KR100779882B1 - Electroless Copper Coated Pitch Based Activated Carbon Fiber with Excellent Nitrogen Monoxide Reduction Characteristics and Electroless Copper Coated Pitch Based Activated Carbon Fiber - Google Patents
Electroless Copper Coated Pitch Based Activated Carbon Fiber with Excellent Nitrogen Monoxide Reduction Characteristics and Electroless Copper Coated Pitch Based Activated Carbon Fiber Download PDFInfo
- Publication number
- KR100779882B1 KR100779882B1 KR1020060108626A KR20060108626A KR100779882B1 KR 100779882 B1 KR100779882 B1 KR 100779882B1 KR 1020060108626 A KR1020060108626 A KR 1020060108626A KR 20060108626 A KR20060108626 A KR 20060108626A KR 100779882 B1 KR100779882 B1 KR 100779882B1
- Authority
- KR
- South Korea
- Prior art keywords
- activated carbon
- carbon fiber
- electroless copper
- based activated
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010949 copper Substances 0.000 title claims abstract description 108
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 93
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 93
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 47
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 230000009467 reduction Effects 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 62
- 230000008569 process Effects 0.000 claims abstract description 56
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000000576 coating method Methods 0.000 claims abstract description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000011248 coating agent Substances 0.000 claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 claims abstract description 22
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 16
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims abstract description 12
- 238000005530 etching Methods 0.000 claims abstract description 12
- 230000001133 acceleration Effects 0.000 claims abstract description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011149 active material Substances 0.000 claims abstract description 5
- 238000005238 degreasing Methods 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000005406 washing Methods 0.000 claims abstract description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 17
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 claims description 6
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims description 5
- 238000007380 fibre production Methods 0.000 abstract 1
- 238000007747 plating Methods 0.000 description 43
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000000243 solution Substances 0.000 description 14
- 238000001179 sorption measurement Methods 0.000 description 8
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 229910001432 tin ion Inorganic materials 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 208000035404 Autolysis Diseases 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- 101150003085 Pdcl gene Proteins 0.000 description 1
- 229910002677 Pd–Sn Inorganic materials 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 230000028043 self proteolysis Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/83—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/73—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/40—Fibres of carbon
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2101/00—Inorganic fibres
- D10B2101/10—Inorganic fibres based on non-oxides other than metals
- D10B2101/12—Carbon; Pitch
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemically Coating (AREA)
Abstract
본 발명은 무전해 구리 코팅된 피치계 활성탄소섬유 제조방법 및 무전해 구리 코팅된 피치계 활성탄소섬유에 관한 것으로, 좀 더 상세히, 피치계 활성탄소섬유의 제조방법에 있어서, (a) 피치계 활성탄소섬유를 제공하는 단계(110)와, (b) 피치계 활성탄소섬유의 유분 제거를 위한 디그리싱 공정(120)과, (c) 갈고리 효과와 젖음성 향상을 위한 에칭공정(130)과, (d) 피치계 활성탄소섬유 표면에 구리를 성장시키기 위한 활성물질인 팔라듐을 담지시키기 위한 캐터라이징 공정(140)과, (e) 물을 이용한 수세공정(150)과, (f) 상기 캐터라이징 공정에서 팔라듐(Pd)을 담지 시키는데 사용된 주석(Sn)층을 제거하는 액셀러레이션 공정(160)과, (e) 상기 액셀러레이션 공정을 거친 피치계 활성탄소섬유에 무전해 구리코팅을 수행하는 무전해 구리코팅 공정(170)을 포함하여 구성되는 것을 특징으로 하는 일산화질소 저감 특성이 우수한 무전해 구리 코팅된 피치계 활성탄소섬유 제조방법, 및 그로부터 제조된 무전해 구리 코팅된 피치계 활성탄소섬유에 관한 것이다.The present invention relates to a method for producing an electroless copper-coated pitch-based activated carbon fiber and an electroless copper-coated pitch-based activated carbon fiber, and more particularly, in the method for producing a pitch-based activated carbon fiber, (a) pitch system Providing an activated carbon fiber (110), (b) a degreasing process 120 for removing oil from the pitch-based activated carbon fiber, (c) an etching process 130 for improving hook effect and wettability, (d) a catering process 140 for supporting palladium, which is an active material for growing copper on the pitch-based activated carbon fiber surface, (e) a washing process 150 using water, and (f) the catering Acceleration process 160 to remove the tin (Sn) layer used to support the palladium (Pd) in the process, and (e) electroless copper coating on the pitch-based activated carbon fibers subjected to the acceleration process Configured to include an electroless copper coating process 170 Relates the features in the nitric oxide reduction characteristics are superior electroless copper coating a pitch-based activated carbon fiber production process, and the electroless copper coated pitch-based activated carbon fibers produced therefrom that.
Description
도 1은 본 발명의 일실시예에 따른 일산화질소 저감 특성이 우수한 무전해 구리 코팅된 피치계 활성탄소섬유 제조방법 흐름도이다.1 is a flowchart illustrating a method for producing an electroless copper coated pitch-based activated carbon fiber having excellent nitrogen monoxide reduction characteristics according to an embodiment of the present invention.
도 2에서는 NO 저감시험에 적용된 실험장치도를 나타내었다.Figure 2 shows the experimental apparatus applied to the NO reduction test.
도 3 에는 ACF/Cu 샘플의 형상을 나타내었다. 3 shows the shape of the ACF / Cu sample.
도 4에는 도 3의 XRD(x-ray diffractometry) 분석한 결과를 나타내었다.4 shows the results of X-ray diffractometry (XRD) analysis of FIG. 3.
도 5에는 ACF/Pristine을 포함한 ACF/Cu 샘플의 77K/N2 등온흡착(adsorption isotherm) 결과를 나타내었다.Figure 5 shows the results of the 77K / N 2 isotherm (adsorption isotherm) of ACF / Cu samples containing ACF / Pristine.
도 6a, 도 6b,도 6c,도 6d, 및 도 6e에는 반응온도를 150, 200, 300, 350, 및 400℃ 로 조절하였을 경우의 반응시간에 따른 NO 저감특성을 나타내었다.6A, 6B, 6C, 6D, and 6E show NO reduction characteristics according to the reaction time when the reaction temperature was adjusted to 150, 200, 300, 350, and 400 ° C.
본 발명은 일산화질소 저감 특성이 우수한 무전해 구리 코팅된 피치계 활성 탄소섬유 제조방법 및 무전해 구리 코팅된 피치계 활성탄소섬유에 관한 것이다.The present invention relates to an electroless copper-coated pitch-based activated carbon fiber manufacturing method excellent in nitrogen monoxide reduction characteristics and an electroless copper-coated pitch-based activated carbon fiber.
활성탄소섬유(ACF, activated carbon fiber)는 비표면적과 총세공부피가 기존의 활성탄소에 비해 매우 크고, 형성된 기공들이 대부분 미세공(micropore)로 흡착질에 대한 확산저항이 거의 없기 때문에 흡착속도 및 용량이 매우 높다.Activated carbon fiber (ACF) has a larger specific surface area and total pore volume than conventional activated carbon, and most of the pores formed are micropores, which have almost no diffusion resistance to adsorbates. This is very high.
최근에는 ACF 표면에 관능기를 부여하거나 전이금속을 첨착시켜 흡착효율을 높이고 촉매적 특성을 부가시키는 발명에 관심이 집중되고 있다.In recent years, attention has been focused on the invention of increasing the adsorption efficiency and adding catalytic properties by imparting functional groups to the ACF surface or by adhering transition metals.
활성탄소를 담체로 하여 금속촉매를 코팅시키는 방법은 대부분 액상 첨착(impregnation)방법을 사용하는데, 이러한 방법은 액상 첨착 공정 후 불활성 가스 혹은 공기 중에서 후처리하는 공정이 필요하여 제조시간이 길며, 금속의 코팅 후 부차가 안정성이 낮은 단점이 있다.The coating method of the metal catalyst using the activated carbon as a carrier mostly uses a liquid impregnation method, which requires a step of post-treatment in an inert gas or air after the liquid impregnation process, and thus requires a long manufacturing time. The secondary side after coating has a disadvantage of low stability.
본 발명의 목적은 종래기술의 문제점이 해결되고 일산화질소 저감 특성이 우수한 무전해 구리 코팅된 피치계 활성탄소섬유 제조방법 및 무전해 구리 코팅된 피치계 활성탄소섬유을 제공하기 위한 것이다.An object of the present invention is to solve the problems of the prior art and to provide a method for producing an electroless copper coated pitch-based activated carbon fiber excellent in nitrogen monoxide reduction characteristics and an electroless copper coated pitch-based activated carbon fiber.
1. 제조공정1. Manufacturing process
본 발명에서는 Single-step Catalyzing 기반 무전해 코팅 방법을 이용하여 피치계 활성탄소섬유 표면에 구리를 코팅하였고, 이의 표면 특성과 함께 무산소 조건에서 NO를 저감하는 연구를 150-400℃의 온도범위에서 수행하였다.In the present invention, a single-step catalyzing-based electroless coating method was used to coat copper on the pitch-based activated carbon fiber surface, and a study of reducing NO in anoxic conditions together with its surface characteristics was carried out at a temperature range of 150-400 ° C. It was.
활성탄소섬유 표면에 구리를 무전해 코팅하는 공정은 크게 4가지로 나뉜다. 1 공정은 Degreasing 공정으로 활성탄소섬유 표면의 유분을 제거하는 것이고, 2 고정은 Catalyzation 공정으로 활성탄소섬유 표면에 최종 코팅 물질인 구리를 성장시키기 위한 활성 물질인 팔라듐을 담지키시는 것이다. 3 공정은 2 공정에서 팔라듐을 담지시키는데 함께 사용된 주석 층을 제거하는 Acceleration 공정이며, 마지막 공정은 3 공정까지 처리된 활성탄소섬유에 무전해 구리 코팅을 수행하는 것이다. Electroless coating of copper on the surface of activated carbon fiber is largely divided into four processes. The first process is to remove oil from the surface of activated carbon fiber by the degreasing process, and the second fixation is to carry palladium, an active material for growing copper, the final coating material, on the surface of activated carbon fiber by catalyzation process. The third process is the Acceleration process, which removes the tin layer used together to support the palladium in the second process. The final process is to perform electroless copper coating on the activated carbon fibers processed up to the third process.
무전해 구리 코팅된 활성탄소섬유는 ACF/Cu로 표기한다. 본 발명에서의 Catalyzation 공정은 활성탄소 섬유의 표면을 주석으로 예민화 (Sensitization)하고 팔라듐으로 활성화 시키는 2 단 공정 대신 Pd-Sn 을 동시에 사용하는 1 단 공정을 사용하였다. 또한 NO 저감시험에 적용된 ACF/Cu 샘플은 무전해 구리 코팅 시간(분)을 기준으로 구리가 처리되지 않은 ACF/Pristine 을 포함하여 ACF/Cu-05, ACF/Cu-10, ACF/Cu-15 및 ACF/Cu-20 의 것을 적용하였다.Electroless copper coated activated carbon fibers are referred to as ACF / Cu. Catalyzation process in the present invention used a one-stage process using Pd-Sn at the same time instead of a two-stage process to sensitize the surface of activated carbon fibers with tin and activate with palladium. The ACF / Cu samples applied in the NO abatement test also included ACF / Cu-05, ACF / Cu-10, ACF / Cu-15, including ACF / Pristine without copper, based on electroless copper coating time (minutes). And ACF / Cu-20's were applied.
본 발명의 목적을 달성하기 위한 본 발명에 따른 일산화질소 저감 특성이 우수한 무전해 구리 코팅된 피치계 활성탄소섬유 제조방법은 피치계 활성탄소섬유의 제조방법에 있어서, (a) 피치계 활성탄소섬유를 제공하는 단계(110)와, (b) 피치계 활성탄소섬유의 유분 제거를 위한 디그리싱 공정(120)과, (c) 갈고리 효과와 젖음성 향상을 위한 에칭공정(130)과, (d) 피치계 활성탄소섬유 표면에 구리를 성장시 키기 위한 활성물질인 팔라듐을 담지시키기 위한 캐터라이징 공정(140)과, (e) 물을 이용한 수세공정(150)과, (f) 상기 캐터라이징 공정에서 팔라듐(Pd)을 담지 시키는데 사용된 주석(Sn)층을 제거하는 액셀러레이션 공정(160)과, (e) 상기 액셀러레이션 공정을 거친 피치계 활성탄소섬유에 무전해 구리코팅을 수행하는 무전해 구리코팅 공정(170)을 포함하여 구성된다.Electroless copper-coated pitch-based activated carbon fiber manufacturing method excellent in nitrogen monoxide reduction characteristics according to the present invention for achieving the object of the present invention is a method for producing a pitch-based activated carbon fiber, (a) pitch-based activated carbon fiber Providing step (110), (b) Degreasing process 120 for the removal of oil of pitch-based activated carbon fibers, (c) Etching process 130 for improving the hook effect and wettability, (d) Catering process 140 for supporting palladium, an active material for growing copper on the pitch-based activated carbon fiber surface, (e) washing step 150 using water, and (f) in the catering process Acceleration process 160 to remove the tin (Sn) layer used to support palladium (Pd), and (e) electroless copper coating on the pitch-based activated carbon fibers subjected to the acceleration process Including the copper coating process 170 All.
이하 본 발명에 의한 일산화질소 저감 특성이 우수한 무전해 구리 코팅된 피치계 활성탄소섬유 제조방법을 첨부도면에 도시한 실시예에 따라 상세히 설명한다.Hereinafter, a method for producing an electroless copper-coated pitch-based activated carbon fiber having excellent nitrogen monoxide reduction characteristics according to the present invention will be described in detail according to an embodiment shown in the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 일산화질소 저감 특성이 우수한 무전해 구리 코팅된 피치계 활성탄소섬유 제조방법 흐름도이다.1 is a flowchart illustrating a method for producing an electroless copper coated pitch-based activated carbon fiber having excellent nitrogen monoxide reduction characteristics according to an embodiment of the present invention.
디그리싱 공정(120)은 피치계 활성탄소섬유의 유분 제거를 위한 공정이다.The degreasing process 120 is a process for removing oil from the pitch-based activated carbon fibers.
에칭공정(130)은 소지표면에 친수성을 부여하고 도금층과의 갈고리 효과에 의한 밀착력 강화를 목적으로 하는 공정이다. 에칭공정(130)은 농도가 13 ~ 17 g/ℓ인 수산화나트륨(NaoH) 용액으로 온도 40 ~ 60℃에서 9 ~ 11분 동안 수행되는 것이 바람직하다. 농도가 13 g/ℓ이하인 경우 저농도로 반응이 일어나지 않아서 에칭이 안되고, 농도가 17 g/ℓ이상인 경우 과반응으로 활성탄소섬유 재료손실의 문제점이 발생하였다. 온도가 40℃ 이하인 경우 미반응으로 에칭효과가 떨어지고 온도가 60℃ 이상인 경우 과반응되는 문제점이 있었다. 9 ~ 11분 동안 시행하였을 때 도금층과의 갈고리 효과에 의한 밀착력 강화 효과가 뛰어났다.The etching step 130 is a step for imparting hydrophilicity to the base surface and for strengthening adhesion by the hook effect with the plating layer. The etching process 130 is preferably a sodium hydroxide (NaoH) solution having a concentration of 13 to 17 g / ℓ for 9 to 11 minutes at a temperature of 40 ~ 60 ℃. If the concentration is less than 13 g / ℓ did not occur because the reaction does not occur at a low concentration, when the concentration is more than 17 g / ℓ caused a problem of the loss of activated carbon fiber material due to overreaction. If the temperature is 40 ℃ or less, there is a problem that the etching effect is lowered unreacted, and the reaction is over reaction when the temperature is 60 ℃ or more. When 9 to 11 minutes were carried out, the adhesion was enhanced by the hook effect with the plated layer.
캐터라이징 공정(140)은 소지에 구리를 성장시키기 위해 활성 물질인 Pd를 골고루 담지시키기 위한 공정이다. 캐터라이징 공정(140)은 염화팔라듐(PdCl2) 농도 0.35 ~ 0. 45 g/ℓ, 염화주석(SnCl2·2H2O) 농도 18 ~ 22 g/ℓ, 염산( HCl ) 농도 150 ~ 170㎖/ℓ인 캐터라이징 용액을 사용하여 35 ~ 55℃에서 3 ~ 6분간 수행된다.Catering process 140 is a process for evenly supporting the active material Pd in order to grow copper on the base. Catering process 140 is palladium chloride (PdCl 2 ) concentration 0.35 ~ 0.45 g / L, tin chloride (SnCl 2 · 2H 2 O) concentration 18 ~ 22 g / L, hydrochloric acid ( HCl ) concentration 150 ~
캐터라이징을 위해 염화팔라듐(PdCl2), 염화주석(SnCl2·2H2O), 및 염산(HCl)이 캐터라이징 용액에서 일정 비율을 이루어야 하는데, 염화팔라듐(PdCl2) 농도값이 0.35g/ℓ 이하, 염화주석(SnCl2·2H2O) 농도값이 18 g/ℓ 이하, 염산( HCl ) 농도값이 150 ㎖/ℓ 이하가 되는 경우에는 캐터라이징 반응이 일어나지 않거나 소지에 골고루 Pd가 담지되지 않아 캐터라이징 공정(140) 소기의 목적을 달성할 수 없었다.Palladium chloride (PdCl 2 ), tin chloride (SnCl 2 · 2H 2 O), and hydrochloric acid (HCl) must be proportional to the catalysis solution for catalysis. The palladium chloride (PdCl 2 ) concentration is 0.35 g / l or less, tin chloride (SnCl 2 · 2H 2 O) concentration value of 18 g / l or less, hydrochloric acid ( HCl ) concentration value of 150 ml / l or less , no catalyzing reaction or evenly supported Pd It was not possible to achieve the desired purpose of catering process 140.
염화팔라듐(PdCl2) 농도값이 0.45 g/ℓ 이상, 염화주석(SnCl2·2H2O) 농도값이 22 g/ℓ 이상, 염산( HCl ) 농도값이 170 ㎖/ℓ 이상이 되는 경우에는 필요 이상의 팔라듐(Pd)이 담지되고, 과다한 주석(Sn)층이 생성되며, 고가인 염화팔라듐(PdCl2)이 필요 이상으로 소모되어 생산 비용이 급증하는 문제점이 있었다.When the palladium chloride (PdCl 2 ) concentration value is 0.45 g / l or more, the tin chloride (SnCl 2 · 2H 2 O) concentration value is 22 g / l or more, and the hydrochloric acid ( HCl ) concentration value is 170 ml / l or more More than necessary palladium (Pd) is supported, an excessive tin (Sn) layer is generated, expensive palladium chloride (PdCl 2 ) is consumed more than necessary, there was a problem that the production cost rapidly increased.
온도가 35℃ 이하인 경우 미반응으로 캐터라이징 효과가 떨어지고 온도가 55℃ 이상인 경우 과반응되는 문제점이 있었다. 3 ~ 6분 동안 시행하였을 때 소지에 구리를 성장시키기 위한 활성 물질인 Pd가 필요한 만큼 골고루 담지되었다.If the temperature is less than 35 ℃ unreacted catering effect is lowered, if the temperature is more than 55 ℃ there was a problem of overreacting. After 3 to 6 minutes, Pd, an active substance for growing copper, was evenly supported as needed.
액셀러레이션 공정(160)은 팔라듐을 담지시키는데 함께 사용된 주석 층을 제거하는 공정이다. 액셀러레이션 공정(160)은 9 ~ 11%(부피 기준)의 황산(H2SO4) 용액에서 6 ~ 8분간 수행된다. 황산(H2SO4) 용액의 농도가 9% 이하인 경우 주석 이온(Sn+4)이 활성탄소섬유 표면에 붙어 있어 제거 효과가 떨어지고, 황산(H2SO4) 용액의 농도가 11% 이상인 경우 주석 이온(Sn+4)뿐 아니라 팔라듐(Pd)의 핵까지 제거하여 도금시 표면 핵작용을 방해하는 문제점이 있었다. 6 ~ 8분간 수행되었다.Acceleration process 160 is a process of removing the tin layer used together to support palladium. Acceleration process 160 is performed for 6 to 8 minutes in a sulfuric acid (H 2 SO 4 ) solution of 9 to 11% (volume). When the concentration of sulfuric acid (H 2 SO 4 ) solution is below 9% When tin ions (Sn +4 ) adhere to the surface of activated carbon fiber, the removal effect is reduced, and the concentration of sulfuric acid (H 2 SO 4 ) solution is above 11% Not only tin ions (Sn +4 ) but also nuclei of palladium (Pd) were removed to interfere with surface nucleation during plating. It was performed for 6-8 minutes.
무전해 구리코팅 공정(170)은 CuSO4·5H2O, KNaC4H4O6 ·4H2O, 및 HCHO를 포함하여 구성되는 구리 코팅액을 사용하여 수행된다. 무전해 구리코팅 공정(170)은 CuSO4·5H2O 농도 0.22~0.33M , KNaC4H4O6·4H2O 농도 0.5 ~ 0.7M, HCHO 농도 130 ~ 170 ㎖/ℓ이고, PH가 12.5 ~ 14인 구리 코팅액을 사용하여 수행됨이 바람직하다.The electroless copper coating process 170 is performed using a copper coating liquid comprising CuSO 4 .5H 2 O, KNaC 4 H 4 O 6 .4H 2 O, and HCHO. The electroless copper coating process 170 has a CuSO 4 · 5H 2 O concentration of 0.22 to 0.33M, KNaC 4 H 4 O 6 · 4H 2 O concentration of 0.5 to 0.7M, HCHO concentration of 130 to 170 ml / l, and a PH of 12.5. It is preferably carried out using a copper coating liquid of ˜14.
무전해 구리코팅을 위해 CuSO4·5H2O, KNaC4H4O6·4H2O, 및 HCHO가 코팅액에서 서로 관계되는 일정 비율을 이루어야 하는데, CuSO4·5H2O 농도 0.22 이하, KNaC4H4O6·4H2O 농도 0.5 이하, HCHO 농도 130㎖/ℓ 이하인 경우 미반응으로 도금이 잘 이루어지지 않는 문제점이 있었으며, CuSO4·5H2O 농도 0.33 이상, KNaC4H4O6· 4H2O 농도 0.7 이상, HCHO 농도 170㎖/ℓ 이상인 경우 도금욕에 안정성이 없어 자기분해반응이 일어나는 문제점이 있었다. 무전해 구리코팅 공정(170)은 5 ~ 30분간 수행되었다. 적정 정도의 도금량을 얻기 위해 무전해 구리코팅 시간은 5분 이상으로 하였다. 전술한 무전해 구리 코팅된 피치계 활성탄소섬유의 제조방법으로 제조된 피치계 활성탄소섬유에 대해 실험을 실시하였다.For electroless copper coating, CuSO 4 · 5H 2 O, KNaC 4 H 4 O 6 · 4H 2 O, and HCHO should make a certain proportion relative to each other in the coating solution, CuSO 4 · 5H 2 O concentration 0.22 or less, KNaC 4 When H 4 O 6 · 4H 2 O concentration 0.5 or less, HCHO concentration 130mL / ℓ or less there was a problem that the plating is not made by unreacted, CuSO 4 · 5H 2 O concentration 0.33 or more, KNaC 4 H 4 O 6 · 4H 2 O concentration of 0.7 or more, HCHO concentration of 170ml / ℓ or more there is a problem that the autolysis reaction is not stable in the plating bath. The electroless copper coating process 170 was performed for 5 to 30 minutes. In order to obtain an appropriate amount of plating, the electroless copper coating time was 5 minutes or more. An experiment was performed on the pitch-based activated carbon fibers prepared by the method of manufacturing the electroless copper-coated pitch-based activated carbon fibers described above.
실시예Example
도금장치Plating equipment
무전해 도금에 사용할 도금장치는 교반기와 히터를 장착한 항온조 내에 도금조를 넣은 형태이다. 도금조는 유리 금속 이온이 도금조 벽면에 환원되어 석출하는 것을 방지하기 위해 pyrex유리 재질을 사용하였으며, 도금조의 용량은 1000ml이다. 시편집게는 알루미늄 소재이며 그 위에 내식성 및 내열성이 우수한 테프론 테이프로 보호막을 형성하였고, 이것을 도금조의 중앙에 위치하도록 하였다. The plating apparatus to be used for electroless plating is a type in which a plating vessel is placed in a thermostatic bath equipped with a stirrer and a heater. The plating bath uses pyrex glass material to prevent free metal ions from being deposited on the wall of the plating bath, and the plating bath has a capacity of 1000 ml. The tester was made of aluminum, and a protective film was formed on Teflon tape having excellent corrosion resistance and heat resistance, and was placed in the center of the plating bath.
또한 시편집게는 전처리 공정용과 구리도금 공정용으로 구분하여 사용함으로서 전처리 공정에서 그 표면에 잔존하는 촉매 Pd0으로 인한 무전해 동도금시 금속이온이 환원 석출되는 것을 방지하였다.In addition, the tester was used for the pretreatment process and the copper plating process to prevent metal ions from reducing precipitation during electroless copper plating due to the catalyst Pd 0 remaining on the surface during the pretreatment process.
도금액의 온도변화는 도금속도 및 도금조직에 큰 영향을 미치므로 항온조 내에 장착하여 도금하였다. 항온조는 히터, stirrer, thermoregulator로 구성되어진 오일 항온조이다. 제작된 오일 항온조는 용량을 비교적 크게 하였으며, 교반을 통해 항온조 온도 범위를 ±1℃ 이내로 제어할 수 있도록 하였다.The temperature change of the plating liquid has a great effect on the plating speed and the plating structure, so it was plated in a thermostat. The thermostat is an oil thermostat consisting of a heater, a stirrer and a thermoregulator. The fabricated oil thermostat has a relatively large capacity, and it is possible to control the thermostat temperature range within ± 1 ° C through stirring.
시편 준비 및 전처리 조건Specimen Preparation and Pretreatment Conditions
a. 본 실험에 사용되어진 활성탄소섬유는 기존의 금속 혹은 비금속의 소지와는 다른 특성을 가지므로 탄소섬유의 물성을 최대한 고려하여 시편을 전처리 하고자 하였다. 시편의 전처리 조건을 결정하기 위해 여러 전처리 조건에서 시편을 처리한 후 주어진 욕조성에서 무전해 도금을 실시하였다. 먼저 금속 소지 표면에 갈고리효과(anchoring effect)를 부여하고 시편의 젖음성 향상도 아울러 얻고자 하였다. 이때의 전처리 조건은 NaOH 용액에서 일정한 농도와 온도에서 10분 동안 수행하였다. 소지의 표면 활성공정은 sensitization 및 catalyzing의 single step process를 사용하였다. Catalyzing 공정에서 잔류하게 되는 Sn성분을 제거하는 공정인 accelerating 공정에서는 10% H2SO4를 사용하였다. 각 공정사이에는 수돗물을 사용하여 상온에서 3회 수세하였다.a. The activated carbon fiber used in this experiment has different characteristics from those of the existing metal or non-metallic material, so the pretreatment of the specimen was considered in consideration of the physical properties of the carbon fiber. In order to determine the pretreatment conditions of the specimens, the specimens were treated at various pretreatment conditions, and then electroless plating was performed at a given bath property. First, we tried to give the anchoring effect to the surface of the metal body and to improve the wettability of the specimen. At this time, pretreatment conditions were performed for 10 minutes at a constant concentration and temperature in NaOH solution. For the surface activation process of the body, a single step process of sensitization and catalyzing was used. 10% H 2 SO 4 was used in the accelerating process, which removes Sn components remaining in the catalyzing process. Each process was washed three times at room temperature using tap water.
b. 전처리조건b. Pretreatment Condition
소지(substrate)는 활성탄소섬유로서 전처리 과정에서 산과 염기에 대한 영향을 최대한 줄이면서 균일한 도금층을 얻고자 하였다. 본 실험에서의 etching 공정은, 소지의 물성과 밀접한 관련이 있으며, 수용액 중의 소지의 wetting성 향상과 갈고리 효과(anchoring effest)에 필수적임을 확인할 수 있었다. 일반적으로 etching 공정은 소지표면에 친수성을 부여할 뿐만 아니라 도금층과의 갈고리 효과에 의한 밀착력 강화를 목적으로 하는 공정이다. Etching이 너무 과도하거나 또는 너무 약하면 도금층과 소지의 밀착력을 저하시킬 수 있다. Substrate is activated carbon fiber to obtain a uniform plating layer while minimizing the effects on acids and bases in the pretreatment process. In this experiment, the etching process is closely related to the physical properties of the body, and it was confirmed that it is essential for improving the wetting property of the body in the aqueous solution and the anchoring effest. In general, the etching process is not only to impart hydrophilicity to the base surface, but also to enhance adhesion by the effect of hooking with the plating layer. Too much or too little etching may degrade the adhesion between the plated layer and the substrate.
에칭 공정에서 NaOH의 농도를 15 g/ℓ로 액의 온도를 50℃로 고정시켰고, 에칭 시간을 10분으로 고정하여 무전해 동도금을 하였다.In the etching process, the concentration of NaOH was fixed at 15 g / l, and the temperature of the liquid was fixed at 50 ° C. The etching time was fixed at 10 minutes for electroless copper plating.
Catalyzing 공정에서는 무전해 동도금의 catalyzing solution을 사용하였다. 여기에서 사용되어진 catalyzing solution의 구성은 PdCl2의 농도는 0.4g/ℓ, SnCl2·2H2O의 농도는 20g/ℓ, HCl의 농도는 160㎖/ℓ이였으며, 이 용액으로 45℃에서 5분간 시편을 catalyzing 처리하였다. 이렇게 처리한 시편은 수세를 통해 상온에서 10% H2SO4(volume 기준)용액에 7분간 accelerating 처리한 후 무전해 동도금을 수행하였다. In the catalyzing process, a catalyzing solution of electroless copper plating was used. The composition of the catalyzing solution used here was 0.4 g / l for PdCl 2 , 20 g / l for SnCl 2 · 2H 2 O, and 160 ml / l for HCl. Was catalyzed. The specimen thus treated was accelerated with 10% H 2 SO 4 (volume standard) solution at room temperature for 7 minutes through water washing, and then electroless copper plating was performed.
무전해 동도금을 수행한 결과 도금이 국부적으로 불균일한 부분은 전혀 없었으며, 균일한 도금층을 얻을 수 있었다.As a result of electroless copper plating, there was no local nonuniformity of plating, and a uniform plating layer was obtained.
무전해Electroless 동도금Copper plating
a. 예비실험으로 여러 종류의 동도금액으로 활성탄소섬유 외에 무전해 도금을 실시하여 구리도금이 잘 될 수 있는가를 점검하였다. 예비 실험결과를 바탕으로 도금의 균일성과 밀착성을 고려하여 가장 양호한 무전해 동도금욕을 선택하고자 하 였다.a. Preliminary experiments were conducted to check whether copper plating could be performed by electroless plating in addition to activated carbon fibers with various copper plating solutions. Based on the preliminary test results, the best electroless copper plating bath was selected in consideration of the uniformity and adhesion of the plating.
본 실험에 사용되어진 무전해 동도금욕의 주성분은 CuSO4·5H2O, KNaC4H4O6· 4H2O, HCHO이며, pH 조절제는 NaOH를 사용하였다. 구리 도금된 소지는 수돗물로 3회 세척하여 105℃에서 3hr 건조시킨 후 데시게이터에 보관하였다.The main components of the electroless copper plating bath used in this experiment were CuSO 4 · 5H 2 O, KNaC 4 H 4 O 6 · 4H 2 O, HCHO, and pH was used as NaOH. The copper plated body was washed three times with tap water, dried at 105 ° C. for 3hr, and stored in a desiccator.
b. 소지인 활성탄소섬유 상에 동도금을 균일하게 얻고자 여러 종류의 무전해 동도금욕을 선택하여 실험을 실시하였다. 앞에서 설명한 전처리 방법으로 처리한 시편을 각각 주어진 온도에서 5분, 10분, 15분, 20분, 25분, 30분 동안 수행하였다. 실험에 사용되어진 대표적 무전해 동도금욕의 조성 및 도금조건은 CuSO4·5H2O 0.28M, KNaC4H4O6· 4H2O 0.62M, HCHO 150㎖/ℓ 이며, pH 는 13. 25이고, 동도금액의 온도는 상온에서 실시하였다.b. In order to uniformly obtain copper plating on activated carbon fibers, various types of electroless copper plating baths were selected and tested. Specimens treated by the pretreatment methods described above were performed for 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, and 30 minutes at the given temperatures, respectively. The composition and plating conditions of the representative electroless copper plating bath used in the experiment were CuSO 4 · 5H 2 O 0.28M, KNaC 4 H 4 O 6 · 4H 2 O 0.62M, HCHO 150ml / ℓ, pH was 13.25 The copper plating solution was carried out at room temperature.
촉매특성 분석Catalyst Characterization
일반적으로 도금속도 측정에 사용되는 중량법(gravimetric method)은 소지인 활성탄소섬유의 세공이 발달하여 있으므로 무게 변화가 생기므로 도금속도 측정이 부정확하였다. 따라서 도금속도(deposition rate)의 변화는 단위시간당 도금된 두게로 측정하였다. 도금층의 두께는 광학현미경과 주사현미경(Scannong Electron Microscopy ; SEM)을 사용하여 얻어진 도금층의 단면사진을 Image Analyzer program(Media Cybernetics)으로 각 시편당 15회 측정하여 그 평균값으로 표시한 다. 도금층의 성분 분석은 XRD를 사용하였고, 도금층의 조성은 EDS와 ICP(Inductively Coupled Plasma Spectrometer : PERKINELMER OPTIMA 3000)를 사용하여 분석하였다. 도금온도와 도금액의 pH, pH 조절제, 도금층의 조성에 따른 도금 피막의 균일성과 형상모습은 주사전자현미경(Scanning Electron Microscopy ; SEM)을 사용하여 관찰하였다.In general, the gravimetric method used to measure the plating rate is incorrect because the weight change occurs because the pores of the activated carbon fibers are developed. Therefore, the change in the deposition rate (deposition rate) was measured by the thickness plated per unit time. The thickness of the plated layer was measured by the optical analyzer and Scannong Electron Microscopy (SEM), and the cross-sectional photograph of the plated layer was measured 15 times for each specimen by an image analyzer program (Media Cybernetics) and displayed as the average value. XRD was used for the composition analysis of the plating layer, and the composition of the plating layer was analyzed using EDS and ICP (Inductively Coupled Plasma Spectrometer: PERKINELMER OPTIMA 3000). The uniformity and shape of the plating film according to the plating temperature, the pH of the plating solution, the pH regulator, and the composition of the plating layer were observed using a scanning electron microscope (SEM).
2. 실험 2. Experiment
NONO 의 of 저감특성Reduction characteristics
NO의 저감특성을 활인하기 위해 무전해 구리 코팅된 ACF/Cu 샘플을 Dry Oven에서 건조시킨 후 3.0g 의 샘플을 반응기 내부에 충진 시킨 후 질소가스를 20분 동안 주입시켜 잔존 산소 및 수분을 제거하였다. 반응기에 유입되는 가스는 NO 와 N2 로 각각 대상 시험가스와 운반가스로 사용되었다. NO 의 초기농도를 160ppm 으로 맞추어 무산소조건에서 NO 의 저감특성을 확인하였다. 반응기에 유입되는 NO 의 반응 전/후의 NO 의 농도를 실시간으로 측정하였다. NO 의 농도는 화학발광방식의 NOx 분석기(NO-NO2 -NOxAnalyzer, 42C, Thermo Environmental)에 의해 측정되었다.In order to activate the reduction characteristics of NO, an electroless copper-coated ACF / Cu sample was dried in a dry oven, and then 3.0g of sample was charged into the reactor and nitrogen gas was injected for 20 minutes to remove residual oxygen and water. . The gases entering the reactor were NO and N 2 , respectively, as the test gas and the carrier gas. The initial concentration of NO was adjusted to 160ppm to confirm the reduction characteristics of NO under anoxic conditions. The concentration of NO before and after the reaction of NO flowing into the reactor was measured in real time. The concentration of NO was measured by a chemiluminescent NOx analyzer (NO-NO 2 - NO x Analyzer, 42C, Thermo Environmental).
도 2에서는 NO 저감시험에 적용된 실험장치도를 나타내었다. 반응기 출구의 농도는 입구의 농도와 비교하여 NO 의 저감성능을 아래의 식(1)을 통해 계산하였다. Figure 2 shows the experimental apparatus applied to the NO reduction test. The concentration at the outlet of the reactor was calculated by the following equation (1), compared with the concentration at the inlet.
여기서 NOi 와 NOf 는 각각 반응기 유입 및 유출부의 NO 농도(ppm)이다.Where NO i and NO f are the NO concentrations (ppm) at the reactor inlet and outlet, respectively.
3. 결과3. Results
활성탄소섬유로의To activated carbon fiber 무전해Electroless 구리 코팅 Copper coating
아래의 도 3 에는 ACF/Cu 샘플의 형상을 나타내었다. 전반적으로 무전해 구리 코팅 시간이 증가함에 따라 ACF 표면에 코팅된 구리 입자의 양과 크기가 증가하는 경향을 확인할 수 있다.Figure 3 below shows the shape of the ACF / Cu sample. Overall, as the electroless copper coating time increases, the amount and size of copper particles coated on the ACF surface increases.
도 4에는 도 3의 XRD(x-ray diffractometry) 분석한 결과를 나타내었다. 무전해 구리 코팅 시간이 증가함에 따라 탄소의 양은 상대적으로 감소하는 반면 구리의 양은 증가함을 확인할 수 있었다. 또한 ACF 에 코팅된 물질은 대부분 구리 금속임을 확인할 수 있었다.4 shows the results of X-ray diffractometry (XRD) analysis of FIG. 3. As the electroless copper coating time increases, the amount of carbon decreases while the amount of copper increases. In addition, it was confirmed that the material coated on the ACF is mostly copper metal.
Table 1은 ACF 에 코팅된 구리의 절대량을 ICP(inductively coupled plasma) 분석을 통해 도출된 결과를 정리한 것이다. 무전해 구리 코팅 시간 증가에 따라 ACF 에 코팅된 구리의 절대량도 함께 증가함을 확인할 수 있었다. 또한 구리의 코팅을 유도하는 팔라듐의 양도 함께 나타내었다.Table 1 summarizes the results of inductively coupled plasma (ICP) analysis of the absolute amount of copper coated on ACF. As the electroless copper coating time increased, the absolute amount of copper coated on the ACF also increased. Also shown is the amount of palladium that leads to the coating of copper.
도 5에는 ACF/Pristine을 포함한 ACF/Cu 샘플의 77K/N2 등온흡착(adsorption isotherm) 결과를 나타내었다. ACF/Pristine 샘플과 ACF/Cu 샘플들 모두 초기 낮은 상대압력에서 흡착량이 급격히 증가하다가 그 이후의 상대압력 증가에서는 그 양이 증가하지 않는 Plateau 에 도달함을 통해 본 발명를 통해 제조한 모든 샘플이 Type I 임을 알 수 있었다.Figure 5 shows the results of the 77K / N 2 isotherm (adsorption isotherm) of ACF / Cu samples containing ACF / Pristine. All samples prepared according to the present invention through the ACF / Pristine and ACF / Cu samples reached Plateau, where the amount of adsorption rapidly increased at the initial low relative pressure and then the amount did not increase at the subsequent relative pressure increase. I could see that.
반면 ACF/Cu 샘플들의 경우 ACF/Pristine 샘플보다 흡착량이 상대적으로 낮았고 또한 무전해 구리 코팅 시간의 증가에 따라 흡착량이 감소하였는데, 이는 ACF 표면에 코팅된 구리 입자가 ACF의 기공을 막게 되어 발생된 현상으로 추측된다.On the other hand, in the case of ACF / Cu samples, the adsorption amount was lower than that of ACF / Pristine sample, and the adsorption amount decreased with the increase of the electroless copper coating time. Guess as.
NONO 저감특성Reduction characteristics
도 6a, 도 6b,도 6c,도 6d, 및 도 6e는 반응온도를 150, 200, 300, 350, 및 400℃ 로 조절하였을 경우의 반응시간에 따른 NO 저감특성을 나타내었다. 150 과 200℃ 에서는 ACF/Pristine 샘플과 ACF/Cu 샘플들간의 특성차이가 미약하게 존재할 뿐 구리가 코팅된 ACF 샘플에서 NO 의 촉매전환이 두드러지지 않았다. 반면 300에서 400℃로 반응온도를 증가하였을 경우, NO의 저감특성이 ACF/Cu 가 ACF/Pristine 의 경우 보다 현격히 상승됨을 확인할 수 있었고, 이는 반응온도를 증가시킴에 비례하는 경향을 보였다. 그러나 ACF/Cu 샘플에서는 Cu 의 코팅시간이 증가함에 따라, 다시 말해 ACF 에 코팅된 구리의 양이 증가함에 따라 오히려 NO 저감특성이 감소하는 경향을 보였다.6A, 6B, 6C, 6D, and 6E show NO reduction characteristics according to reaction time when the reaction temperature was adjusted to 150, 200, 300, 350, and 400 ° C. At 150 and 200 ° C, there was only a slight difference in properties between ACF / Pristine and ACF / Cu samples, indicating no catalytic conversion of NO in copper-coated ACF samples. On the other hand, when the reaction temperature was increased from 300 to 400 ℃, it was confirmed that the reduction characteristics of NO were significantly higher than that of ACF / Cu in the case of ACF / Pristine, which was in proportion to increasing the reaction temperature. However, in ACF / Cu samples, the NO reduction characteristics tended to decrease as the coating time of Cu increased, that is, as the amount of copper coated on ACF increased.
ACF에 코팅된 구리 입자의 양이 증가함에 따라 Park et al. 등의 연구결과와 달리 오히려 NO의 저감특성이 감소하는 이유는 우선 ACF 의 흡착기공이 코팅된 구리 입자의 양이 증가함에 따라 감소하는 특성으로 기인된 것이라는 것과 또한 본 발명에서는 NO 저감시험을 무산소 조건에서 수행하였는데, Illan-Gomez et al의 연구에서 보고된 내용에 의하면 NO의 촉매전화에 있어서 산소의 주입은 NO 의 촉매전화 속도 증가에 매우 중요한 인자가 된다는 보고를 고려할 때 무산소조건에서 수행한 상기 연구 결과가 발생됨이 설명될 수 있다. As the amount of copper particles coated on the ACF increased, Park et al. In contrast to the results of the study, the reason for the decrease of the NO reduction property is due to the property of decreasing as the amount of copper particles coated with the adsorption pores of the ACF increases. According to the report reported by Illan-Gomez et al, this study was carried out under anoxic conditions, considering that the oxygen injection in the catalytic conversion of NO is a very important factor in increasing the catalytic conversion rate of NO. It can be explained that the result is generated.
이러한 구성으로 이루어진 본 발명에 따른 일산화질소 저감 특성이 우수한 무전해 구리 코팅된 피치계 활성탄소섬유 제조방법 및 무전해 구리 코팅된 피치계 활성탄소섬유의 작용에 대해 설명하기로 한다.An electroless copper-coated pitch-based activated carbon fiber manufacturing method having excellent nitrogen monoxide reduction characteristics according to the present invention having such a configuration and an operation of the electroless copper-coated pitch-based activated carbon fiber will be described.
피치계 활성탄소섬유로의 무전해 구리 코팅을 Single-step Catalyzation 기반으로 수행하여 균일한 구리 입자의 ACF 표면으로의 분산이 이루어짐을 확인하였고, XRD 및 ICP 분석을 통해 생성된 입자가 금속 구리임을 확인하였다.The electroless copper coating on the pitch-based activated carbon fiber was performed based on single-step catalyzation to confirm that the uniform copper particles were dispersed to the ACF surface. The XRD and ICP analysis confirmed that the particles were metallic copper. It was.
ACF/Cu 샘플을 NO 저감에 적용하였을 때, 300℃ 이상의 반응온도에서 촉매전환 성능이 두드러지게 나타남을 확인할 수 있었고, 반면 ACF에 코팅되 구리의 양이 증가함에 따라 오히려 NO 의 저감특성이 감소되었는데 이는 무산소 반응조건과 구리 코팅에 의한 ACF 의 흡착기공의 감소에 따른 것으로 사료된다.When ACF / Cu samples were applied to NO reduction, it was found that the catalytic conversion performance was remarkable at the reaction temperature of 300 ° C or higher, whereas the reduction characteristics of NO decreased as the amount of copper coated on ACF increased. This may be due to the reduction of adsorption pores of ACF by anoxic reaction conditions and copper coating.
본 발명은 상기에서 언급한 바람직한 실시예와 관련하여 설명됐지만, 본 발명의 범위가 실시예에 한정되는 것은 아니며, 다양한 수정과 변형이 가능할 것이다.Although the present invention has been described in connection with the above-mentioned preferred embodiment, the scope of the present invention is not limited to the embodiment, various modifications and variations will be possible.
본 발명에 따르는 경우 종래 기술의 문제점이 해결되며, 일산화질소 저감 특성이 우수한 무전해 구리 코팅된 피치계 활성탄소섬유 제조방법 및 무전해 구리 코팅된 피치계 활성탄소섬유가 제공된다.According to the present invention solves the problems of the prior art, there is provided a method for producing an electroless copper coated pitch-based activated carbon fiber excellent in nitrogen monoxide reduction characteristics and an electroless copper coated pitch-based activated carbon fiber.
본 발명은 상기에서 언급한 바람직한 실시예와 관련하여 설명됐지만, 본 발명의 범위가 이러한 실시예에 한정되는 것은 아니며, 본 발명의 범위는 이하의 특허청구범위에 의하여 정하여지는 것으로 본 발명과 균등 범위에 속하는 다양한 수정 및 변형을 포함할 것이다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, the scope of the present invention is not limited to these embodiments, and the scope of the present invention is defined by the following claims, and equivalent scope of the present invention. It will include various modifications and variations belonging to.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060108626A KR100779882B1 (en) | 2006-11-04 | 2006-11-04 | Electroless Copper Coated Pitch Based Activated Carbon Fiber with Excellent Nitrogen Monoxide Reduction Characteristics and Electroless Copper Coated Pitch Based Activated Carbon Fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060108626A KR100779882B1 (en) | 2006-11-04 | 2006-11-04 | Electroless Copper Coated Pitch Based Activated Carbon Fiber with Excellent Nitrogen Monoxide Reduction Characteristics and Electroless Copper Coated Pitch Based Activated Carbon Fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100779882B1 true KR100779882B1 (en) | 2007-11-29 |
Family
ID=39080981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060108626A Expired - Fee Related KR100779882B1 (en) | 2006-11-04 | 2006-11-04 | Electroless Copper Coated Pitch Based Activated Carbon Fiber with Excellent Nitrogen Monoxide Reduction Characteristics and Electroless Copper Coated Pitch Based Activated Carbon Fiber |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100779882B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021020650A1 (en) * | 2019-07-31 | 2021-02-04 | (주)다인스 | Conductive flexible carbon fibers |
KR20250045950A (en) | 2023-09-26 | 2025-04-02 | 전주대학교 산학협력단 | Method for preparing polyolefin-based activated carbon fiber |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6064629A (en) | 1983-09-16 | 1985-04-13 | Kiyataraa Kogyo Kk | Activated carbon |
KR20010089839A (en) * | 2000-03-27 | 2001-10-11 | 오무라 도료 가부시키가이샤 | Electroless plating process and pretreating agent used therefor |
KR20020028091A (en) * | 2000-10-06 | 2002-04-16 | 오원춘 | Plated and activated carbon fiber having improved antibacterial characteristics and its manufacturing method |
KR20030049702A (en) * | 2001-12-17 | 2003-06-25 | 한국화학연구원 | Manufacturing process of nanoscaled nickel-plated carbon fibers by non-electroplating method |
-
2006
- 2006-11-04 KR KR1020060108626A patent/KR100779882B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6064629A (en) | 1983-09-16 | 1985-04-13 | Kiyataraa Kogyo Kk | Activated carbon |
KR20010089839A (en) * | 2000-03-27 | 2001-10-11 | 오무라 도료 가부시키가이샤 | Electroless plating process and pretreating agent used therefor |
KR20020028091A (en) * | 2000-10-06 | 2002-04-16 | 오원춘 | Plated and activated carbon fiber having improved antibacterial characteristics and its manufacturing method |
KR20030049702A (en) * | 2001-12-17 | 2003-06-25 | 한국화학연구원 | Manufacturing process of nanoscaled nickel-plated carbon fibers by non-electroplating method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021020650A1 (en) * | 2019-07-31 | 2021-02-04 | (주)다인스 | Conductive flexible carbon fibers |
KR20250045950A (en) | 2023-09-26 | 2025-04-02 | 전주대학교 산학협력단 | Method for preparing polyolefin-based activated carbon fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Preparation of Pd/ceramic composite membrane 1. Improvement of the conventional preparation technique | |
JP3073778B2 (en) | Porous fluororesin material having metal film and method for producing the same | |
CN101135052B (en) | Method for preparing metallic complex film | |
EP0018219B1 (en) | Preparation of an ultra-black coating due to surface morphology | |
US5188890A (en) | Metallized porous flourinated resin and process therefor | |
EP2747875B1 (en) | A method of preparing a leak stable gas separation membrane system | |
CN112501598B (en) | Chemical nickel plating solution for aluminum substrate PCB circuit board and preparation method thereof | |
Harraz et al. | Immersion plating of nickel onto a porous silicon layer from fluoride solutions | |
JP2010541177A (en) | Method for producing electrode for fuel cell | |
KR100779882B1 (en) | Electroless Copper Coated Pitch Based Activated Carbon Fiber with Excellent Nitrogen Monoxide Reduction Characteristics and Electroless Copper Coated Pitch Based Activated Carbon Fiber | |
CN112663031A (en) | Ultra-thick high-phosphorus chemical nickel plating and stabilizing treatment process for aluminum-based silicon carbide composite material | |
JP2019522731A (en) | Method for forming a Pd-Au alloy layer on a substrate | |
JP4112856B2 (en) | Method for producing gas separator | |
CN102011108A (en) | Chemical plating method for preparing ultrathin palladium film with high specific surface area | |
CN104010713A (en) | Method for manufacturing hydrogen separation composite membrane | |
CN103406129A (en) | Preparation method of wire mesh monolithic catalyst based on surface porous structure | |
KR20080040818A (en) | Electroless Copper Coating Method of Activated Carbon Fiber | |
Liu et al. | Gold immersion deposition on electroless nickel substrates: Deposition process and influence factor analysis | |
CN101560654A (en) | Method for repairing defects of palladium and palladium alloy composite membranes | |
CN102011109B (en) | Chemical codeposition method for preparing palladium alloy film | |
CN106283050B (en) | A method of improving metal fiber felt filtering accuracy | |
JPH08266876A (en) | Production of gas separating body | |
Okinaka et al. | Electroless deposition of gold | |
KR100779878B1 (en) | Method for preparing electroless copper coated rayon activated carbon fiber having excellent antibacterial properties and electroless copper coated rayon activated carbon fiber | |
CN104032286A (en) | Method for preparing high-performance palladium alloy composite film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20061104 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20070828 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20071120 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20071121 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20071121 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |