[go: up one dir, main page]

KR100804222B1 - Deep Wastewater Treatment System - Google Patents

Deep Wastewater Treatment System Download PDF

Info

Publication number
KR100804222B1
KR100804222B1 KR1020070083893A KR20070083893A KR100804222B1 KR 100804222 B1 KR100804222 B1 KR 100804222B1 KR 1020070083893 A KR1020070083893 A KR 1020070083893A KR 20070083893 A KR20070083893 A KR 20070083893A KR 100804222 B1 KR100804222 B1 KR 100804222B1
Authority
KR
South Korea
Prior art keywords
tank
deep
anaerobic
treatment apparatus
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020070083893A
Other languages
Korean (ko)
Inventor
유대환
윤용준
최봉철
김현철
음영진
이영은
김현석
Original Assignee
주식회사 부강테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 부강테크 filed Critical 주식회사 부강테크
Priority to KR1020070083893A priority Critical patent/KR100804222B1/en
Application granted granted Critical
Publication of KR100804222B1 publication Critical patent/KR100804222B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명의 심층 오폐수 처리장치는 인 제거를 위한 혐기성 조건을 형성하는 혐기조, 및 혐기조 후단에 설치된 복수의 심층반응조로 구성된다. 심층반응조는 호기조건을 형성하는 호기조가 상부에 배치되고 무산소 조건을 형성하는 무산소조가 하부에 배치되어 구성된다. 일반적인 고도처리공정에 비하여 무산소/호기조건을 반복할 수 있기 때문에 처리수의 질소농도를 낮게 유지할 수 있고 혐기조를 별도로 분리하여 위치시켜 안정적인 인 제거가 가능하다. 또한 반응조를 심층으로 구성하여 부지소요를 최소할 수 있다.The deep wastewater treatment apparatus of the present invention is composed of an anaerobic tank for forming anaerobic conditions for phosphorus removal, and a plurality of deep reaction tanks installed at the rear end of the anaerobic tank. The deep reaction tank is composed of an aerobic tank forming an aerobic condition disposed above and an anoxic tank forming an anaerobic condition disposed below. Anaerobic / aerobic conditions can be repeated as compared to the general high-treatment process, so the nitrogen concentration of the treated water can be kept low and the anaerobic tank can be separated and positioned to ensure stable phosphorus removal. In addition, the reactor can be configured in depth to minimize site requirements.

Description

심층 오폐수 처리장치 {Wastewater Treatment Apparatus using Deep Tank}Wastewater Treatment Apparatus using Deep Tank

본 발명은 심층 오폐수 처리장치에 관한 것이다.The present invention relates to a deep waste water treatment apparatus.

근래에 오폐수처리는 유기물 제거와 함께 질소 및 인 제거에 집중되어 있다. 이는 질소 및 인이 방류수계로 유입되어 부영양화의 주요 원인이 되기 때문이다.In recent years, wastewater treatment is concentrated on nitrogen and phosphorus removal along with organic matter removal. This is because nitrogen and phosphorus are introduced into the discharge water system and become a major cause of eutrophication.

기존의 질소 및 인 제거 공정은 도 1 과 같이 혐기, 무산소, 호기 공정으로 이루어지며 슬러지 반송과 내부반송(NRCY)이 추가된다. 이 공정은 내부반송에 의해 질소제거 효율이 좌우되는데 처리수의 질소농도를 낮게 유지하기 위해서는 다량의 내부반송을 실시해야 한다. 그러나, 이는 운영상 문제가 될 뿐만 아니라 경제적으로 불리하기 때문에 현장에서는 내부반송을 유입유량의 4배(4Q) 이상은 실시하지 않는다. 낮은 질소농도를 유지하기 위해서는 도 2 에 도시된 바와 같이 호기조 후단에 무산소조를 두어 탄소원을 주입하여 탈질을 실시하는데, 탄소원 주입에 따른 약품비가 증가하는 단점이 있었다.Existing nitrogen and phosphorus removal process is composed of anaerobic, anaerobic, aerobic process as shown in Figure 1, sludge return and internal return (NRCY) is added. This process depends on the efficiency of nitrogen removal by internal transport, but a large amount of internal transport must be performed to keep the nitrogen concentration of the treated water low. However, this is not only an operational problem, but also economically disadvantageous, so the site does not carry more than four times the inflow (4Q). In order to maintain a low nitrogen concentration, as shown in FIG. 2, an anoxic tank is placed at the rear end of the aerobic tank to inject a carbon source to perform denitrification.

과거에는 하수처리장이 교외에 위치하였으나 도시의 팽창으로 인하여 하수처리장이 도심으로 이동한 것과 같은 결과가 초래되어 처리장 주변에 위치한 주택가에서 민원의 발생이 증가하고 있으며 혐오시설이라는 인식 때문에 공사나 증설이 불가능한 상태이다. 이러한 하수처리장을 도시 외곽으로 이전하는 것은 관거 문제나 수리학적인 문제로 인하여 기술적으로 용이하지 않을 뿐만 아니라 건설비용이 과도하기 때문에 기존처리장에 집약하여 건설하는 방안이 유리하다. 하수처리장을 집약하는 방법에는 여러 가지가 있으나 하수처리공정을 심층으로 건설하는 방법이 가장 쉽다. 기존의 생물반응조의 깊이는 약 4~5m 정도인데 이를 10m 이상으로 건설하는 것이다.In the past, the sewage treatment plant was located in the suburbs, but due to the expansion of the city, the sewage treatment plant was moved to the center of the city, and civil complaints are increasing in the residential areas around the treatment plant. It is a state. Moving such a sewage treatment plant to the outskirts of the city is not technically easy due to conduit problems or hydraulic problems, and the construction cost is excessive, so it is advantageous to integrate and construct the existing treatment plant. There are many ways to consolidate the sewage treatment plant, but it is easiest to build a sewage treatment process in depth. Existing bioreactors have a depth of about 4 to 5m, which is more than 10m.

이러한 예가 도 3 에 나타나 있는데 동경에 위치한 처리장으로 공정을 심층으로 건설하여 부지소요를 최소하였으며 상부를 복개하여 공원화하였다. 그러나 심층으로 반응조를 구성할 경우 포기방법에 제한을 받는데 표면포기기의 사용이 불가능하며, 송풍기와 산기관을 사용할 경우에도 산기관의 위치를 너무 과도하게 할 경우 송풍기에 압력이 증가하는 단점이 있다. 이러한 이유로 도 3 에서는 산기관의 위치를 반응조 중간에 위치시켰는데 이럴 경우 하부에 슬러지가 정체하는 문제점이 발생할 수 있다. 반응조를 단순히 심층화할 경우 질소제거를 위한 내부반송을 실시해야 하기 때문에 기존의 처리공정이 가지는 단점을 극복할 수 없다.An example of this is shown in FIG. 3, in which the process is deeply constructed with a treatment plant located in Tokyo, the site is minimized, and the upper part is covered with a park. However, if the reactor is constructed in depth, the method of aeration is limited, and the use of surface aeration equipment is impossible, and even if a blower and an diffuser are used, the pressure of the blower increases if the position of the diffuser is too excessive. . For this reason, in FIG. 3, the position of the diffuser is positioned in the middle of the reactor, in which case, sludge may be stagnated at the bottom. If the reactor is simply in-depth, the internal transport for nitrogen removal must be carried out, so the disadvantages of the existing treatment process cannot be overcome.

이러한 내분반송 문제를 해결하는 것이 반응조를 상/하부로 나누어 사용한 것으로서, 반응조를 상부/하부로 분할하여 상부는 호기조건 하부는 무산소 및 혐기조건으로 운영하는 것이다. 반응조 하부에 교반기를 주입하기 때문에 슬러지의 정체를 방지할 수 있고, 공기를 반응조 중간에서 공급하기 때문에 수압에 따른 공기공급의 문제를 해결할 수 있다. 도 4 가 이러한 예로서 상부에는 호기조건을 형성하고 하부에는 무산소 및 혐기조건을 형성하기 위하여 반응조 중간에 차단벽을 설 치한 예이다.To solve this problem of the endurance transport is to use the reaction tank divided into upper and lower parts, the reaction tank is divided into upper and lower parts, the upper part is operated under anaerobic and anaerobic conditions. Since the stirrer is injected into the lower part of the reactor, the sludge can be prevented, and since the air is supplied from the middle of the reactor, the problem of air supply due to the water pressure can be solved. 4 is an example in which a blocking wall is installed in the middle of a reactor to form an aerobic condition in the upper part and anoxic and anaerobic conditions in the lower part.

그러나 이 공정은 공기공급에 따른 수류형성을 통하여 상부 및 하부의 이동을 형성하는데 이동량을 인위적으로 조절하는 것이 불가능하여 하부로 과도한 공기 및 질산화된 질소의 반송으로 인하여 혐기조건이 형성되지 않아 인 제거가 불안하다. 이러한 이유로 이 반응조에는 인 제거를 위하여 약품(철염)을 주입하여야 하는데 약품구입에 따른 경제성이 저하된다.However, in this process, it is impossible to artificially control the amount of movement by forming the flow of water through the air supply, so that the anaerobic condition is not formed due to the return of excess air and nitrified nitrogen to the bottom, so that phosphorus removal is Unstable. For this reason, a chemical (iron salt) must be injected into the reactor to remove phosphorus, which lowers the economic efficiency of the chemical purchase.

본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 하수처리장을 집약화하여 유기물 및 질소/인을 효율적으로 제거할 수 있는 심층 오폐수 처리장치를 제공하는 것이다.The present invention has been made to solve the above problems, an object of the present invention is to provide a deep waste water treatment apparatus that can efficiently remove organic matter and nitrogen / phosphorus by concentrating the sewage treatment plant.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 심층 오폐수 처리장치는, 인 제거를 위한 혐기성 조건을 형성하는 혐기조; 및 상기 혐기조 후단에 설치되며, 호기조건을 형성하는 호기조가 상부에 배치되고 무산소 조건을 형성하는 무산소조가 하부에 배치되어 구성된 심층반응조;를 포함하는 것을 특징으로 한다.Deep wastewater treatment apparatus according to the present invention for achieving the above object, an anaerobic tank for forming an anaerobic condition for phosphorus removal; And an in-depth reaction tank installed at the rear end of the anaerobic tank, the aerobic tank forming the aerobic condition is disposed above, and the anoxic tank forming the anoxic condition disposed below.

여기에서, 상기 심층반응조는 복수 개가 연속적으로 배치될 수 있다.Here, the depth reactor may be arranged in plurality.

상기 심층반응조 내의 중간 부위에는 상기 호기조와 상기 무산소조를 구획하는 타공판이 설치되며, 타공판의 상부에는 여재가 충진될 수 있다.Perforated plate partitioning the aerobic tank and the anoxic tank is installed in the middle portion of the deep reaction tank, the upper portion of the perforated plate may be filled with a filter medium.

처리 대상 원수는 상기 혐기조와 상기 심층반응조 내의 상기 무산소조에 분 할되어 유입될 수 있다.Raw water to be treated may be introduced into the anaerobic tank and the anaerobic tank in the deep reactor.

상기 혐기조와 상기 심층반응조 사이에는 제2의 무산소조가 추가적으로 구비될 수 있다.A second anaerobic tank may be additionally provided between the anaerobic tank and the deep reaction tank.

한편, 본 발명의 바람직한 실시예에 의하면, 상기 심층반응조 내의 상기 무산소조로부터 상기 제2의 무산소조로 내부반송이 수행된다.On the other hand, according to a preferred embodiment of the present invention, the internal transfer from the oxygen-free tank in the deep reaction tank to the second oxygen-free tank.

또한, 반류수 및 연계수가 간헐포기 후 상기 심층반응조 내의 상기 무산소조로 주입될 수 있다.In addition, the reflux water and the associated water may be injected into the oxygen-free tank in the deep reactor after intermittent aeration.

또한, 2차 침전지로서 분리막이 추가적으로 구비될 수 있다.In addition, a separator may be additionally provided as a secondary settler.

본 발명에 따르면, 일반적인 고도처리공정에 비하여 무산소/호기조건을 반복할 수 있기 때문에 처리수의 질소농도를 낮게 유지할 수 있고 혐기조를 별도로 분리하여 위치시켜 안정적인 인 제거가 가능하다. 또한 반응조를 심층으로 구성하여 부지소요를 최소할 수 있다.According to the present invention, since the anoxic / aerobic conditions can be repeated as compared to the general high-treatment process, the nitrogen concentration of the treated water can be kept low and the anaerobic tank can be separated and positioned to allow stable phosphorus removal. In addition, the reactor can be configured in depth to minimize site requirements.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 보다 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

도 5는 본 발명에 따른 심층 오폐수 처리장치의 개념을 설명하기 위한 도면이고, 도 6 은 도 5 의 심층반응조 부분을 확대 도시한 도면이다.5 is a view for explaining the concept of a deep waste water treatment apparatus according to the present invention, Figure 6 is an enlarged view showing a portion of the deep reaction tank of FIG.

본 발명에서는 부지절약을 위하여 반응조의 깊이가 10m 이상으로 한다. 반응조 전단은 혐기조(10)로 구성되어 안정적인 인 제거를 위한 혐기성 조건을 형성 한다. 반응조의 후단은 도 6 에 도시된 바와 같이 상부에 호기조건을 형성하는 호기조(20a)와 하부에 무산소 조건을 형성하는 무산소조(20b)로 구성된 심층반응조(20)로 이루어진다. 심층반응조(20)의 중간 부위에는 호기조(20a)와 무산소조(20b)를 구획하는 타공판(27)이 설치되어 있고, 타공판(27)의 하부에는 호기조(20a)의 호기 조건 유지를 위한 공기주입관(27)이 설치되어 있으며, 무산소조(20b)의 하부에는 교반장치(29)가 설치되어 있다.In the present invention, the depth of the reaction tank is 10 m or more for site saving. The reactor shear is composed of anaerobic tank 10 to form anaerobic conditions for stable phosphorus removal. As shown in FIG. 6, the rear end of the reactor consists of an aerobic tank 20a for forming an aerobic condition at the top and an anaerobic tank 20b for forming anoxic conditions at the bottom. The perforated plate 27 which divides the aerobic tank 20a and the anoxic tank 20b is installed in the middle part of the deep reaction tank 20, and the lower part of the perforated plate 27 is an air injection pipe for maintaining the aerobic condition of the aerobic tank 20a. 27 is provided, and the stirring apparatus 29 is provided in the lower part of the oxygen-free tank 20b.

혐기조(10)에서는 원수와 슬러지를 효율적으로 혼합하여 인 방출을 유도하며, 혐기조(10)에서 인이 방출된 처리대상 오폐수는 심층반응조(20)로 이송된다. 심층반응조(20)의 상부의 호기조(20a)에서는 인의 섭취를 통하여 인이 제거되고 암모니아성 질소가 산화된다. 산화된 질소는 수류흐름에 따라 하부로 이동되어 심층반응조(20)의 하부의 무산소조(20b)에서 탈질을 통하여 질소가 제거된다.In the anaerobic tank 10, raw water and sludge are efficiently mixed to induce phosphorus release, and the wastewater to be treated in which phosphorus is released from the anaerobic tank 10 is transferred to the deep reaction tank 20. In the aerobic tank 20a at the upper part of the deep reaction tank 20, phosphorus is removed through intake of phosphorus, and ammonia nitrogen is oxidized. The oxidized nitrogen is moved downward along the flow of water to remove nitrogen through denitrification in the anoxic tank 20b at the bottom of the deep reaction tank 20.

반송율을 극대화한 이러한 심층반응조(20)는 도 5 에 도시된 바와 같이 복수 개가 연속으로 배치되어 질산화 및 탈질을 반복적으로 수행한다. 따라서 내부반송 없이 질소제거 효율을 증가시켜 처리수 내의 질소농도를 낮게 유지할 수 있다.This deep reaction tank 20, which maximizes the conveyance rate, as shown in FIG. 5, a plurality of them are continuously disposed to repeatedly perform nitrification and denitrification. Therefore, it is possible to maintain a low nitrogen concentration in the treated water by increasing the nitrogen removal efficiency without internal transport.

도 7 은 심층반응조(20)의 다른 실시예로서, 상부의 호기조(20a)에 여재(30)를 투입하여 질산화를 증진한다. 여재(30)는 심층반응조(20) 중간에 위치한 타공판(25) 때문에 하부로 이동하지 않으며 상부에 위치한 여재유출 방지망(31)을 이용하여 여재(30)의 유출을 방지하여 항상 호기조건에 위치하게 하여 질산화 미생물의 우점화를 유도한다.FIG. 7 illustrates another embodiment of the deep reaction tank 20, in which the filter medium 30 is introduced into the upper aerobic tank 20a to promote nitrification. The filter medium 30 does not move to the lower part because of the perforated plate 25 located in the middle of the deep reaction tank 20, and prevents the filter medium 30 from leaking out by using the filter medium leakage prevention net 31 located at the upper part so as to always be in an aerobic condition. Induces dominance of nitrifying microorganisms.

도 8 은 본 발명에 따른 심층 오폐수 처리장치의 다른 예를 도시하는 도면이 다. 본 예에서는, 유입수 내의 탄소원을 효율적으로 사용하기 위여 원수를 분할하여 심층반응조(20) 하부의 무산소조(20b)로 일부 유입시킨다.8 is a view showing another example of a deep waste water treatment apparatus according to the present invention. In this example, in order to efficiently use the carbon source in the influent, the raw water is divided and partially introduced into the anaerobic tank 20b under the deep reactor 20.

도 9 는 본 발명에 따른 심층 오폐수 처리장치의 또 다른 예를 도시하는 도면이다. 본 예에서는 도 8 의 예에서 혐기조(10) 다음에 별도의 무산소조(15)를 추가적으로 설치하고 내부반송을 통하여 산화된 질소를 유입시켜 질소제거를 강화한다.9 is a view showing still another example of the deep waste water treatment apparatus according to the present invention. In the present example, in the example of FIG. 8, an anaerobic tank 15 is additionally installed after the anaerobic tank 10, and oxidized nitrogen is introduced through internal transport to enhance nitrogen removal.

도 10 은 본 발명에 따른 심층 오폐수 처리장치의 또 다른 예를 도시하는 도면이다. 본 예에서는 도 8 의 예에서 2차 침전지 대신 분리막 공정(외압형 분리막 : 40)을 추가적으로 도입함으로써, 우수한 처리수질의 획득과 반응조의 미생물 농도를 높게 유지할 수 있어 반응조를 최대로 집약화 할 수 있다. 이때 분리막 공정에는 외압형 분리막(40)은 물론이고 침지형 분리막을 사용할 수도 있다. 또한, 반류수 및 연계수를 별도의 간헐 포기조(50)로 유입시킨 후 무산소조(20b)로 유입시켜 질소제거를 극대화 할 수 있다. 10 is a view showing still another example of the deep waste water treatment apparatus according to the present invention. In this example, by additionally introducing a membrane process (external pressure separator: 40) instead of the secondary settler in the example of Figure 8, it is possible to obtain excellent treated water quality and maintain a high concentration of microorganisms in the reaction tank to maximize the reaction tank. At this time, in the separation process, as well as the external pressure type separation membrane 40, an immersion type separation membrane may be used. In addition, the return water and the associated water may be introduced into a separate intermittent aeration tank 50 and then introduced into an anaerobic tank 20b to maximize nitrogen removal.

이상에서 설명된 본 발명의 처리특성은 일반적인 고도처리공정에 비하여 무산소/호기조건을 반복할 수 있기 때문에 처리수의 질소농도를 낮게 유지할 수 있고 혐기조를 별도로 분리하여 위치시켜 안정적인 인 제거가 가능하다. 또한 반응조를 심층으로 구성하여 부지소요를 최소할 수 있다.The treatment characteristics of the present invention described above can maintain a low nitrogen concentration of the treated water because it can be repeated an oxygen-free / aerobic conditions compared to the general high-treatment process, it is possible to remove the anaerobic tank separately to be stable phosphorus removal. In addition, the reactor can be configured in depth to minimize site requirements.

상기에서는 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 실시예에 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위 의 균등범위 내에서 다양한 수정 및 변형이 가능할 것이며, 이러한 변형은 본 발명의 보호범위에 속할 것이다.In the above, the preferred embodiment of the present invention has been illustrated and described, but the present invention is not limited to the specific embodiments described above, and the technical spirit of the present invention and the following by those skilled in the art to which the present invention pertains. Various modifications and variations will be possible within the equivalent scope of the claims to be described therein, and such variations will fall within the protection scope of the present invention.

도 1 은 기존 혐기/무산소/호기 공정의 개념도1 is a conceptual diagram of the existing anaerobic / anaerobic / exhalation process

도 2 는 기존 혐기/무산소/호기/무산소/호기 공정의 개념도2 is a conceptual diagram of the existing anaerobic / anaerobic / exhalation / anaerobic / exhalation process

도 3 은 기존의 심층 혐기/무산소/호기 공정의 개념도3 is a conceptual diagram of a conventional deep anaerobic / anaerobic / aerobic process

도 4 는 기존 수직형 멤브레인 바이오 리엑터를 이용한 오폐수 고도처리 장치Figure 4 is an advanced wastewater treatment system using a conventional vertical membrane bioreactor

도 5 는 본 발명의 공정 개념도5 is a process conceptual diagram of the present invention

도 6 은 본 발명의 반응조 단면의 개념도6 is a conceptual diagram of a cross section of a reactor according to the present invention;

도 7 은 본 발명의 반응조에 여재가 투입된 개념도7 is a conceptual diagram in which the filter medium is added to the reactor of the present invention

도 8 은 본 발명의 다른 실시예를 보여주는 공정의 개념도8 is a conceptual diagram of a process showing another embodiment of the present invention;

도 9 는 본 발명의 또 다른 실시예를 보여주는 공정의 개념도(질소제거 강화)9 is a conceptual diagram of a process showing another embodiment of the present invention (nitrogen removal enhancement)

도 10 은 본 발명의 또 다른 실시예를 보여주는 공정의 개념도(막분리 공정)10 is a conceptual diagram of a process showing another embodiment of the present invention (membrane separation process)

Claims (9)

인 제거를 위한 혐기성 조건을 형성하는 혐기조; 및Anaerobic tanks forming anaerobic conditions for phosphorus removal; And 상기 혐기조 후단에 설치되며, 호기조건을 형성하는 호기조가 상부에 배치되고 무산소 조건을 형성하는 무산소조가 하부에 배치되어 구성된 심층반응조;An in-depth reaction tank installed at the rear end of the anaerobic tank, the aerobic tank forming the aerobic condition is disposed at the top, and the anoxic tank forming the anaerobic condition; 를 포함하는 것을 특징으로 하는 심층 오폐수 처리장치.Deep waste water treatment apparatus comprising a. 제 1 항에 있어서,The method of claim 1, 상기 심층반응조는 복수 개가 연속적으로 배치되는 것을 특징으로 하는 심층 오폐수 처리장치.The depth reaction tank is a deep waste water treatment apparatus, characterized in that the plurality are arranged continuously. 제 1 항에 있어서,The method of claim 1, 상기 심층반응조 내의 중간 부위에 설치되어 상기 호기조와 상기 무산소조를 구획하는 타공판;을 더 포함하는 것을 특징으로 하는 심층 오폐수 처리장치.And a perforated plate installed at an intermediate portion of the deep reaction tank to partition the aerobic tank and the anoxic tank. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 호기조에는 여재가 충진되어 있는 것을 특징으로 하는 심층 오폐수 처 리장치.Deep waste water treatment apparatus, characterized in that the filter is filled in the exhalation tank. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 처리 대상 원수가 상기 혐기조와 상기 심층반응조 내의 상기 무산소조에 분할되어 유입되는 것을 특징으로 하는 심층 오폐수 처리장치.Deep wastewater treatment apparatus, characterized in that the raw water to be treated is divided into the anaerobic tank and the anoxic tank in the deep reactor. 제 5 항에 있어서,The method of claim 5, wherein 상기 혐기조와 상기 심층반응조 사이에 제2의 무산소조가 추가적으로 구비되는 것을 특징으로 하는 심층 오폐수 처리장치.Deep waste water treatment apparatus, characterized in that the second anaerobic tank is additionally provided between the anaerobic tank and the deep reaction tank. 제 6 항에 있어서,The method of claim 6, 상기 심층반응조 내의 상기 무산소조로부터 상기 제2의 무산소조로 내부반송이 수행되는 것을 특징으로 하는 심층 오폐수 처리장치.Deep waste water treatment apparatus, characterized in that the internal transfer from the oxygen-free tank in the deep reaction tank to the second oxygen-free tank. 제 5 항에 있어서,The method of claim 5, wherein 반류수 및 연계수가 간헐포기 후 상기 심층반응조 내의 상기 무산소조로 주 입되는 것을 특징으로 하는 심층 오폐수 처리장치.Deep waste water treatment apparatus, characterized in that the reflux water and the associated water is injected into the anoxic tank in the deep reaction tank after intermittent aeration. 제 5 항에 있어서,The method of claim 5, wherein 2차 침전지로서 사용되는 분리막을 더 포함하는 것을 특징으로 하는 심층 오폐수 처리장치.Deep waste water treatment apparatus further comprises a separator used as a secondary sedimentation basin.
KR1020070083893A 2007-08-21 2007-08-21 Deep Wastewater Treatment System Expired - Fee Related KR100804222B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070083893A KR100804222B1 (en) 2007-08-21 2007-08-21 Deep Wastewater Treatment System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070083893A KR100804222B1 (en) 2007-08-21 2007-08-21 Deep Wastewater Treatment System

Publications (1)

Publication Number Publication Date
KR100804222B1 true KR100804222B1 (en) 2008-02-18

Family

ID=39382293

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070083893A Expired - Fee Related KR100804222B1 (en) 2007-08-21 2007-08-21 Deep Wastewater Treatment System

Country Status (1)

Country Link
KR (1) KR100804222B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811010B1 (en) * 2016-06-17 2017-12-21 주식회사 장호 Device for Treating Waste Water Using Sequencing Batch Reactor with biofilm and filter film
JP2020089799A (en) * 2018-12-03 2020-06-11 株式会社クボタ Organic wastewater treatment equipment and method for rebuilding organic wastewater treatment equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001447A (en) * 2002-06-28 2004-01-07 최의소 Method of nitrogen removal from the high strength wastewater
KR20050010384A (en) * 2003-07-21 2005-01-27 한국과학기술연구원 Small-scale facility and method for treating wastewater biologically
KR100519694B1 (en) 2003-10-07 2005-10-10 한국과학기술연구원 Small-scale Sewage Disposal Facility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001447A (en) * 2002-06-28 2004-01-07 최의소 Method of nitrogen removal from the high strength wastewater
KR20050010384A (en) * 2003-07-21 2005-01-27 한국과학기술연구원 Small-scale facility and method for treating wastewater biologically
KR100519694B1 (en) 2003-10-07 2005-10-10 한국과학기술연구원 Small-scale Sewage Disposal Facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811010B1 (en) * 2016-06-17 2017-12-21 주식회사 장호 Device for Treating Waste Water Using Sequencing Batch Reactor with biofilm and filter film
JP2020089799A (en) * 2018-12-03 2020-06-11 株式会社クボタ Organic wastewater treatment equipment and method for rebuilding organic wastewater treatment equipment
JP7083740B2 (en) 2018-12-03 2022-06-13 株式会社クボタ Reconstruction method of organic wastewater treatment equipment and organic wastewater treatment equipment

Similar Documents

Publication Publication Date Title
CN104628132B (en) Integration denitrification reaction unit and process based on autotrophic denitrification
CN103991958B (en) Method for upgrading and expanding sequencing batch biological pool by utilizing moving bed biofilm process
CN107585974A (en) A kind of sewage water treatment method based on MBBR techniques
CN108358315A (en) Reduce the biology multiplication sewage-treatment plant and its processing method of denitrifying carbon source demand
KR100428047B1 (en) A Waste Water Purifier Using Overflow Sediment and Method
CN210001741U (en) Sewage treatment device
CN108996827B (en) A deep denitrification device for sewage treatment plant tail water based on methane oxidation
KR100804222B1 (en) Deep Wastewater Treatment System
KR102171365B1 (en) Advanced biological sewage and wastewater treatment facility of continuous flow using double tank structure
CN209143832U (en) A kind of pair of oxidation ditch mention the sewage-treatment plant of mark transformation
CN109942086B (en) MBR integration apparatus and its MBR sewage water treatment method with flexible diaphragm
KR20060024288A (en) High efficiency sewage and wastewater treatment system and method using reaction tank precipitation equipment
KR20130122192A (en) Oxidation ditch retrofitting process for biological nutrient removal using hybrid separation function and compact type contact media
KR100438151B1 (en) Apparatus for varying capacity of a reactor for wastewater treatment
CN215288157U (en) Rural sewage treatment plant of integration
Ge et al. Evaluation of upgrading a full-scale activated sludge process integrated with floating biofilm carriers
CN206069628U (en) A kind of MBBR sewage disposal systems
KR100274539B1 (en) Waste Water Treatment Methods and Fixed Bed Type Biofilm Media for Liquied Separation from MLSS & Nitrogen/Phosphorous Removal
CN105540845B (en) Coking chemical waste water short-cut nitrification and denitrification handling process
CN115196748A (en) Upflow type sewage treatment process and sewage treatment equipment
CN210764577U (en) Multifunctional integrated sewage treatment bioreactor
CN110902946B (en) Integrated sewage treatment device
KR101215378B1 (en) Purification system having vertical multicompartment reactor for organic waste water
CN207313238U (en) A kind of sewage-treatment plant
CN108394996B (en) Activated sludge integrated sewage treatment device

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

PA0302 Request for accelerated examination

St.27 status event code: A-1-2-D10-D16-exm-PA0302

St.27 status event code: A-1-2-D10-D17-exm-PA0302

D13-X000 Search requested

St.27 status event code: A-1-2-D10-D13-srh-X000

D14-X000 Search report completed

St.27 status event code: A-1-2-D10-D14-srh-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

Fee payment year number: 1

St.27 status event code: A-2-2-U10-U11-oth-PR1002

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

Fee payment year number: 4

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 5

St.27 status event code: A-4-4-U10-U11-oth-PR1001

FPAY Annual fee payment

Payment date: 20130207

Year of fee payment: 6

PR1001 Payment of annual fee

Fee payment year number: 6

St.27 status event code: A-4-4-U10-U11-oth-PR1001

FPAY Annual fee payment

Payment date: 20140107

Year of fee payment: 7

PR1001 Payment of annual fee

Fee payment year number: 7

St.27 status event code: A-4-4-U10-U11-oth-PR1001

FPAY Annual fee payment

Payment date: 20141204

Year of fee payment: 8

PR1001 Payment of annual fee

Fee payment year number: 8

St.27 status event code: A-4-4-U10-U11-oth-PR1001

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

FPAY Annual fee payment

Payment date: 20160212

Year of fee payment: 9

PR1001 Payment of annual fee

Fee payment year number: 9

St.27 status event code: A-4-4-U10-U11-oth-PR1001

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Not in force date: 20170212

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

St.27 status event code: A-4-4-U10-U13-oth-PC1903

PC1903 Unpaid annual fee

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20170212

St.27 status event code: N-4-6-H10-H13-oth-PC1903

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000