 발명재 (1)~(4)의 경우 인장강도 80kgf/mm2 이상, 항복비 80% 이상, 연성 10% 이상을 확보할 수 있었으며 밴딩 가공시에도 가공 균열은 발생하지 않아 고강도를 가지는 고항복비형 내후성강의 제조가 가능하였다. As shown in Table 4, in the case of the inventive materials (1) to (4) in which the chemical composition and the manufacturing conditions satisfy the scope of the present invention, the tensile strength is not less than 80kgf / mm 2 , the yield ratio is not less than 80%, the ductility is not less than 10% It was possible to secure the high yield ratio type weather resistant steel having high strength because no cracking occurred during bending.
반면에 발명강의 화학 조성 범위를 만족하지만 제조 조건이 발명의 범위를 벗어난 비교재(1)~(5)는 목표로 하는 특성을 얻는데 실패하였다. 즉, 소둔 온도가 본 발명보다 높은 비교재(2) 및 비교재(5)의 경우 인장강도 기준은 만족하였지만 소둔 온도가 높음에 따라 냉각 단계에서 변태에 의해 생성된 제2상에 의해 항복 강도가 낮아져 항복비가 70% 이하를 나타내었다. 즉, 목표로 하는 80% 이상의 항복비를 얻을 수 없어 변형저항성이 떨어지는 문제점이 있었다. On the other hand, the comparative materials (1) to (5) which satisfy the chemical composition range of the inventive steel but whose manufacturing conditions are out of the range of the invention failed to obtain the target properties. That is, in the case of the comparative material 2 and the comparative material 5 having higher annealing temperature than the present invention, the tensile strength criterion was satisfied, but as the annealing temperature was high, the yield strength was increased by the second phase generated by the transformation in the cooling step. Yield ratio was lowered to 70% or less. That is, there was a problem in that the deformation resistance was not obtained because the yield ratio of 80% or more could not be obtained.
소둔온도가 발명 범위보다 낮은 비교재(4)는 냉간압연시 생성된 변형립이 대부분 남아 있음에 따라 연성 및 밴딩 가공성을 확보할 수 없었다. 또한 열연 마무리온도 및 권취온도가 본 발명의 범위를 벗어나는 비교재 (1) 및 냉각속도가 발명 범위보다 높은 비교재 (3)의 경우에도 연성이 5% 미만으로 적절한 가공성을 확보할 수 없었다. Comparative material (4) having an annealing temperature lower than the range of the invention was not able to secure ductility and bending workability as most of the deformation grains produced during cold rolling remain. In addition, even in the case of the comparative material (1) in which the hot rolling finish temperature and the coiling temperature were out of the scope of the present invention and the comparative material (3) in which the cooling rate was higher than the invention range, the ductility was less than 5%, so that proper workability could not be secured.
Mn과 Cr 등이 본 발명 조성을 벗어나지만 내후성이 비교적 우수하였던 비교강 (1)에 대하여 제조조건을 본 발명범위로 한 경우(비교재7) 연성 및 가공성의 확보가 곤란하였다. 또한 연성 및 가공성을 확보하기 위해 소둔온도를 올리면 복합 조직의 생성에 따라 항복강도가 낮아져 80% 이상의 항복비를 얻을 수 없었다. Although Mn and Cr deviated from the composition of the present invention, it was difficult to secure ductility and workability when the manufacturing conditions were made into the present invention range for the comparative steel (1), which had relatively excellent weather resistance (Comparative Material 7). In addition, if the annealing temperature was increased to ensure ductility and workability, yield strength was lowered due to the formation of composite tissues, resulting in a yield ratio of more than 80%.
화학 조성이 본 발명강의 조성 범위를 벗어나 내후성도 확보할 수 없었던 비교강(2)~(3)에 대하여 제조조건 변경 시험을 실시한 경우(비교재 8~11)에도 표 4에서 보는 바와 같이 가공성 및 재질의 적정 범위를 설정할 수 없음을 알 수 있었다. In the case where the manufacturing conditions change test was carried out for the comparative steels (2) to (3), in which the chemical composition was outside the composition range of the steel of the present invention and the weather resistance could not be secured (Comparative Materials 8 to 11), as shown in Table 4, It was found that the proper range of the material could not be set.
상기한 바와 같이 본 발명에 의하면, 내후성과 기계적 특성을 동시에 확보함과 아울러 고항복비를 얻을 수 있음에 따라 충격 저항성이 요구되는 용도 등 부가가치가 높은 강판을 제공할 수 있다. 뿐만 아니라, 연속소둔작업이 비교적 저온 영역에서 이루어 짐에 따라 에너지 절감 및 소둔 작업성 개선 효과도 동시에 얻을 수 있다. As described above, according to the present invention, it is possible to provide a steel sheet with high added value such as applications requiring impact resistance, as well as securing weather resistance and mechanical properties at the same time and obtaining a high yield ratio. In addition, as the continuous annealing operation is performed in a relatively low temperature region, energy saving and annealing workability improvement effects can be obtained at the same time.
Claims (3)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060126488A KR100815799B1 (en) | 2006-12-12 | 2006-12-12 | High yield ratio cold rolled steel with excellent weatherability |
PCT/KR2007/006405 WO2008072866A1 (en) | 2006-12-12 | 2007-12-10 | Cold-rolled steel sheet with high yield ratio and excellent weather resistance |
JP2009541217A JP5101627B2 (en) | 2006-12-12 | 2007-12-10 | High yield ratio cold rolled steel sheet with excellent weather resistance |
CN2007800455344A CN101558178B (en) | 2006-12-12 | 2007-12-10 | Cold-rolled steel sheet with high yield ratio and excellent weather resistance and its manufacture method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060126488A KR100815799B1 (en) | 2006-12-12 | 2006-12-12 | High yield ratio cold rolled steel with excellent weatherability |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100815799B1 true KR100815799B1 (en) | 2008-03-20 |
Family
ID=39411342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060126488A Active KR100815799B1 (en) | 2006-12-12 | 2006-12-12 | High yield ratio cold rolled steel with excellent weatherability |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5101627B2 (en) |
KR (1) | KR100815799B1 (en) |
CN (1) | CN101558178B (en) |
WO (1) | WO2008072866A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116200662A (en) * | 2023-02-07 | 2023-06-02 | 安徽工业大学 | A tempered low-yield ratio high-performance bridge weathering steel and its manufacturing method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011068328A2 (en) * | 2009-12-04 | 2011-06-09 | 주식회사 포스코 | Cold rolled steel sheet for processing with excellent heat resistance, and preparation method thereof |
CN103266274B (en) * | 2013-05-22 | 2015-12-02 | 宝山钢铁股份有限公司 | A kind of superhigh intensity cold rolling weather resisting steel plate and manufacture method thereof |
CN104419878B (en) * | 2013-09-05 | 2017-03-29 | 鞍钢股份有限公司 | Ultrahigh-strength cold-rolled dual-phase steel with weather resistance and manufacturing method thereof |
CN104419877B (en) * | 2013-09-05 | 2017-04-05 | 鞍钢股份有限公司 | Cold-rolled martensitic steel with weather resistance and manufacturing method thereof |
KR101518578B1 (en) | 2013-09-10 | 2015-05-07 | 주식회사 포스코 | Steel for complex corrosion resistance to hydrochloric acid and sulfuric acid having excellent wear resistance and surface qualities and method for manufacturing the same |
KR101585739B1 (en) * | 2013-12-25 | 2016-01-14 | 주식회사 포스코 | Cold rolled steel sheet having high yield ratio and excelent impact property and method for manufacturing the same |
CN106170574B (en) * | 2014-03-31 | 2018-04-03 | 杰富意钢铁株式会社 | High yield ratio and high-strength cold-rolled steel sheet and its manufacture method |
CN105274432B (en) * | 2014-06-11 | 2017-04-26 | 鞍钢股份有限公司 | 600 MPa-grade high-yield-ratio high-plasticity cold-rolled steel plate and manufacturing method thereof |
KR101611762B1 (en) * | 2014-12-12 | 2016-04-14 | 주식회사 포스코 | Cold rolled steel sheet having excellent bendability and crash worthiness and method for manufacturing the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005105367A (en) * | 2003-09-30 | 2005-04-21 | Nippon Steel Corp | High yield ratio high strength cold-rolled steel sheet and high yield ratio high strength hot-dip galvanized steel sheet excellent in weldability and ductility, high yield ratio high-strength galvannealed steel sheet, and manufacturing method thereof |
KR100548864B1 (en) | 2001-08-24 | 2006-02-02 | 신닛뽄세이테쯔 카부시키카이샤 | Steel sheet, steel pipe with excellent deep drawing property and manufacturing method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000063981A (en) * | 1998-08-20 | 2000-02-29 | Nippon Steel Corp | Weather resistant steel with a blackish color tone from initial rust and excellent appearance and color tone stability |
KR100371960B1 (en) * | 2000-09-29 | 2003-02-14 | 주식회사 포스코 | High atmosphere corrosion resting and workability hot rolled strip having tensile strength of 60 kg/㎟ and method for manufacturing it |
JP3817152B2 (en) * | 2000-10-06 | 2006-08-30 | 新日本製鐵株式会社 | High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance |
JP3895986B2 (en) * | 2001-12-27 | 2007-03-22 | 新日本製鐵株式会社 | High-strength steel plate excellent in weldability and hole expansibility and method for producing the same |
JP3940301B2 (en) * | 2002-02-27 | 2007-07-04 | 新日本製鐵株式会社 | Blasting weathering high-strength steel plate with excellent bending resistance and method for producing the same |
JP4507668B2 (en) * | 2004-03-31 | 2010-07-21 | Jfeスチール株式会社 | Manufacturing method of high corrosion resistant steel |
CN1302143C (en) * | 2004-06-30 | 2007-02-28 | 宝山钢铁股份有限公司 | Steel capable of resisting CO2 and chlorine ion corrosion and for petroleum drilling rod |
JP4586489B2 (en) * | 2004-10-22 | 2010-11-24 | 住友金属工業株式会社 | Steel and structures with excellent beach weather resistance |
JP4844197B2 (en) * | 2006-03-30 | 2011-12-28 | 住友金属工業株式会社 | Manufacturing method of steel material with excellent weather resistance and paint peeling resistance |
-
2006
- 2006-12-12 KR KR1020060126488A patent/KR100815799B1/en active Active
-
2007
- 2007-12-10 WO PCT/KR2007/006405 patent/WO2008072866A1/en active Application Filing
- 2007-12-10 JP JP2009541217A patent/JP5101627B2/en not_active Expired - Fee Related
- 2007-12-10 CN CN2007800455344A patent/CN101558178B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100548864B1 (en) | 2001-08-24 | 2006-02-02 | 신닛뽄세이테쯔 카부시키카이샤 | Steel sheet, steel pipe with excellent deep drawing property and manufacturing method thereof |
JP2005105367A (en) * | 2003-09-30 | 2005-04-21 | Nippon Steel Corp | High yield ratio high strength cold-rolled steel sheet and high yield ratio high strength hot-dip galvanized steel sheet excellent in weldability and ductility, high yield ratio high-strength galvannealed steel sheet, and manufacturing method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116200662A (en) * | 2023-02-07 | 2023-06-02 | 安徽工业大学 | A tempered low-yield ratio high-performance bridge weathering steel and its manufacturing method |
CN116200662B (en) * | 2023-02-07 | 2023-08-15 | 安徽工业大学 | A tempered low-yield ratio high-performance bridge weathering steel and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2010512460A (en) | 2010-04-22 |
CN101558178A (en) | 2009-10-14 |
CN101558178B (en) | 2011-05-25 |
JP5101627B2 (en) | 2012-12-19 |
WO2008072866A1 (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100815799B1 (en) | High yield ratio cold rolled steel with excellent weatherability | |
KR100851158B1 (en) | High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It | |
KR101069968B1 (en) | High strength hot-rolled steel sheet having exceelent impact resistance and paintability and method for manufacturing the same | |
KR20120075274A (en) | High strength steel sheet having ultra low temperature toughness and method for manufacturing the same | |
KR100371960B1 (en) | High atmosphere corrosion resting and workability hot rolled strip having tensile strength of 60 kg/㎟ and method for manufacturing it | |
KR100815709B1 (en) | High strength cold rolled steel with excellent weatherability and workability and its manufacturing method | |
KR101038826B1 (en) | High strength hot rolled steel sheet with excellent weather resistance and impact resistance and its manufacturing method | |
KR20150075307A (en) | Ultra-high strength hot-rolled steel sheet with solid diffusion bonding properties, and method for producing the same | |
KR100925639B1 (en) | High strength cold rolled steel sheet with excellent weather resistance and manufacturing method | |
KR101070132B1 (en) | Steel with Excellent Low-Temperature Toughness for Construction and Manufacturing Method Thereof | |
KR20110072791A (en) | Austenitic high strength steel sheet with excellent ductility and delayed fracture resistance and its manufacturing method | |
KR101585741B1 (en) | High strength lightweight clad steel sheet having excellent stiffness, dent resistance and corrosion resistance properties | |
KR20190077180A (en) | High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same | |
KR101988760B1 (en) | Ultra-high strength steel sheet having excellent formability, and method for manufacturing thereof | |
KR101786262B1 (en) | Hot-rolled thick steel plate having excellent strength and dwtt toughness at low temperature, and method for manufacturing the same | |
KR20020040213A (en) | A METHOD FOR MANUFACTURING HOT ROLLED STEEL SHEET OF TENSILE STRENGTH 80kg/㎟ GRADE WITH EXCELLENT WEATHER RESISTANCE AND WORKABILITY | |
KR102142774B1 (en) | High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof | |
KR100958002B1 (en) | High strength weather resistant cold rolled steel sheet with excellent workability and manufacturing method | |
KR20170075925A (en) | Steel sheet for pipe having excellent weldability, method for manufacturing the same, and method for manufacturing welded steel pipe using the same | |
KR20150075289A (en) | High strength lightweight triple clad steel sheet having excellent dent resistance and formability properties | |
KR20150075332A (en) | High strength lightweight triple clad steel sheet having excellent stiffness and corrosion resistance properties | |
KR20090020360A (en) | High strength cold rolled steel sheet with excellent dent resistance and weather resistance and manufacturing method thereof | |
KR20110077091A (en) | Hot rolled steel for line pipe and manufacturing method | |
KR101433444B1 (en) | Method for manufacturing formable hot-rolled steel having excellent anti-fluting and the hot-rolled steel by the same method | |
KR101193783B1 (en) | Low carbon steel with high strength and method of manufacturing the low carbon steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20061212 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20071121 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20080306 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20080314 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20080314 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
G170 | Re-publication after modification of scope of protection [patent] | ||
PG1701 | Publication of correction | ||
PR1001 | Payment of annual fee |
Payment date: 20110315 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20120302 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20130304 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20130304 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140314 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20140314 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20150309 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20150309 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20160308 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20160308 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170307 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20170307 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20180309 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20180309 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20200310 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20200310 Start annual number: 13 End annual number: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20210310 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20240308 Start annual number: 17 End annual number: 17 |