[go: up one dir, main page]

KR100804413B1 - Organometallic Precursor for Zirconium Oxide Thin Film Deposition and Its Manufacturing Method - Google Patents

Organometallic Precursor for Zirconium Oxide Thin Film Deposition and Its Manufacturing Method Download PDF

Info

Publication number
KR100804413B1
KR100804413B1 KR1020060056116A KR20060056116A KR100804413B1 KR 100804413 B1 KR100804413 B1 KR 100804413B1 KR 1020060056116 A KR1020060056116 A KR 1020060056116A KR 20060056116 A KR20060056116 A KR 20060056116A KR 100804413 B1 KR100804413 B1 KR 100804413B1
Authority
KR
South Korea
Prior art keywords
formula
zirconium oxide
zirconium
thin film
oxide precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020060056116A
Other languages
Korean (ko)
Other versions
KR20070121281A (en
Inventor
김명운
김진동
박정우
신재관
김재완
임민혁
Original Assignee
(주)디엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39138697&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR100804413(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by (주)디엔에프 filed Critical (주)디엔에프
Priority to KR1020060056116A priority Critical patent/KR100804413B1/en
Publication of KR20070121281A publication Critical patent/KR20070121281A/en
Application granted granted Critical
Publication of KR100804413B1 publication Critical patent/KR100804413B1/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 하기 화학식 1로 표시되는 신규한 지르코늄 산화물 선구물질 및 그의 제조방법에 관한 것으로, 본 발명에 따라 합성된 지르코늄 산화물 선구물질은 열적으로 안정하고 휘발성이 개선되어 지르코늄 산화물 박막 제조에 유리하게 사용할 수 있다.The present invention relates to a novel zirconium oxide precursor represented by the following formula (1) and a method for producing the same, the zirconium oxide precursor synthesized according to the present invention is thermally stable and volatility is improved to be used advantageously in the production of zirconium oxide thin film Can be.

[화학식 1][Formula 1]

Figure 112006043940370-pat00001
Figure 112006043940370-pat00001

[상기 화학식 1에서 A는 NR2R3 또는 ER4 이고; E는 산소(O) 또는 황(S)이고; R1은 수소, 메틸 또는 에틸이고; R2 및 R3는 서로 독립적으로 플루오르를 포함하거나 포함하지 않는 C1-C4의 알킬기 또는 SiR5 3이고; R4는 플루오르를 포함하거나 포함하지 않는 C1-C6의 알킬기 또는 SiR5 3이고; R5는 C1-C4의 알킬기이다.][In Formula 1, A is NR 2 R 3 or ER 4 ; E is oxygen (O) or sulfur (S); R 1 is hydrogen, methyl or ethyl; R 2 and R 3 are independently of each other a C1-C4 alkyl group or SiR 5 3 with or without fluorine; R 4 is a C1-C6 alkyl group with or without fluorine or SiR 5 3 ; R 5 is an alkyl group of C 1 -C 4.]

지르코늄 산화물 선구물질, 지르코늄 산화물, 박막, MOCVD, ALD Zirconium Oxide Precursor, Zirconium Oxide, Thin Film, MOCVD, ALD

Description

지르코늄 산화물 박막 증착용 유기금속 선구물질 및 이의 제조 방법{A PRECURSOR FOR ZIRCONIUM DIOXIDE THIN FILM DEPOSITION AND PREPARATION METHOD THEREOF}Organometallic precursor for zirconium oxide thin film deposition and its manufacturing method {A PRECURSOR FOR ZIRCONIUM DIOXIDE THIN FILM DEPOSITION AND PREPARATION METHOD THEREOF}

도 1 - 실시예 1에서 제조된 CpZr(NEtMe)31H-NMR 1-1 H-NMR of CpZr (NEtMe) 3 prepared in Example 1

도 2 - 실시예 4에서 제조된 CpZr(OiPr)31H-NMR 2-a prepared in Example 4 CpZr (O i Pr) 3 1 H-NMR of the

도 3 - 실시예 5에서 제조된 CpZr(mp)31H-NMR 1 H-NMR of the embodiment CpZr (mp) 3 prepared in Example 5 - 3

도 4 - 실시예 6에서 제조된 CpZr(StBu)31H-NMR Figure 4-a prepared in Example 6 CpZr (S t Bu) 3 1 H-NMR of the

도 5 - 실시예 1에서 제조된 CpZr(NEtMe)3 의 열중량 분석(TGA) 및 시차 열분석(DTA) 5-Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) of CpZr (NEtMe) 3 prepared in Example 1

도 6 - 실시예 4에서 제조된 CpZr(OiPr)3 의 열중량 분석(TGA) 및 시차 열분석(DTA)6-Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) of CpZr (O i Pr) 3 prepared in Example 4

도 7 - 실시예 5에서 제조된 CpZr(mp)3 의 열중량 분석(TGA) 및 시차 열분석(DTA)7-Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) of CpZr (mp) 3 prepared in Example 5

본 발명은 신규의 지르코늄 산화물 박막 증착용 선구물질에 관한 것으로서, 지르코늄 산화물 선구물질로서 유용한 지르코늄 유기금속 화합물 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel precursor for depositing zirconium oxide thin films, and relates to a zirconium organometallic compound useful as a zirconium oxide precursor and a manufacturing method thereof.

디지털 기술의 발전과 함께 급격한 현대 사회의 정보화와 통신화에 대한 발전은 더욱 많은 정보를 더욱 빠르게 처리할 수 있는 능력을 가진 소자 개발을 끊임없이 요구하고 있다. 따라서 시스템의 성능 향상뿐만 아니라 소자의 핵심부품인 transistor의 고집적화 및 초고속화가 요구됨에 따라 집적회로의 크기를 지속적으로 축소하여 스윗칭 속도를 증가시키고, 전력손실을 감소시키려는 시도가 이루어지고 있다. 이에 따라 transistor에서는 channel의 거리를 줄이고 게이트 산화막의 두께를 줄임으로써 고속화를 이루어 왔다. 그러나 기존에 사용되어 왔던 게이트 산화막인 SiO2 는 80nm 이하에서는 누설전류가 커지는 문제점을 가지고 있어 이러한 한계를 극복하기 위해 절연성이 뛰어나고 유전율이 높으며 유전 손실이 적은 고유전(high-k) 물질의 적용이 필수적이게 된다. 특히 ZrO2는 유전 상수 값이 크고 (~ 25), band gap (~5.8 eV)이 크며 Si 계면과의 접촉시 열적으로 안정하기 때문에 많은 관심의 대상이 되고 있다. 한편, 반도체 소자에 있어서 게이트 산화막의 제조기 술은 금속 유기물 화학 기상 증착(metal organic chemical vapor deposition; MOCVD) 혹은 원자층 증착 (atomic layer deposition; ALD) 공정을 통하여 이루어 진다. 따라서 MOCVD 혹은 ALD 공정을 이용하여 원하는 산화막을 증착하기 위해서는 공정에 적합한 선구물질의 선택이 가장 중요한 문제라 할 수 있다. 특히 최종 산화물 박막의 층 덮임이 균일하고, 밀도가 높고 치밀한 박막을 제조하는데에 있어서 대량 생산을 고려하면, 선구물질은 100℃ 이하에서 충분히 높은 증기압을 가져야 하고, 기화시키기 위해 가열하는 동안 열적으로 충분히 안정해야 한다. 더욱 바람직하게는 안정한 증기압을 확보하고 기화기 내부로의 입자들의 혼입 등을 방지하기 위해서는 선구물질은 실온에서 점성이 낮은 액체 화합물이거나 녹는점이 낮은 고체상태이어야 한다. 또한 MOCVD 공정일 경우에는 250℃ 내지 500℃의 기질 온도에서 유기 물질 등의 분해 없이 신속히 분해되어야 하며, ALD의 공정일 경우에는 산화제로 사용하는 오존 혹은 물에 의해 리간드가 완전하고 신속하게 분해 및 제거되어야 한다.The rapid development of informatization and communication in the modern society with the development of digital technology is constantly demanding the development of devices with the ability to process more information faster. Therefore, as not only the performance improvement of the system but also the high integration and ultra-high speed of the transistor, which are the core components of the device, are required, the size of the integrated circuit is continuously reduced to increase the switching speed and reduce the power loss. Accordingly, the transistor has been speeded up by reducing the channel distance and reducing the thickness of the gate oxide layer. However, conventionally used gate oxide film SiO 2 has a problem that leakage current increases at 80 nm or less. Therefore, in order to overcome this limitation, application of high-k material having high dielectric constant and low dielectric loss is required. It becomes necessary. In particular, ZrO 2 is of great interest because it has a large dielectric constant (~ 25), a large band gap (~ 5.8 eV), and is thermally stable upon contact with the Si interface. In the semiconductor device, a gate oxide film is manufactured through metal organic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD). Therefore, in order to deposit a desired oxide film using MOCVD or ALD process, the selection of a precursor suitable for the process is the most important problem. Considering mass production, especially in the production of uniform, dense and dense thin film coverings of the final oxide thin film, the precursor should have a sufficiently high vapor pressure below 100 ° C. and thermally sufficient during heating to vaporize. It should be stable. More preferably, the precursor should be a low viscosity liquid compound or a low melting point solid at room temperature in order to ensure stable vapor pressure and prevent the incorporation of particles into the vaporizer. In the case of MOCVD process, it should be rapidly decomposed without decomposing organic materials at substrate temperature of 250 ℃ ~ 500 ℃. In case of ALD process, ligand is completely and quickly decomposed and removed by ozone or water used as oxidant. Should be.

지르코늄 산화물 박막제조를 위해 기존에 알려진 선구물질은 중심금속인 지르코늄에 배위되어 있는 리간드의 종류에 따라 크게 네 가지로 분류될 수 있다. Previously known precursors for the production of zirconium oxide thin films can be classified into four types according to the type of ligand coordinated in the zirconium core metal.

첫째는 ZrCl4, ZrI4 혹은 Zr(NO3)4 등의 무기염 선구물질이다. 그러나 이들 무기염 선구물질들은 휘발성이 낮을 뿐만 아니라 녹는점이 높은 고체 선구물질로서 기화 중에 기질로의 입자 혼입에 대한 문제점을 가지고 있으며 고순도의 지르코늄 산화박막을 형성하는데 있어서 불순물의 오염이 심각하게 우려된다고 보고되고 있다 (A. C. Jones, P. R. Chalker, J. Phys. D: Appl . Phys., 2003, 36, R80).The first is an inorganic salt precursor such as ZrCl 4 , ZrI 4 or Zr (NO 3 ) 4 . However, these inorganic salt precursors are not only low volatility but also high melting point solid precursors, which have a problem of incorporation of particles into the substrate during vaporization and serious contamination of impurities in forming high purity zirconium oxide thin films. (AC Jones, PR Chalker, J. Phys. D: Appl . Phys., 2003, 36, R80).

둘째는 지르코늄 알콕사이드(Zr(OR)4)를 들 수 있다. 지르코늄 알콕사이드 선구물질들은 지르코늄의 무기염 선구물질들에 비해 휘발성이 높고 증착온도가 낮아 지르코늄 박막증착용 MOCVD 및 ALD 선구물질로 적용한 연구가 가장 많이 보고되어 왔다. 그러나 중심 금속인 지르코늄 이온은 0.72Å의 비교적 큰 이온반지름을 가지고 있어 6-8 배위권을 만족시키기 위해 이합체 또는 중합체가 되는 경향이 있어 (D. C. Bradley, R. C. Mehrotra and D. P. Gaur, Metal Alkoxides, Academic Press, New York, 1978, pp 10-12) 휘발성을 떨어뜨릴 수 있을 뿐만 아니라 안정된 증기압을 얻는데 문제가 발생한다. 따라서 보관중이나 혹은 기상에서의 이합체 혹은 중합체 생성에 의한 증기압 저하를 방지하기 위하여 tert-부틸 그룹과 같은 크기가 큰 알킬 그룹을 도입하여 입체 장애를 유도한 Zr(OtBu)4 (B. J. Gould, I. M. Povey, M. E. Pemble and W. R. Flavell, J. Mater. Chem ., 1994, 4, 1815) 을 선구물질로 이용하거나 두 자리 주개 리간드를 도입하여 선구물질을 단위체로 만들어 증기압 특성을 향상시킨 연구가 최근 몇 년간 보고되어 왔다. 후자의 경우, 대표적인 예로 1-methoxy-2-methyl-2-propoanolate(mmp)를 리간드로 도입한 Zr(OtBu)2(mmp)2 및 Zr(mmp)4 (P. A. Williams, J. L. Roberts, A. C. Jones, P. R. Chalker, N. L. Tobin, J. F. Bickley, H. O. Davies, L. M. Smith and T. J. Leedham, Chem . Vap . Deposition, 2002, 8, 163) 를 선구물질로 사용하여 기존의 MOCVD나 LI-MOCVD를 이용하여 350 내지 600℃에서 지르코니아 박막을 제조한 결과가 보고되었으나 최종 박막 내에 카본 잔류량이 다소 높은 것으로 나타나고 있다. 이 밖에도 2-dimethylaminoethanol(dmae) 및 1-dimethylamino-2-propanol(dmap) 등을 리간드로 도입한 [Zr(OiPr)3(dmap)]2 및 [Zr(OiPr)3(bis-dmap)]2 (K. A. Fleeting, P. O'Brien, A. C. Jones, D. J. Otway, A. J. P. White and D. J. Williams, J. Chem. Soc ., Dalton Trans., 1999, 2853), [Zr(OtBu)2(dmae)2]2 (R. Matero, M. Ritala, M. Leskala, A. C. Jones, P. A. Williams, J. F. Bickley, A. Steiner, T. J. Leedham and H. O. Davies, J. Non-Cryst. Solids, 2002, 303, 24) 등이 보고되었는데 이들은 모두 기화를 위해 가열하는 동안 불균등화 반응을 일으켜 증기압이 안정되지 못한 것으로 알려져 있다 (A. C. Jones, T. J. Leedham, P. J. Wright, M. J. Crosbie, D. J. Williams, P. A. Lane and P. O'Brien, Mater. Res. Soc. Symp . Proc ., 1998, 495, 11).Second is zirconium alkoxide (Zr (OR) 4 ). Zirconium alkoxide precursors have been reported to be the most applied researches for MOCVD and ALD precursors for zirconium thin film deposition because they have higher volatility and lower deposition temperature than inorganic salt precursors of zirconium. However, zirconium ions, the central metals, have a relatively large ion radius of 0.72 Å and tend to be dimers or polymers to satisfy 6-8 coordination (DC Bradley, RC Mehrotra and DP Gaur, Metal Alkoxides , Academic Press, New York, 1978, pp 10-12) Not only can it reduce volatility, but it also leads to problems in achieving a stable vapor pressure. Therefore, Zr (O t Bu) 4 (BJ Gould, IM which induced steric hindrance by introducing a large alkyl group such as tert -butyl group in order to prevent vapor pressure drop due to dimer or polymer formation in storage or gas phase. Povey, ME Pemble and WR Flavell, J. Mater. Chem . , 1994, 4 , 1815) have been used in recent years to improve the vapor pressure characteristics by making precursors into monomers by introducing double-digit donor ligands. Has been reported. In the latter case, a typical example a (O t Bu) Zr introducing 1-methoxy-2-methyl- 2-propoanolate (mmp) ligand 2 (mmp) 2 and Zr (mmp) 4 (PA Williams , JL Roberts, AC Jones, PR Chalker, NL Tobin, JF Bickley, HO Davies, LM Smith and TJ Leedham, Chem . Vap . Deposition , 2002, 8 , 163) has been reported to produce zirconia thin films at 350 to 600 ° C using conventional MOCVD or LI-MOCVD, but the carbon residue in the final thin film is rather high. In addition, [Zr (O i Pr) 3 (dmap)] 2 and [Zr (O i Pr) 3 (bis-) having introduced 2-dimethylaminoethanol (dmae) and 1-dimethylamino-2-propanol (dmap) as ligands. dmap)] 2 (KA Fleeting, P. O'Brien, AC Jones, DJ Otway, AJP White and DJ Williams, J. Chem. Soc ., Dalton Trans ., 1999, 2853), Zr (O t Bu) 2 (dmae) 2 ] 2 (R. Matero, M. Ritala, M. Leskala, AC Jones, PA Williams, JF Bickley, A. Steiner, TJ Leedham and HO Davies, J. Non-Cryst. Solids, 2002, 303, 24) have been reported, all of which are known to cause disproportionation during heating for vaporization, resulting in unstable vapor pressure (AC Jones, TJ Leedham, PJ Wright, MJ Crosbie, DJ Williams, PA Lane and P. O '). Brien, Mater. Res. Soc. Symp . Proc ., 1998, 495 , 11).

셋째는, β-디케토네이트를 포함하는 지르코늄 선구물질을 들 수 있다. 이들 화합물은 지르코늄 주위의 배위권을 충분히 만족시켜 주어 안정한 화합물을 만들지만, 박막 증착에 충분한 증기압을 얻기 위해서는 높은 온도가 필요하고 (R. C. Smith, T. Ma, N. Hoilien, L. Y. Tsung, M. J. Bevan, L. Colombo, J. Roberts, S. A. Campbell and W. Gladfelter, Adv . Mater. Opt. Electron., 2000, 10, 105), 높은 분해 온도로 인하여 최종 박막 내에 탄소오염이 심각한 문제점을 나타낸다. 또한 플루오르가 β-디케토네이트 리간드에 포함된 Zr(tfac)4 ( M. Balog, M. Schreiber, J. Cryst. Growth, 1972, 17, 298) 의 경우 증기압은 향상되지만 박막을 증착시 플루오르가 실리콘 기질을 분해하기 때문에 지르코니아 박막 증착용 선구물질로서 적용하기는 어렵다. Third, a zirconium precursor containing β-diketonate can be mentioned. These compounds sufficiently satisfy the coordination around zirconium to form stable compounds, but require high temperatures to obtain sufficient vapor pressure for thin film deposition (RC Smith, T. Ma, N. Hoilien, LY Tsung, MJ Bevan, L. Colombo, J. Roberts, SA Campbell and W. Gladfelter, Adv . Mater. Opt. Electron ., 2000, 10 , 105), due to the high decomposition temperature, carbon contamination in the final film presents a serious problem. In addition, in the case of Zr (tfac) 4 (M. Balog, M. Schreiber, J. Cryst. Growth, 1972, 17, 298), in which fluorine is contained in the β-diketonate ligand, the vapor pressure is improved, but It is difficult to apply it as a precursor for zirconia thin film deposition because it decomposes the silicon substrate.

넷째, 아미도 리간드가 배위되어 있는 지르코늄 화합물은 최근에 가장 많이 MOCVD 및 ALD 공정에 선구물질로 적용한 연구가 보고되고 있다. 특히 Zr(NMeEt)4 혹은 Zr(NEt2)4로 대표되는 지르코늄 아미도 화합물은 모두 상온에서 점성이 낮은 액체상태로 존재하고 증기압이 매우 높으며 오존 및 수증기에 의해 아미도 리간드의 제거가 용이하여 ALD 공정을 이용한 지르코니아 박막제조의 선구물질로서 가장 많이 적용되고 있다 (D. M. Hausmann, E. Kim, J. Becker, and L. G. Gordon, Chem . Mater., 2002, 14, 4350). 그러나 지르코늄 아미도 화합물들은 매우 반응성이 높아 장기 보관성이 용이하지 않으며, 특히 열적 안정성이 낮아 (250℃ 이하) 기화 도중에 분해하여 박막의 품질에 크게 영향을 미친다는 것이 최근 보고되고 있다. Fourth, zirconium compounds in which amido ligands are coordinated have recently been reported to be the most applied precursors for MOCVD and ALD processes. In particular, all zirconium amido compounds represented by Zr (NMeEt) 4 or Zr (NEt 2 ) 4 exist in low viscosity liquid state at room temperature, have high vapor pressure, and easy removal of amido ligands by ozone and water vapor. It is most widely used as a precursor of zirconia thin film manufacturing using the process (DM Hausmann, E. Kim, J. Becker, and LG Gordon, Chem . Mater ., 2002, 14 , 4350). However, it has recently been reported that zirconium amido compounds are very reactive and thus do not easily be stored for long periods of time. In particular, zirconium amido compounds have a low thermal stability (below 250 ° C.) to decompose during vaporization and thus greatly affect the quality of the thin film.

이에 본 발명자들은 상기와 같은 기존의 지르코늄 선구물질들의 문제점들을 해결하기 위하여, 열적 안정성이 높고 휘발성이 높으며 안정한 증기압을 가지는 신규의 지르코늄 선구물질을 개발하기에 이르렀다.In order to solve the problems of the existing zirconium precursors, the present inventors have developed a novel zirconium precursor having high thermal stability, high volatility, and stable vapor pressure.

본 발명의 목적은 유기금속 화학기상 증착법(MOCVD) 혹은 원자층 증착법(ALD) 공정을 적용하여 양질의 지르코늄 산화막을 증착시키기 위해 열적안정성이 높고 휘발성이 우수한 지르코늄 산화물 선구물질을 제공하는데 있다.An object of the present invention is to provide a zirconium oxide precursor having high thermal stability and excellent volatility for depositing a high quality zirconium oxide film by applying an organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD) process.

본 발명은 상기 목적을 달성하기 위하여, 하기 화학식 1로 표시되는 신규한 지르코늄 산화물 선구물질을 제공한다:The present invention provides a novel zirconium oxide precursor represented by the following formula (1) to achieve the above object:

[화학식 1][Formula 1]

Figure 112006043940370-pat00002
Figure 112006043940370-pat00002

[상기 화학식 1에서 A는 NR2R3 또는 ER4 이고; E는 산소(O) 또는 황(S)이고; R1은 수소, 메틸 또는 에틸이고; R2 및 R3는 서로 독립적으로 플루오르를 포함하거나 포함하지 않는 C1-C4의 알킬기 또는 SiR5 3이고; R4는 플루오르를 포함하거나 포함하지 않는 C1-C6의 알킬기 또는 SiR5 3이고; R5는 C1-C4의 알킬기이다.][In Formula 1, A is NR 2 R 3 or ER 4 ; E is oxygen (O) or sulfur (S); R 1 is hydrogen, methyl or ethyl; R 2 and R 3 are independently of each other a C1-C4 alkyl group or SiR 5 3 with or without fluorine; R 4 is a C1-C6 alkyl group with or without fluorine or SiR 5 3 ; R 5 is an alkyl group of C 1 -C 4.]

보다 바람직하게는 상기 화학식 1에서, A는 NR2R3이고, R1은 수소 또는 메틸이고, R2 및 R3는 서로 독립적으로 메틸 또는 에틸인 지르코늄 산화물 선구물질 및 A는 ER4 이고; E는 O 또는 S이고, R1은 수소 또는 메틸이고, R4는 이소프로필, t-부틸 또는 3-메틸-3-펜틸인 지르코늄 산화물 선구물질이 예시된다.More preferably, in Chemical Formula 1, A is NR 2 R 3 , R 1 is hydrogen or methyl, R 2 and R 3 are independently of each other a zirconium oxide precursor and A is ER 4 ; A zirconium oxide precursor is illustrated wherein E is O or S, R 1 is hydrogen or methyl and R 4 is isopropyl, t-butyl or 3-methyl-3-pentyl.

상기 화학식 1의 지르코늄 산화물 선구물질은 하기 화학식 1-1 및 화학식 1-2의 화합물을 포함한다:The zirconium oxide precursor of Formula 1 includes the compounds of Formulas 1-1 and 1-2:

[화학식 1-1][Formula 1-1]

Figure 112006043940370-pat00003
Figure 112006043940370-pat00003

[화학식 1-2][Formula 1-2]

Figure 112006043940370-pat00004
Figure 112006043940370-pat00004

[상기 식에서, R1, R2, R3, R4 및 E은 화학식 1에서 정의한 바와 동일하다.][Wherein, R 1 , R 2 , R 3 , R 4 and E are the same as defined in the formula (1).]

상기 화학식 1로 정의되는 지르코늄 산화물 선구물질은 하기 반응식 1 내지 4로부터 용이하게 제조될 수 있으며, 하기 반응식 1 내지 4에 따른 지르코늄 산화물 선구물질의 합성은 벤젠, 헥산, 펜탄, 톨루엔과 같은 비극성 용매 혹은 디에틸에테르 또는 테트라하이드로퓨란과 같은 극성 용매를 용매로 하여 제조된다.The zirconium oxide precursors defined by Chemical Formula 1 may be easily prepared from the following Schemes 1 to 4, and the synthesis of the zirconium oxide precursors according to the following Schemes 1 to 4 may include a nonpolar solvent such as benzene, hexane, pentane, and toluene. It is prepared using a polar solvent such as diethyl ether or tetrahydrofuran as a solvent.

본 발명에 따른 화학식 1의 지르코늄 산화물 선구물질 [R1CpZr(A)3]은 하기 반응식 1에 나타낸 바와 같이, 하기 화학식 2로 표시되는 화합물 [R1CpZr(X)3]을 출발 물질로 하여 화학식 3의 화합물 MA 와 반응시켜 제조될 수 있다:The zirconium oxide precursor [R 1 CpZr (A) 3 ] of the formula 1 according to the present invention may be prepared by using the compound [R 1 CpZr (X) 3 ] represented by the following formula 2 as a starting material It may be prepared by reacting with compound MA of Formula 3:

[반응식 1]Scheme 1

R1CpZr(X)3 (2) + 3 MA (3) → R1CpZr(A)3 (1) + 3 MXR 1 CpZr (X) 3 (2) + 3 MA (3) → R 1 CpZr (A) 3 (1) + 3 MX

[상기 식에서, A 및 R1은 화학식 1에서 정의한 바와 동일하며, X는 염소원자, 브롬원자 또는 요오드원자를 나타내고, M은 리튬, 나트륨 또는 칼륨을 나타낸다.][Wherein A and R 1 are the same as defined in Formula 1, X represents a chlorine atom, bromine atom or iodine atom, and M represents lithium, sodium or potassium.]

상기 반응식 1에 나타난 바와 같이, 화학식 2의 화합물 1 당량과 화학식 3의 화합물 3 당량을 벤젠, 헥산, 펜탄, 톨루엔과 같은 비극성 용매 혹은 디에틸에테르 또는 테트라하이드로퓨란과 같은 극성 용매에 녹여 실온에서 약 12시간 동안 교반하여 치환반응을 유도한 뒤 감압 하에서 여과하고, 생성된 여과액으로부터 용매를 감압 제거하여 화학식 1의 지르코늄 산화물 선구물질 화합물을 얻을 수 있다. As shown in Scheme 1, 1 equivalent of Compound 2 and 3 equivalent of Compound 3 are dissolved in a nonpolar solvent such as benzene, hexane, pentane, toluene or a polar solvent such as diethyl ether or tetrahydrofuran, After stirring for 12 hours to induce a substitution reaction, and filtered under reduced pressure, the solvent was removed under reduced pressure from the resulting filtrate to obtain a zirconium oxide precursor compound of formula (1).

본 발명에 따른 화학식 1의 지르코늄 산화물 선구물질 [R1CpZr(A)3]은 하기 반응식 2에 나타낸 바와 같이, 하기 화학식 2로 표시되는 화합물 [R1CpZr(X)3]을 출발 물질로 하여 화학식 4의 화합물 HA 와 반응시켜 제조될 수도 있다:The zirconium oxide precursor [R 1 CpZr (A) 3 ] according to the present invention is represented by the following Scheme 2, using the compound [R 1 CpZr (X) 3 ] represented by the following Formula 2 as a starting material. It may also be prepared by reacting with compound HA of Formula 4:

[반응식 2]Scheme 2

R1CpZr(X)3 (2) + 3 HA (4) + 3 NR11 3 → R1CpZr(A)3 (1) + 3 NR11 3·HClR 1 CpZr (X) 3 (2) + 3 HA (4) + 3 NR 11 3 → R 1 CpZr (A) 3 (1) + 3 NR 11 3 HCl

[상기 식에서, A 및 R1은 화학식 1에서 정의한 바와 동일하며, X는 염소원자, 브롬원자 또는 요오드원자를 나타내고, R11은 메틸 또는 에틸을 나타낸다.][Wherein A and R 1 are the same as defined in Formula 1, X represents a chlorine atom, bromine atom or iodine atom, and R 11 represents methyl or ethyl.]

상기 반응식 2에 나타난 바와 같이, 화학식 2의 화합물 1 당량과 화학식 4의 화합물 3+x 당량 (0<x<2)을 벤젠, 헥산, 펜탄, 톨루엔과 같은 비극성 용매 혹은 디 에틸에테르 또는 테트라하이드로퓨란과 같은 극성 용매에 녹인 후 3+x 당량의 3급아민 (NR11 3, R11=CH3 혹은 CH2CH3) 을 넣은 후 실온에서 약 12시간 동안 교반하여 치환반응을 유도하면 흰색의 고체가 침전되고, 감압 하에서 여과하여 흰색의 고체를 제거한 후 얻은 여과액을 감압 하에서 용매를 제거하여 화학식 1의 지르코늄 산화물 선구물질 화합물을 얻을 수 있다.As shown in Scheme 2, 1 equivalent of the compound of Formula 2 and 3 + x equivalent of the compound of Formula 4 (0 <x <2) are converted to a nonpolar solvent such as benzene, hexane, pentane, toluene, or diethyl ether or tetrahydrofuran. After dissolving in a polar solvent such as 3 + x equivalent tertiary amine (NR 11 3 , R 11 = CH 3 or CH 2 CH 3 ), and then stirred at room temperature for about 12 hours to induce a substitution reaction, a white solid Precipitated, and the filtrate obtained by filtration under reduced pressure to remove the white solid, the solvent was removed under reduced pressure to obtain a zirconium oxide precursor compound of formula (1).

또한 본 발명에 따른 화학식 1의 지르코늄 산화물 선구물질 [R1CpZr(A)3]은 하기 반응식 3에 나타낸 바와 같이, 하기 화학식 5로 표시되는 화합물 [Zr(NR2R3)4]을 출발 물질로 하여 화학식 6의 화합물 R1C5H5 와 반응시켜 제조될 수도 있다:In addition, the zirconium oxide precursor [R 1 CpZr (A) 3 ] according to the present invention is a starting material of the compound [Zr (NR 2 R 3 ) 4 ] represented by the following Formula 5, as shown in Scheme 3 below. It may be prepared by reacting with a compound of Formula 6 R 1 C 5 H 5

[반응식 3]Scheme 3

Zr(NR2R3)4 (5) + R1C5H5 (6) → R1CpZr(NR2R3)3 (1) + HNR2R3 Zr (NR 2 R 3 ) 4 (5) + R 1 C 5 H 5 (6) → R 1 CpZr (NR 2 R 3 ) 3 (1) + HNR 2 R 3

[상기 식에서, R1, R2 및 R3은 화학식 1에서 정의한 바와 동일하다.][Wherein, R 1 , R 2 and R 3 are the same as defined in the formula (1).]

상기 반응식 3에 나타난 바와 같이, 화학식 5의 화합물 1 당량을 벤젠, 헥산, 펜탄, 톨루엔과 같은 비극성 용매 혹은 디에틸에테르 또는 테트라하이드로퓨란 과 같은 극성 용매에 녹인 후 화학식 6의 화합물 1+x 당량 (0<x<1)을 넣은 후 실온에서 약 12시간 동안 교반하여 치환반응을 유도하고, 반응종료 후 감압 하에서 용매를 제거하여 화학식 1의 지르코늄 산화물 선구물질 화합물을 얻을 수 있다.As shown in Scheme 3, 1 equivalent of Compound 5 is dissolved in a non-polar solvent such as benzene, hexane, pentane, toluene, or a polar solvent such as diethyl ether or tetrahydrofuran, and then Compound 1 + x equivalent of Formula 6 ( After adding 0 <x <1), the reaction was induced at room temperature for about 12 hours to induce a substitution reaction, and after completion of the reaction, the solvent was removed under reduced pressure to obtain a zirconium oxide precursor compound of Chemical Formula 1.

또한 본 발명에 따른 화학식 1의 지르코늄 산화물 선구물질 [R1CpZr(A)3]은 하기 반응식 4에 나타낸 바와 같이, 하기 화학식 1-1로 표시되는 화합물 [R1CpZr(NR2R3)3]을 출발 물질로 하여 화학식 7의 화합물 HER4 와 반응시켜 제조될 수도 있다:In addition, the zirconium oxide precursor [R 1 CpZr (A) 3 ] of the formula 1 according to the present invention is a compound represented by the following formula 1-1 [R 1 CpZr (NR 2 R 3 ) 3 ] May be prepared by reacting with compound HER 4 of formula 7:

[반응식 4]Scheme 4

R1CpZr(NR2R3)3 (1-1) + HER4 (7) → R1CpZr(ER4)3 (1-2) + HNR2R3 R 1 CpZr (NR 2 R 3 ) 3 (1-1) + HER 4 (7) → R 1 CpZr (ER 4 ) 3 (1-2) + HNR 2 R 3

[상기 식에서, R1, R2, R3, R4 및 E은 화학식 1에서 정의한 바와 동일하다.][Wherein, R 1 , R 2 , R 3 , R 4 and E are the same as defined in the formula (1).]

상기 반응식 4에 나타난 바와 같이, 화학식 1-1의 화합물 1 당량을 벤젠, 헥산, 펜탄, 톨루엔과 같은 비극성 용매 혹은 디에틸에테르 또는 테트라하이드로퓨란과 같은 극성 용매에 녹인 후 화학식 7의 화합물 1+x 당량 (0<x<1)을 넣은 후 실온에서 약 12시간 동안 교반하여 치환반응을 유도하고, 반응종료 후 감압 하에서 용 매를 제거하여 화학식 1-2의 지르코늄 산화물 선구물질 화합물을 얻을 수 있다.As shown in Scheme 4, 1 equivalent of Compound 1-1 is dissolved in a non-polar solvent such as benzene, hexane, pentane, toluene, or a polar solvent such as diethyl ether or tetrahydrofuran, and then Compound 1 + x After adding the equivalent (0 <x <1) and stirring at room temperature for about 12 hours to induce a substitution reaction, and after completion of the reaction to remove the solvent under reduced pressure to obtain a zirconium oxide precursor compound of formula 1-2.

본 발명에 따른 신규의 지르코늄 산화물 선구물질은 지르코니아 박막을 비롯한 지르코늄 산화물을 포함하는 각종 산화물 박막 제조용 선구물질로서, 특히 반도체 제조 공정에 널리 사용되고 있는 유기금속 화학 기상 증착(MOCVD) 또는 원자층 층착(ALD) 공정에 바람직하게 적용될 수 있다.The novel zirconium oxide precursor according to the present invention is a precursor for producing various oxide thin films including zirconium oxide including zirconia thin film, and is particularly widely used in semiconductor manufacturing processes, such as organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD). ) Can be preferably applied to the process.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.  The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

모든 실험은 장갑 상자 또는 슐렝크 관(Schlenk line)을 사용하여 비활성 아르곤 또는 질소 분위기에서 수행하였다. 실시예 1 내지 3에서 얻은 각각의 반응 생성물의 구조는 수소 원자 핵자기 공명법(1H nuclear magnetic resonance, 1H NMR), 탄소 원자 핵자기 공명법(13C NMR) 을 이용하여 분석하였다.All experiments were performed in an inert argon or nitrogen atmosphere using a glove box or Schlenk line. The structure of each reaction product obtained in Examples 1 to 3 was analyzed using 1 H nuclear magnetic resonance ( 1 H NMR) and carbon atom nuclear magnetic resonance ( 13 C NMR).

지르코늄 zirconium 선구물질의Precursor 제조 Produce

[실시예 1] 싸이클로펜타디에닐지르코늄(IV) 트리(에틸메틸아마이드) [CpZr(NEtMe)3]의 합성Example 1 Synthesis of Cyclopentadienyl zirconium (IV) tri (ethylmethylamide) [CpZr (NEtMe) 3 ]

100 mL의 헥산이 들어있는 불꽃 건조된 125 mL 슐렝크 플라스크에 테트라키스(에틸메틸아미노)지르코늄(IV) 32.36 g (100 mmol, 1.00 당량)을 넣고 용해시킨 후 교반시키면서 싸이클로펜타디엔 66.10g (100 mmol, 1.00 당량)를 -20℃를 유지한 채 천천히 첨가한 후 반응온도를 실온까지 천천히 올렸다. 이 혼합 반응용액을 2 시간 동안 실온에서 교반한 후 반응을 종결시켰으며, 반응 종결 후 감압하여 용매를 완전히 제거하여 노란색의 액체를 얻었다. 생성된 액체의 순도를 높이기 위해 감압 하에서 증류 (끓는점 : 81℃@0.1mmHg)하여 노랑색 액체의 표제 화합물 23.2g(수율 70%)을 수득하였다.Into a flame-dried 125 mL Schlenk flask containing 100 mL of hexane, 32.36 g (100 mmol, 1.00 equiv) of tetrakis (ethylmethylamino) zirconium (IV) were dissolved, followed by stirring 66.10 g of cyclopentadiene with stirring. mmol, 1.00 equiv) was slowly added while maintaining the temperature at −20 ° C., and the reaction temperature was slowly raised to room temperature. After the reaction mixture was stirred for 2 hours at room temperature, the reaction was terminated. After completion of the reaction, the solvent was removed under reduced pressure to give a yellow liquid. Distillation under reduced pressure (boiling point: 81 ° C. at 0.1 mm Hg) to increase the purity of the resulting liquid yielded 23.2 g (yield 70%) of the title compound as a yellow liquid.

1H NMR (C6D6): δ 6.07 (s, 5H, -C5 H 5 ), 3.22, 3.19 (q, 6H, -N(CH 2 CH3)(CH3)), 2.87 (s, 9H, -N(CH2CH3)(CH 3 )), 1.03 (t, 9H, -N(CH2CH 3 )(CH3)) 1 H NMR (C 6 D 6 ): δ 6.07 (s, 5H, -C 5 H 5 ), 3.22, 3.19 (q, 6H, -N (C H 2 CH 3 ) (CH 3 )), 2.87 (s , 9H, -N (CH 2 CH 3 ) (C H 3 )), 1.03 (t, 9H, -N (CH 2 C H 3 ) (CH 3 ))

13C NMR (C6D6): δ 110.74 (-C 5 H5), 51.90 (-N(CH2CH3)(CH3)), 40.71 (-N(CH2CH3)(CH3)), 15.99 (-N(CH2 CH3)(CH3)) 13 C NMR (C 6 D 6 ): δ 110.74 ( -C 5 H 5 ), 51.90 (-N ( C H 2 CH 3 ) (CH 3 )), 40.71 (-N (CH 2 CH 3 ) ( C H 3 )), 15.99 (-N (CH 2 C H 3 ) (CH 3 ))

[실시예 2] 싸이클로펜타디에닐지르코늄(IV) 트리(에틸메틸아마이드) [CpZr(NEtMe)3]의 합성Example 2 Synthesis of Cyclopentadienyl zirconium (IV) tri (ethylmethylamide) [CpZr (NEtMe) 3 ]

불꽃 건조된 1000 mL 슐렝크 플라스크에 싸이클로펜타디에닐지르코늄(IV)트리클로라이드 26.27 g (100 mmol, 1.00 당량)을 헥산 200mL 에 서스펜션 시킨다. 이 혼합용액을 교반시키면서 -20℃를 유지한 채 300mL 의 헥산에 서스펜션으로 되어 있는 리튬에틸메틸아마이드 (LiNEtMe) 20 g (307.46mmol) 을 천천히 첨가한 후 반응온도를 실온까지 천천히 올렸다. 이 혼합 반응용액을 24시간 동안 실온에서 교반한 후 반응을 종결시켰으며, 반응 종결 후 감압여과를 통하여 침전된 리튬클로라이드 (LiCl)를 분리하고 노랑색의 여과액을 얻는다. 여과액을 다시 감압하여 용매를 완전히 제거하고 생성된 액체의 순도를 높이기 위해 감압 하에서 증류 (끓는점 : 81℃@0.1mmHg)하여 노랑색 액체의 표제 화합물 28.76g(수율 87%)을 수득하였다.In a flame-dried 1000 mL Schlenk flask, 26.27 g (100 mmol, 1.00 equiv) of cyclopentadienylzirconium (IV) trichloride is suspended in 200 mL of hexane. While stirring this mixed solution, 20 g (307.46 mmol) of lithium ethylmethylamide (LiNEtMe), which is a suspension, was slowly added to 300 mL of hexane while maintaining the temperature at -20 ° C, and the reaction temperature was slowly raised to room temperature. After the reaction mixture was stirred at room temperature for 24 hours, the reaction was terminated. After completion of the reaction, precipitated lithium chloride (LiCl) was separated by filtration under reduced pressure to obtain a yellow filtrate. The filtrate was again depressurized to completely remove the solvent and distilled under reduced pressure (boiling point: 81 ° C. at 0.1 mmHg) to increase the purity of the resulting liquid to give 28.76 g (yield 87%) of the title compound as a yellow liquid.

1H NMR (C6D6): δ 6.07 (s, 5H, -C5 H 5 ), 3.22, 3.19 (q, 6H, -N(CH 2 CH3)(CH3)), 2.87 (s, 9H, -N(CH2CH3)(CH 3 )), 1.03 (t, 9H, -N(CH2CH 3 )(CH3)) 1 H NMR (C 6 D 6 ): δ 6.07 (s, 5H, -C 5 H 5 ), 3.22, 3.19 (q, 6H, -N (C H 2 CH 3 ) (CH 3 )), 2.87 (s , 9H, -N (CH 2 CH 3 ) (C H 3 )), 1.03 (t, 9H, -N (CH 2 C H 3 ) (CH 3 ))

13C NMR (C6D6): δ 110.74 (-C 5 H5), 51.90 (-N(CH2CH3)(CH3)), 40.71 (-N(CH2CH3)(CH3)), 15.99 (-N(CH2 CH3)(CH3)) 13 C NMR (C 6 D 6 ): δ 110.74 ( -C 5 H 5 ), 51.90 (-N ( C H 2 CH 3 ) (CH 3 )), 40.71 (-N (CH 2 CH 3 ) ( C H 3 )), 15.99 (-N (CH 2 C H 3 ) (CH 3 ))

[실시예 3] 싸이클로펜타디에닐지르코늄(IV) 트리(에틸메틸아마이드) [CpZr(NEtMe)3]의 합성Example 3 Synthesis of Cyclopentadienyl zirconium (IV) tri (ethylmethylamide) [CpZr (NEtMe) 3 ]

불꽃 건조된 1000 mL 슐렝크 플라스크에 싸이클로펜타디에닐지르코늄(IV)트 리클로라이드 26.27 g (100 mmol, 1.00 당량)을 디에틸에테르 500mL 에 서스펜션 시킨다. 이 혼합용액을 교반시키면서 -20℃를 유지한 채 에틸메틸아민 (HNEtMe) 18 g (304.52mmol) 와 트리에틸아민 (NEt3)을 31g (306.35mmol) 천천히 첨가한 후 반응온도를 실온까지 천천히 올렸다. 이 혼합 반응용액을 24시간 동안 실온에서 교반한 후 반응을 종결시켰으며, 반응 종결 후 감압여과를 통하여 침전된 트리에틸암모늄클로라이드 (Et3N·HCl)을 분리하고 노랑색의 여과액을 얻는다. 여과액을 다시 감압하여 용매를 완전히 제거하고 생성된 액체의 순도를 높이기 위해 감압 하에서 증류 (끓는점 : 81℃@0.1mmHg)하여 노랑색 액체의 표제 화합물 18.4g(수율 56%)을 수득하였다.In a flame-dried 1000 mL Schlenk flask, 26.27 g (100 mmol, 1.00 equiv) of cyclopentadienylzirconium (IV) trichloride was suspended in 500 mL of diethyl ether. While stirring the mixed solution, 18 g (304.52 mmol) of ethylmethylamine (HNEtMe) and 31 g (306.35 mmol) of triethylamine (NEt 3 ) were slowly added while maintaining the temperature at −20 ° C., and the reaction temperature was slowly raised to room temperature. . After the reaction mixture was stirred at room temperature for 24 hours, the reaction was terminated. After completion of the reaction, triethylammonium chloride (Et 3 N.HCl) precipitated was separated by filtration under reduced pressure to obtain a yellow filtrate. The filtrate was depressurized again to completely remove the solvent and distilled under reduced pressure (boiling point: 81 ° C. at 0.1 mmHg) to increase the purity of the resulting liquid to give 18.4 g (yield 56%) of the title compound as a yellow liquid.

1H NMR (C6D6): δ 6.07 (s, 5H, -C5 H 5 ), 3.22, 3.19 (q, 6H, -N(CH 2 CH3)(CH3)), 2.87 (s, 9H, -N(CH2CH3)(CH 3 )), 1.03 (t, 9H, -N(CH2CH 3 )(CH3)) 1 H NMR (C 6 D 6 ): δ 6.07 (s, 5H, -C 5 H 5 ), 3.22, 3.19 (q, 6H, -N (C H 2 CH 3 ) (CH 3 )), 2.87 (s , 9H, -N (CH 2 CH 3 ) (C H 3 )), 1.03 (t, 9H, -N (CH 2 C H 3 ) (CH 3 ))

13C NMR (C6D6): δ 110.74 (-C 5 H5), 51.90 (-N(CH2CH3)(CH3)), 40.71 (-N(CH2CH3)(CH3)), 15.99 (-N(CH2 CH3)(CH3)) 13 C NMR (C 6 D 6 ): δ 110.74 ( -C 5 H 5 ), 51.90 (-N ( C H 2 CH 3 ) (CH 3 )), 40.71 (-N (CH 2 CH 3 ) ( C H 3 )), 15.99 (-N (CH 2 C H 3 ) (CH 3 ))

[실시예 4] 싸이클로펜타디에닐지르코늄(IV) 트리(이소프로폭사이드) [CpZr(OiPr)3]의 합성Example 4 Synthesis of Cyclopentadienyl zirconium (IV) tri (isopropoxide) [CpZr (O i Pr) 3 ]

100 mL의 헥산이 들어있는 불꽃 건조된 125 mL 슐렝크 플라스크에 싸이클로펜타디에닐지르코늄(IV)트리에틸메틸아마이드 (CpZr(NEtMe)3) 33.06 g (100 mmol, 1.00 당량)을 넣고 용해시킨 후 교반시키면서 이소프로판올 18.03g (300 mmol, 3.00 당량)을 -40℃를 유지한 채 천천히 첨가한 후 반응온도를 실온까지 천천히 올렸다. 이 혼합 반응용액을 2 시간 동안 실온에서 교반한 후 종결시켰으며, 반응 종결 후 감압하여 용매를 완전히 제거하여 노란색의 점성이 있는 액체를 얻었다. 생성된 액체의 순도를 높이기 위해 감압 하에서 증류 (끓는점 : 74℃@1.0mmHg)하여 노랑색 액체의 표제 화합물 20.01g(수율 60%)을 수득하였다.33.06 g (100 mmol, 1.00 equiv) of cyclopentadienyl zirconium (IV) triethylmethylamide (CpZr (NEtMe) 3 ) was added to a flame-dried 125 mL Schlenk flask containing 100 mL of hexane, and then stirred. 18.03 g (300 mmol, 3.00 equiv) of isopropanol was slowly added thereto while maintaining the temperature at -40 ° C, and the reaction temperature was slowly raised to room temperature. The mixed reaction solution was stirred for 2 hours at room temperature and terminated. After completion of the reaction, the solvent was removed under reduced pressure to give a yellow viscous liquid. Distillation under reduced pressure (boiling point: 74 ° C. at 1.0 mmHg) in order to increase the purity of the resulting liquid yielded 20.01 g (yield 60%) of the title compound as a yellow liquid.

1H NMR (C6D6): δ 6.26 (s, 5H,-C5 H 5 ), 4.19 (hept, 3H,-OCH(CH3)2), 1.13, 1.11 (d, 18H,-OCH(CH 3 )2) 1 H NMR (C 6 D 6 ): δ 6.26 (s, 5H, -C 5 H 5 ), 4.19 (hept, 3H, -OC H (CH 3 ) 2 ), 1.13, 1.11 (d, 18H, -OCH (C H 3 ) 2 )

13C NMR (C6D6): δ 111.57 (-C 5 H5), 72.54 (-OCH(CH3)2), 27.41 (18H,-OCH(CH3)2) 13 C NMR (C 6 D 6 ): δ 111.57 ( -C 5 H 5 ), 72.54 (-O C H (CH 3 ) 2 ), 27.41 (18H, -OCH ( C H 3 ) 2 )

[실시예 5] 싸이클로펜타디에닐지르코늄(IV) 트리(3-메틸-3-펜톡사이드) [CpZr(mp)3]의 합성Example 5 Synthesis of Cyclopentadienyl zirconium (IV) tri (3-methyl-3-pentoxide) [CpZr (mp) 3 ]

100 mL의 헥산이 들어있는 불꽃 건조된 125 mL 슐렝크 플라스크에 싸이클로 펜타디에닐지르코늄(IV)트리에틸메틸아마이드 (CpZr(NEtMe)3) 33.06 g (100 mmol, 1.00 당량)을 넣고 용해시킨 후 교반시키면서 3-메틸-3-펜탄올 30.66g (300 mmol, 3.00 당량)을 -40℃를 유지한 채 천천히 첨가한 후 반응온도를 실온까지 천천히 올렸다. 이 혼합 반응용액을 2 시간 동안 실온에서 교반하고 종결시켰으며, 반응 종결 후 감압하여 용매를 완전히 제거하여 노란색의 점성이 있는 액체를 얻었다. 생성된 액체의 순도를 높이기 위해 감압 하에서 증류 (끓는점 : 130℃@0.4mmHg)하여 노랑색 액체의 표제 화합물 24.84g(수율 54%)을 수득하였다.33.06 g (100 mmol, 1.00 equiv) of pentadienyl zirconium (IV) triethylmethylamide (CpZr (NEtMe) 3 ) was added to a flame-dried 125 mL Schlenk flask containing 100 mL of hexane, and then stirred. 30.66 g (300 mmol, 3.00 equiv) of 3-methyl-3-pentanol was slowly added while maintaining the temperature at -40 ° C, and the reaction temperature was slowly raised to room temperature. The mixed reaction solution was stirred for 2 hours at room temperature and terminated. After completion of the reaction, the solvent was removed under reduced pressure to give a yellow viscous liquid. Distillation under reduced pressure (boiling point: 130 ° C. @ 0.4 mmHg) to increase the purity of the resulting liquid yielded 24.84 g (yield 54%) of the title compound as a yellow liquid.

1H NMR (C6D6): δ 6.34 (s, 5H,-C5 H 5 ), 1.44, 1.41 (q, 12H,-OC((CH3)(CH 2 CH3)2)), 1.12 (s, 9H,-OC((CH 3 )(CH2CH3)2)), 1.12 (t, 18H,-OC((CH3)(CH2CH 3 )2)) 1 H NMR (C 6 D 6 ): δ 6.34 (s, 5H, -C 5 H 5 ), 1.44, 1.41 (q, 12H, -OC ((CH 3 ) (C H 2 CH 3 ) 2 ) ,, 1.12 (s, 9H, -OC ((C H 3 ) (CH 2 CH 3 ) 2 )), 1.12 (t, 18H, -OC ((CH 3 ) (CH 2 C H 3 ) 2 ))

13C NMR (C6D6): δ 111.24 (-C 5 H5), 78.8 (-OC((CH3)(CH2CH3)2)), 34.7 (-OC((CH3)(CH2CH3)2)), 26.3 (-OC((CH3)(CH2CH3)2)), 7.6 (-OC((CH3)(CH2 CH3)2)) 13 C NMR (C 6 D 6 ): δ 111.24 ( -C 5 H 5 ), 78.8 (-O C ((CH 3 ) (CH 2 CH 3 ) 2 )), 34.7 (-OC ((CH 3 ) ( C H 2 CH 3 ) 2 )), 26.3 (-OC (( C H 3 ) (CH 2 CH 3 ) 2 )), 7.6 (-OC ((CH 3 ) (CH 2 C H 3 ) 2 ))

[실시예 6] 싸이클로펜타디에닐지르코늄(IV) 트리(t-부틸티올레이트) [CpZr(StBu)3]의 합성Example 6 Synthesis of Cyclopentadienyl zirconium (IV) tri (t-butylthioleate) [CpZr (S t Bu) 3 ]

100 mL의 헥산이 들어있는 불꽃 건조된 125 mL 슐렝크 플라스크에 싸이클로 펜타디에닐지르코늄(IV)트리에틸메틸아마이드 (CpZr(NEtMe)3) 33.06 g (100 mmol, 1.00 당량)을 넣고 용해시킨 후 교반시키면서 2-메틸-2-프로판티올 27.06g (300 mmol, 3.00 당량)을 -40℃를 유지한 채 천천히 첨가한 후 반응온도를 실온까지 천천히 올렸다. 이 혼합 반응용액을 2 시간 동안 실온에서 교반하고 종결시켰으며, 반응 종결 후 감압하여 용매를 완전히 제거하여 노란색의 점성이 있는 액체를 얻었다. 생성된 액체의 순도를 높이기 위해 감압 하에서 증류 (끓는점 : 42℃@5.8mmHg)하여 노랑색 액체의 표제 화합물 16.95g(수율 40%)을 수득하였다.33.06 g (100 mmol, 1.00 equiv) of pentadienyl zirconium (IV) triethylmethylamide (CpZr (NEtMe) 3 ) was added to a flame-dried 125 mL Schlenk flask containing 100 mL of hexane, and then stirred. While 27.06 g (300 mmol, 3.00 eq) of 2-methyl-2-propanethiol was slowly added while maintaining the temperature of -40 ° C, the reaction temperature was slowly raised to room temperature. The mixed reaction solution was stirred for 2 hours at room temperature and terminated. After completion of the reaction, the solvent was removed under reduced pressure to give a yellow viscous liquid. To increase the purity of the resulting liquid, distillation under reduced pressure (boiling point: 42°C@5.8 mmHg) gave 16.95 g (yield 40%) of the title compound as a yellow liquid.

1H NMR (C6D6): δ 6.29 (s, 5H,-C5 H 5 ), 1.58 (s, 9H,-SC(CH 3 )3) 1 H NMR (C 6 D 6 ): δ 6.29 (s, 5H, -C 5 H 5 ), 1.58 (s, 9H, -SC (C H 3 ) 3 )

13C NMR (C6D6): δ 113.34 (-C 5 H5), 52.19 (-SC(CH3)3), 37.02 (-SC(CH3)3) 13 C NMR (C 6 D 6 ): δ 113.34 ( -C 5 H 5 ), 52.19 (-S C (CH 3 ) 3 ), 37.02 (-SC ( C H 3 ) 3 )

지르코늄 선구 물질의 분석Analysis of Zirconium Precursors

상기 실시예 1 내지 6에서 제조된 각각의 지르코늄 산화물 선구물질들의 구조분석을 위하여 각 화합물을 C6D6 에 녹인 후 1H-NMR 을 분석한 결과를 도 1 내지 도 4에 도시하였다. 한편, 상기 실시예 1 내지 5에서 각각 합성한 지르코늄 산화물 전구체인 지르코늄 산화물 선구물질들의 열적 안정성 및 휘발성과 분해 온도를 측정하기 위해, 열무게 분석/시차 열분석(thermogravimetric analysis/differential thermal analysis, TGA/DTA) 법을 이용하였다. 상기 TGA/DTA 방법은 생성물을 10℃/분의 속도로 500℃까지 가온시키면서 45L/분의 속도로 아르곤(Ar) 가스를 주입하였다. 실시예 1, 4 및 5에서 합성한 각각의 지르코늄 착화합물들의 TGA/DTA 그래프를 각각 도 5 내지 도 7에 도시하였다.For the structural analysis of the respective zirconium oxide precursors prepared in Examples 1 to 6, each compound was dissolved in C 6 D 6 , and the results of 1 H-NMR analysis are shown in FIGS. 1 to 4. Meanwhile, in order to measure thermal stability, volatility, and decomposition temperature of the zirconium oxide precursors synthesized in Examples 1 to 5, respectively, thermogravimetric analysis / differential thermal analysis, TGA / DTA) method was used. The TGA / DTA method injected argon (Ar) gas at a rate of 45 L / min while warming the product to 500 ° C at a rate of 10 ° C / min. TGA / DTA graphs of the respective zirconium complexes synthesized in Examples 1, 4 and 5 are shown in FIGS. 5 to 7, respectively.

도 5 내지 도 7의 DTA 그래프로부터 본 발명에서 신규 합성된 지르코늄 선구물질 화합물들은 열분해 온도가 모두 260℃ 이상이었으며, 이는 기존에 알려진 테트라키스에틸메틸아미노지르코늄 (Zr(NEtMe)4) 화합물보다 높은 열분해 온도를 나타내는 것으로서, 본 발명에 따라 합성된 지르코늄 산화물 선구물질은 열적안정성이 향상된 선구물질임을 알 수 있었다.The zirconium precursor compounds newly synthesized in the present invention from the DTA graphs of FIGS. 5 to 7 all had pyrolysis temperatures of 260 ° C. or higher, which is higher than that of the conventionally known tetrakisethylmethylaminozirconium (Zr (NEtMe) 4 ) compound. As indicating the temperature, the zirconium oxide precursor synthesized according to the present invention was found to be a precursor having improved thermal stability.

상술한 바와 같이, 본 발명의 지르코늄 산화물용 전구체인 신규의 지르코늄 산화물 선구물질 화합물은 수분에 덜 민감하고 보관이 유리하며, 특히 산화막의 우수한 질을 요구하는 금속 유기물 화학기상 증착법(MOCVD) 또는 원자층 증착법(ALD)에 사용되는 지르코늄 선구물질로서 손색이 없으며, 이에 따라 지르코늄 산화물을 포함하는 산화물 박막 제조용 선구물질로서 유용하게 사용될 수 있다.As described above, the novel zirconium oxide precursor compounds, which are precursors for the zirconium oxides of the present invention, are less sensitive to moisture and advantageous in storage, in particular metal organic chemical vapor deposition (MOCVD) or atomic layers, which require good quality of oxide films. As a zirconium precursor used in the deposition method (ALD) is inferior, it can be usefully used as a precursor for producing an oxide thin film containing zirconium oxide.

Claims (7)

하기 화학식 1로 표시되는 지르코늄 산화물 선구물질을 증착하여 지르코늄 박막을 제조하는 방법.Method of preparing a zirconium thin film by depositing a zirconium oxide precursor represented by the formula (1). [화학식 1][Formula 1]
Figure 112007088132216-pat00005
Figure 112007088132216-pat00005
[상기 화학식 1에서 A는 NR2R3 또는 ER4이고; E는 산소(O) 또는 황(S)이고; R1은 수소, 메틸 또는 에틸이고; R2 및 R3는 서로 독립적으로 플루오르를 포함하거나 포함하지 않는 C1-C4의 알킬기 또는 SiR5 3이고; R4는 플루오르를 포함하거나 포함하지 않는 C1-C6의 알킬기 또는 SiR5 3이고; R5는 C1-C4의 알킬기이다.][In Formula 1, A is NR 2 R 3 or ER 4 ; E is oxygen (O) or sulfur (S); R 1 is hydrogen, methyl or ethyl; R 2 and R 3 are independently of each other a C1-C4 alkyl group or SiR 5 3 with or without fluorine; R 4 is a C1-C6 alkyl group with or without fluorine or SiR 5 3 ; R 5 is an alkyl group of C 1 -C 4.]
제 1항에 있어서,The method of claim 1, A는 NR2R3이고, R1은 수소 또는 메틸이고, R2 및 R3는 서로 독립적으로 메틸 또는 에틸인 것을 특징으로 하는 지르코늄 산화물 선구물질을 증착하여 지르코늄 박막을 제조하는 방법.A is NR 2 R 3 , R 1 is hydrogen or methyl, and R 2 and R 3 are independently of each other methyl or ethyl by depositing a zirconium oxide precursor to prepare a zirconium thin film. 제 1항에 있어서,The method of claim 1, A는 ER4 이고, E는 O 또는 S이고, R1은 수소 또는 메틸이고, R4는 이소프로필, t-부틸 또는 3-메틸-3-펜틸인 것을 특징으로 하는 지르코늄 산화물 선구물질을 증착하여 지르코늄 박막을 제조하는 방법.By depositing a zirconium oxide precursor, wherein A is ER 4 , E is O or S, R 1 is hydrogen or methyl, and R 4 is isopropyl, t-butyl or 3-methyl-3-pentyl Method of manufacturing zirconium thin film. 하기 화학식 2로 표시되는 지르코늄 화합물과 화학식 3으로 표시되는 아마이드의 알칼리금속염, 알콕사이드의 알칼리금속염 또는 티올레이트의 알칼리금속염을 반응시키는 것을 특징으로 하는 화학식 1의 지르코늄 산화물 선구물질의 제조방법.A method for producing a zirconium oxide precursor of formula (1) comprising reacting a zirconium compound represented by Formula 2 with an alkali metal salt of an amide represented by Formula 3, an alkali metal salt of an alkoxide, or an alkali metal salt of thiolate. [화학식 1][Formula 1]
Figure 112007088132216-pat00016
Figure 112007088132216-pat00016
[화학식 2] [Formula 2]
Figure 112007088132216-pat00006
Figure 112007088132216-pat00006
[화학식 3][Formula 3] MAMA [상기 식에서, A 및 R1은 상기 청구항 제1항의 화학식 1에서 정의한 바와 동일하며, X는 염소원자, 브롬원자 또는 요오드원자를 나타내고, M은 리튬, 나트륨 또는 칼륨을 나타낸다.][Wherein A and R 1 are the same as defined in Formula 1 of claim 1, X represents a chlorine atom, bromine atom or iodine atom, and M represents lithium, sodium or potassium.]
하기 화학식 2로 표시되는 지르코늄 화합물과 화학식 4로 표시되는 화합물을 반응시키는 것을 특징으로 하는 화학식 1의 지르코늄 산화물 선구물질의 제조방법.A method for producing a zirconium oxide precursor of formula (1) comprising reacting a zirconium compound represented by Formula 2 with a compound represented by Formula 4. [화학식 1][Formula 1]
Figure 112007088132216-pat00017
Figure 112007088132216-pat00017
[화학식 2] [Formula 2]
Figure 112007088132216-pat00007
Figure 112007088132216-pat00007
[화학식 4][Formula 4] HAHA [상기 식에서, A 및 R1은 상기 청구항 제1항의 화학식 1에서 정의한 바와 동일하며, X는 염소원자, 브롬원자 또는 요오드원자를 나타낸다.][Wherein A and R 1 are the same as defined in Formula 1 of claim 1, and X represents a chlorine atom, bromine atom or iodine atom.]
삭제delete 제 4항 내지 제 5항의 어느 한 항에 있어서,The method according to any one of claims 4 to 5, 하기 화학식 7의 화합물과 반응시키는 단계를 더 포함하는 것을 특징으로 하는 화학식 1의 지르코늄 산화물 선구물질의 제조방법.A method for preparing a zirconium oxide precursor of formula (I) further comprising the step of reacting with a compound of formula (7). [화학식 1][Formula 1]
Figure 112007088132216-pat00018
Figure 112007088132216-pat00018
[화학식 7][Formula 7] HER4 HER 4 [상기 식에서, E 및 R4는 상기 청구항 제1항의 화학식 1에서 정의한 바와 동일하다.][Wherein E and R 4 are the same as defined in the formula (1) of claim 1]
KR1020060056116A 2006-06-21 2006-06-21 Organometallic Precursor for Zirconium Oxide Thin Film Deposition and Its Manufacturing Method Ceased KR100804413B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060056116A KR100804413B1 (en) 2006-06-21 2006-06-21 Organometallic Precursor for Zirconium Oxide Thin Film Deposition and Its Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060056116A KR100804413B1 (en) 2006-06-21 2006-06-21 Organometallic Precursor for Zirconium Oxide Thin Film Deposition and Its Manufacturing Method

Publications (2)

Publication Number Publication Date
KR20070121281A KR20070121281A (en) 2007-12-27
KR100804413B1 true KR100804413B1 (en) 2008-02-20

Family

ID=39138697

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060056116A Ceased KR100804413B1 (en) 2006-06-21 2006-06-21 Organometallic Precursor for Zirconium Oxide Thin Film Deposition and Its Manufacturing Method

Country Status (1)

Country Link
KR (1) KR100804413B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546276B2 (en) 2009-07-14 2013-10-01 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Deposition of group IV metal-containing films at high temperature
KR101263454B1 (en) * 2011-03-15 2013-11-27 주식회사 메카로닉스 A novel organometallic compounds containing zirconium metal and the preparation thereof
US9941114B2 (en) 2014-03-10 2018-04-10 Samsung Electronics Co., Ltd. Organometallic precursors and methods of forming thin layers using the same
CN110139945A (en) * 2016-12-30 2019-08-16 乔治洛德方法研究和开发液化空气有限公司 Zirconium precursors, hafnium precursors, titanium precursor and the film for containing the 4th race using its deposition

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140813A1 (en) 2006-06-02 2007-12-13 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing
EP2257561B1 (en) * 2008-02-27 2017-11-08 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for forming a titanium-containing layer on a substrate using an atomic layer deposition (ald) process
US9045509B2 (en) 2009-08-14 2015-06-02 American Air Liquide, Inc. Hafnium- and zirconium-containing precursors and methods of using the same
US8765220B2 (en) 2009-11-09 2014-07-01 American Air Liquide, Inc. Methods of making and deposition methods using hafnium- or zirconium-containing compounds
CN103930431B (en) 2011-03-15 2016-07-06 株式会社Mecharonics Novel 4B race metallo-organic compound and preparation thereof
KR20160105714A (en) 2015-11-26 2016-09-07 김현창 A novel organometallic compounds containing zirconium metal and the preparation thereof, and method for manufacturing thin film using the novel organometallic compounds
KR101806987B1 (en) * 2016-02-03 2017-12-08 주식회사 유피케미칼 Group 4 metal element-containing compound, preparing method thereof, precursor composition including the same for layer deposition, and depositing method of layer using the same
WO2017179857A1 (en) * 2016-04-12 2017-10-19 (주)디엔에프 Transition metal compound, preparation method therefor, and composition for depositing transition metal-containing thin film, containing same
KR101959519B1 (en) 2016-04-12 2019-03-18 (주)디엔에프 transition metal compound, their preparation and composition for depositing a transition metal-containing thin film comprising the same
US10465289B2 (en) * 2016-12-30 2019-11-05 L'Air Liquide, Société Anonyme pour l'Etude at l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US10337104B2 (en) 2016-12-30 2019-07-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US10131680B1 (en) 2017-06-14 2018-11-20 Up Chemical Co., Ltd. Group 4 metal element-containing alkoxy compound, preparing method thereof, precursor composition including the same for film deposition, and method of depositing film using the same
KR20190045648A (en) 2017-10-24 2019-05-03 (주)덕산테코피아 Organometallic compounds containing zirconium metal, the Preparation thereof, and thin film forming method using the same
KR102286114B1 (en) 2018-12-04 2021-08-06 한국화학연구원 Group iv transition metal compounds, preparation method thereof and process for the formation of thin films using the same
KR102720271B1 (en) 2018-12-31 2024-10-22 한국화학연구원 Group iv transition metal compounds, preparation method thereof and process for the formation of thin films using the same
KR102567107B1 (en) 2021-02-05 2023-08-16 한국화학연구원 Group iv transition metal compounds, preparation method thereof and process for the formation of thin films using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0072508A2 (en) * 1981-08-18 1983-02-23 Bayer Ag Pyrazolone derivatives, their preparation and use as coupling components
US5527752A (en) * 1995-03-29 1996-06-18 Union Carbide Chemicals & Plastics Technology Corporation Catalysts for the production of polyolefins
US5587439A (en) * 1995-05-12 1996-12-24 Quantum Chemical Corporation Polymer supported catalyst for olefin polymerization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0072508A2 (en) * 1981-08-18 1983-02-23 Bayer Ag Pyrazolone derivatives, their preparation and use as coupling components
US5527752A (en) * 1995-03-29 1996-06-18 Union Carbide Chemicals & Plastics Technology Corporation Catalysts for the production of polyolefins
US5587439A (en) * 1995-05-12 1996-12-24 Quantum Chemical Corporation Polymer supported catalyst for olefin polymerization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546276B2 (en) 2009-07-14 2013-10-01 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Deposition of group IV metal-containing films at high temperature
KR101263454B1 (en) * 2011-03-15 2013-11-27 주식회사 메카로닉스 A novel organometallic compounds containing zirconium metal and the preparation thereof
US9941114B2 (en) 2014-03-10 2018-04-10 Samsung Electronics Co., Ltd. Organometallic precursors and methods of forming thin layers using the same
CN110139945A (en) * 2016-12-30 2019-08-16 乔治洛德方法研究和开发液化空气有限公司 Zirconium precursors, hafnium precursors, titanium precursor and the film for containing the 4th race using its deposition

Also Published As

Publication number Publication date
KR20070121281A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
KR100804413B1 (en) Organometallic Precursor for Zirconium Oxide Thin Film Deposition and Its Manufacturing Method
JP4472338B2 (en) An improved precursor for chemical vapor deposition.
KR101284664B1 (en) Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom
EP1921061A1 (en) Metal-containing compound, process for producing the same, metal-containing thin film, and method of forming the same
KR20090054922A (en) Metal Complexes of Tridentate Betapyketoiminate
KR20120072986A (en) Organometallic precursors for thin-film deposition of metal oxide or silicon-containing metal oxide, and deposition process of the thin films therefrom
KR101959519B1 (en) transition metal compound, their preparation and composition for depositing a transition metal-containing thin film comprising the same
KR101359518B1 (en) Magnesium oxide precursors, preparation method thereof and process for the formation of thin films using the same
KR101806987B1 (en) Group 4 metal element-containing compound, preparing method thereof, precursor composition including the same for layer deposition, and depositing method of layer using the same
KR102286114B1 (en) Group iv transition metal compounds, preparation method thereof and process for the formation of thin films using the same
KR102283752B1 (en) Novel group iv transition metal compounds and preparation method thereof
KR100544353B1 (en) Zirconium oxide precursor, preparation method thereof, and method for forming a thin film using the same
KR102327450B1 (en) group Ⅳ transition metal compounds, method for their preparation, and composition for thin film deposition containing them
CN115260018A (en) Preparation method of tris (2, 6-tetramethyl-3, 5-pimelic acid) bismuth
KR102080218B1 (en) Double-substituted cyclopentadiene compounds, organometallic compounds and preparation method thereof
JP4770744B2 (en) Method for producing hafnium amide complex
KR100695571B1 (en) Novel Praseodymium Compounds and Methods for Manufacturing the Same
KR100590051B1 (en) Lanthanum Oxide Precursor and Manufacturing Method Thereof
KR102129055B1 (en) Zirconium aminoalkoxide precursors, preparation method thereof and process for thin film formation using the same
KR101572086B1 (en) Group iv transition metal precursors, preparation method thereof and process for the formation of thin films using the same
KR101306812B1 (en) Novel tungsten silylamide compounds, preparation method thereof and process for the formation of thin films using the same
KR100584200B1 (en) Titanium oxide precursor and its manufacturing method
KR100695466B1 (en) Novel gadolinium compounds and preparation methods thereof
KR101093817B1 (en) Novel titanium alkoxide compound and preparation method thereof
KR20230086527A (en) New fourth group transition metal compounds used in manufacturing semiconductor thin film with vapor depostion process, and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20060621

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20070508

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20080114

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20080212

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20080212

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
G170 Re-publication after modification of scope of protection [patent]
PG1701 Publication of correction

Publication date: 20131230

PR1001 Payment of annual fee

Payment date: 20110211

Start annual number: 4

End annual number: 4

J204 Request for invalidation trial [patent]
PJ0204 Invalidation trial for patent

Patent event date: 20111207

Comment text: Request for Trial

Patent event code: PJ02042R01D

Patent event date: 20080212

Comment text: Registration of Establishment

Patent event code: PJ02041E01I

Appeal kind category: Invalidation

Request date: 20111207

Decision date: 20121109

Appeal identifier: 2011100003092

PR1001 Payment of annual fee

Payment date: 20120209

Start annual number: 5

End annual number: 5

J301 Trial decision

Free format text: TRIAL DECISION FOR INVALIDATION REQUESTED 20111207

Effective date: 20121109

PJ1301 Trial decision

Patent event code: PJ13011S05D

Patent event date: 20121109

Comment text: Trial Decision on Invalidation (Patent, Utility Model, Industrial Design)

Appeal kind category: Invalidation

Request date: 20111207

Decision date: 20121109

Appeal identifier: 2011100003092

J2X1 Appeal (before the patent court)

Free format text: INVALIDATION

PJ2001 Appeal

Patent event date: 20121109

Comment text: Trial Decision on Invalidation (Patent, Utility Model, Industrial Design)

Patent event code: PJ20011S05I

Appeal kind category: Invalidation

Decision date: 20130411

Appeal identifier: 2012200010167

Request date: 20121120

PR1001 Payment of annual fee

Payment date: 20130207

Start annual number: 6

End annual number: 6

J2X2 Appeal (before the supreme court)

Free format text: APPEAL BEFORE THE SUPREME COURT FOR INVALIDATION

PJ2002 Appeal before the supreme court

Comment text: Trial Decision on Invalidation (Patent, Utility Model, Industrial Design)

Patent event date: 20121109

Patent event code: PJ20021S05I

Request date: 20130506

Appeal identifier: 2013300001016

Appeal kind category: Invalidation

Decision date: 20130822

J302 Written judgement (patent court)

Free format text: JUDGMENT (PATENT COURT) FOR INVALIDATION REQUESTED 20121120

Effective date: 20130411

PJ1302 Judgment (patent court)

Patent event date: 20130508

Comment text: Written Judgment (Patent Court)

Patent event code: PJ13021S01D

Request date: 20121120

Decision date: 20130411

Appeal identifier: 2012200010167

Appeal kind category: Invalidation

J121 Written withdrawal of request for trial
J202 Request for trial for correction [limitation]
PJ0202 Trial for correction

Appeal kind category: Correction

Decision date: 20130531

Request date: 20130531

Appeal identifier: 2013105000058

Comment text: Request for Trial

Patent event date: 20130531

Patent event code: PJ02022R01D

Comment text: Registration of Establishment

Patent event date: 20080212

Patent event code: PJ02021E01I

Appeal kind category: Correction

Decision date: 20131129

Request date: 20130531

Appeal identifier: 2013105000057

PJ1201 Withdrawal of trial

Patent event code: PJ12011R01D

Patent event date: 20130531

Comment text: Written Withdrawal of Request for Trial

Appeal identifier: 2013105000058

Request date: 20130531

Appeal kind category: Correction

Decision date: 20130531

J221 Remand (intellectual property tribunal)

Free format text: REMAND (INTELLECTUAL PROPERTY TRIBUNAL) FOR INVALIDATION

J303 Written judgement (supreme court)

Free format text: JUDGMENT (SUPREME COURT) FOR INVALIDATION REQUESTED 20130506

Effective date: 20130822

PJ1303 Judgment (supreme court)

Comment text: Written Judgment (Supreme Court)

Patent event date: 20130912

Patent event code: PJ13031S01D

Decision date: 20130822

Appeal kind category: Invalidation

Request date: 20130506

Appeal identifier: 2013300001016

PJ2201 Remand (intellectual property tribunal)

Request date: 20130912

Appeal kind category: Invalidation

Appeal identifier: 2013130000135

Decision date: 20140224

J301 Trial decision

Free format text: TRIAL DECISION FOR CORRECTION REQUESTED 20130531

Effective date: 20131129

PJ1301 Trial decision

Patent event code: PJ13011S03D

Patent event date: 20131129

Comment text: Trial Decision on Correction (Patent, Utility Model)

Appeal kind category: Correction

Request date: 20130531

Decision date: 20131129

Appeal identifier: 2013105000057

J203 Request for trial for invalidation of correction [invalidation of limitation]

Free format text: TRIAL FOR INVALIDATION OF CORRECTION FOR INVALIDATION OF CORRECTION

PJ0203 Trial for invalidation of correction

Patent event date: 20131218

Comment text: Request for Trial

Patent event code: PJ02031R01D

Appeal identifier: 2013100003282

Request date: 20131218

Appeal kind category: Invalidation of correction

Decision date: 20150708

PG1701 Publication of correction

Publication date: 20131230

PR1001 Payment of annual fee

Payment date: 20140205

Start annual number: 7

End annual number: 7

J301 Trial decision

Free format text: TRIAL DECISION FOR INVALIDATION REQUESTED 20130912

Effective date: 20140224

PJ1301 Trial decision

Patent event code: PJ13011S09D

Patent event date: 20140224

Comment text: Trial Decision on Final Judgment on Revocation

Appeal kind category: Invalidation

Request date: 20130912

Decision date: 20140224

Appeal identifier: 2013130000135

J2X1 Appeal (before the patent court)

Free format text: INVALIDATION

PJ2001 Appeal

Patent event date: 20140224

Comment text: Trial Decision on Final Judgment on Revocation

Patent event code: PJ20011S09I

Patent event date: 20131129

Comment text: Trial Decision on Correction (Patent, Utility Model)

Patent event code: PJ20011S03I

Patent event date: 20121109

Comment text: Trial Decision on Invalidation (Patent, Utility Model, Industrial Design)

Patent event code: PJ20011S05I

Appeal kind category: Invalidation

Decision date: 20150129

Appeal identifier: 2014200002047

Request date: 20140324

FPAY Annual fee payment

Payment date: 20150128

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20150128

Start annual number: 8

End annual number: 8

J302 Written judgement (patent court)

Free format text: JUDGMENT (PATENT COURT) FOR INVALIDATION REQUESTED 20140324

Effective date: 20150129

PJ1302 Judgment (patent court)

Patent event date: 20150309

Comment text: Written Judgment (Patent Court)

Patent event code: PJ13021S01D

Request date: 20140324

Decision date: 20150129

Appeal identifier: 2014200002047

Appeal kind category: Invalidation

PJ2201 Remand (intellectual property tribunal)

Patent event code: PJ22012S01I

Comment text: Written Judgment (Patent Court)

Patent event date: 20150309

Request date: 20150309

Appeal kind category: Invalidation

Appeal identifier: 2015130000045

Decision date: 20150320

J301 Trial decision

Free format text: TRIAL DECISION FOR INVALIDATION REQUESTED 20150309

Effective date: 20150320

PJ1301 Trial decision

Patent event code: PJ13011S09D

Patent event date: 20150320

Comment text: Trial Decision on Final Judgment on Revocation

Appeal kind category: Invalidation

Request date: 20150309

Decision date: 20150320

Appeal identifier: 2015130000045

J301 Trial decision

Free format text: TRIAL DECISION FOR INVALIDATION OF CORRECTION REQUESTED 20131218

Effective date: 20150708

PJ1301 Trial decision

Patent event code: PJ13011S04D

Patent event date: 20150708

Comment text: Trial Decision on Invalidation of Correction (Patent, Utility Model)

Appeal kind category: Invalidation of correction

Request date: 20131218

Decision date: 20150708

Appeal identifier: 2013100003282

FPAY Annual fee payment

Payment date: 20160122

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20160122

Start annual number: 9

End annual number: 9

PC2102 Extinguishment

Termination category: Others

Termination date: 20150612