[go: up one dir, main page]

KR100729125B1 - High strength cold rolled steel sheet with excellent plastic strain ratio and its manufacturing method - Google Patents

High strength cold rolled steel sheet with excellent plastic strain ratio and its manufacturing method Download PDF

Info

Publication number
KR100729125B1
KR100729125B1 KR1020050131112A KR20050131112A KR100729125B1 KR 100729125 B1 KR100729125 B1 KR 100729125B1 KR 1020050131112 A KR1020050131112 A KR 1020050131112A KR 20050131112 A KR20050131112 A KR 20050131112A KR 100729125 B1 KR100729125 B1 KR 100729125B1
Authority
KR
South Korea
Prior art keywords
temperature
less
steel sheet
high strength
cold rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020050131112A
Other languages
Korean (ko)
Inventor
김대온
신철수
Original Assignee
현대하이스코 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대하이스코 주식회사 filed Critical 현대하이스코 주식회사
Priority to KR1020050131112A priority Critical patent/KR100729125B1/en
Application granted granted Critical
Publication of KR100729125B1 publication Critical patent/KR100729125B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 자동차용 내외판재로 쓰이는 고성형 고강도 냉연 강판 및 그 제조 방법에 관한 것으로, 인장강도 35kgf/mm2 이상의 강도와 38% 이상의 연신율, 2.0 이상의 평균 소성 변형비 (Rm)값을 갖는 고강도 냉연강판을 제조하는데 그 목적이 있다. The present invention relates to a high-strength high strength cold-rolled steel sheet and a method for manufacturing the same, which are used as interior and exterior plate materials for automobiles. The purpose is to prepare.

상세하게는 중량%로, 탄소(C) : 0.001∼0.03%, 망간(Mn) : 0.2∼0.5%, 인(P) : 0.04~0.07%, 니오븀(Nb) : 0.005~0.009%, 티타늄(Ti) : 0.003~0.05%, 황(S) : 0.008% 이하, 질소(N) : 0.003% 이하, 알루미늄(Al) : 0.06% 이하를 함유하고, 나머지 철(Fe)과 불가피한 불순물로 조성되는 것을 주요한 특징으로 하고, 상기 티타늄(Ti)의 함량이 관계식 48×(C/12+N/14+S/32-0.4Nb/93) + 0.01 ≤ Ti ≤ 48×(C/12+N/14+S/32-0.4Nb/93) + 0.03을 만족하도록 한다. 상기 조성의 강 슬라브를 열간 압연 공정을 거쳐 600~700℃의 온도에서 권취한 다음, 70~80%의 압하율로 냉간 압연한 후, 800℃~850℃에서 20~100초간 재결정 소둔열처리를 실시하고, 2∼30℃/sec의 속도로 냉각하여 350℃∼450℃의 온도에서 2~5분 이하 동안 유지한 후 최종 냉각하는 것을 주요 내용으로 한다.Specifically, in weight percent, carbon (C): 0.001 to 0.03%, manganese (Mn): 0.2 to 0.5%, phosphorus (P): 0.04 to 0.07%, niobium (Nb): 0.005 to 0.009%, titanium (Ti) ): 0.003 ~ 0.05%, sulfur (S): 0.008% or less, nitrogen (N): 0.003% or less, aluminum (Al): 0.06% or less and consist of the remaining iron (Fe) and unavoidable impurities Characterized in that the content of titanium (Ti) is 48 × (C / 12 + N / 14 + S / 32-0.4 Nb / 93) + 0.01 <Ti ≤ 48 × (C / 12 + N / 14 + S /32-0.4Nb/93) + 0.03. The steel slab having the composition was wound at a temperature of 600 to 700 ° C. through a hot rolling process, then cold rolled at a reduction ratio of 70 to 80%, and then subjected to recrystallization annealing heat treatment at 800 ° C. to 850 ° C. for 20 to 100 seconds. The main content is cooling at a rate of 2 to 30 ° C./sec, maintaining the temperature at 350 ° C. to 450 ° C. for 2 to 5 minutes or less, and then performing final cooling.

Description

소성 변형비가 우수한 고강도 냉연강판 및 그 제조 방법{High Strength Steets which have good average plastic strain ratio and the method of developing those steels}High strength cold rolled steel sheet with excellent plastic strain ratio and its manufacturing method {High Strength Steets which have good average plastic strain ratio and the method of developing those steels}

도 1은 소둔열처리 온도에 따른 발명강 1의 기계적 특성 변화를 나타낸다.1 shows a change in the mechanical properties of the inventive steel 1 according to the annealing heat treatment temperature.

도 2는 소둔열처리 온도에 따른 발명강 2의 기계적 특성 변화를 나타낸다.2 shows a change in the mechanical properties of the inventive steel 2 according to the annealing heat treatment temperature.

도 3은 소둔열처리 온도에 따른 발명강 1, 2의 평균 소성 변형비(Rm) 값의 변화를 나타낸다.Figure 3 shows the change of the average plastic strain ratio (Rm) value of the inventive steels 1, 2 according to the annealing heat treatment temperature.

본 발명은 자동차 내 외판용 부품에 사용되는 고성형 고강도 냉연강판의 제조방법에 관한 것으로, 특히 인장강도 35kgf/mm2 이상의 강도와 38% 이상의 연신율, 2.0 이상의 평균 소성 변형비(Rm=(R0 + 2R45 +R90)/4)값을 갖는 고강도 냉연강판 및 그 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a high strength high strength cold rolled steel sheet for use in automotive exterior parts, in particular, a tensile strength of 35kgf / mm2 or more, 38% or more elongation, 2.0 or more average plastic strain ratio (Rm = (R0 + 2R45) It relates to a high strength cold rolled steel sheet having a value of + R90) / 4) and a method of manufacturing the same.

최근 자동차 성형품이 복잡화, 일체화 됨에 따라 성형성이 우수한 고강도 강판의 수요가 급격히 증대되고 있다. 이에 따라 제강 단계에서 부터 냉연 강판의 성형성을 저해시키는 고용 탄소, 고용 질소 및 고용 황 등의 원소들을 제거하기 위하 여 티타늄 혹은 니오븀 등의 탄, 질화물 형성 촉진 원소를 단독 혹은 복합 첨가함으로써, 미량의 고용 원소들을 탄, 질화물로 석출시켜 성형성을 향상시키는 심가공용 냉연강판 제조 기술이 개발되고 있다. Recently, as automobile molded products are complicated and integrated, demand for high strength steel sheets having excellent moldability is rapidly increasing. Accordingly, in order to remove elements such as solid solution carbon, solid solution nitrogen, and solid solution sulfur, which impair the formability of the cold rolled steel sheet from the steelmaking stage, carbon or nitride formation promoting elements such as titanium or niobium are added alone or in combination. A technique for manufacturing a cold rolled steel sheet for deep processing, in which solid solution elements are precipitated with carbon and nitride to improve formability.

한편, 자동차의 연비 향상을 위한 경량화 및 충돌 안전성 등에 대한 관심이 높아지면서 자동차 내, 외판재 등의 구조 재료로 사용되는 소재는 성형성 뿐만 아니라 강도 확보 또한 요구되어, 성형성이 우수하면서도 35kgf/mm2 이상의 강도를 갖는 고성형 고강도 냉연강판의 수요가 증대되고 있다.Meanwhile, as interest in weight reduction and collision safety for improving fuel efficiency of automobiles is increasing, materials used for structural materials such as automobiles and exterior plates are required to secure strength as well as formability. The demand for the high strength high strength cold rolled steel sheet having the above strength is increasing.

이러한 심가공용 고강도 냉연 강판은 자동차 내, 외판재 중 고강도와 고성형성을 동시에 요구하는 리어 플로어(Rear Floor), 혹은 후드(Hood) 등의 부품에 적용되고 있다. 이러한 부품들은 고강도와 고성형성이 동시에 요구되는 부품들이므로, 인장강도가 기본적으로 35kgf/mm2 이상, 연신율 38% 이상, 평균 소성 이방성 계수가 2.0 이상을 필수적으로 만족하는 강판들이 적용되고 있다.Such high-strength cold rolled steel sheets for deep processing are applied to parts such as rear floors or hoods that simultaneously require high strength and high formability among interior and exterior materials. Since these parts are parts requiring high strength and high formability at the same time, steel sheets having a tensile strength of 35kgf / mm 2 or more, an elongation of 38% or more, and an average plastic anisotropy coefficient of 2.0 or more are essentially applied.

고성형 고강도 강판의 제조 방법에 대하여 발표된 기술로는 다음과 같은 것들이 있다.Techniques disclosed for the production of high strength high strength steel sheet include the following.

CAMP-ISIJ, Vol.9(1996), p.386 에서는 Ti 첨가 극저 탄소강에 고용 강화원소인 Mn, P, Si 등을 적절히 함가한 0.002C-1.5Mn-0.6Si-0.06P-0.04Ti의 성분계를 이용하여 인장강도 45kgf/mm2 급 고강도 냉연강판을 제조한 것으로 보고되고 있다. 이 기술은 Mn 함량을 증가시킴에 따라 미세한 Ti4C2S2로부터 조대한 MnS 석출로 그 석출 양상을 변화시키고, Si를 첨가하여 페라이트 중 C의 함량을 증가시켜 TiC 의 석출을 촉진하게 함으로써, 성형성이 우수한 고강도강을 제조하는 것이다. 이러한 방법에 의해 제조된 강판은 그 강도는 우수하나 Rm 값이 1.8 정도에 머물러 성형성 측면에서 문제가 있다.In CAMP-ISIJ, Vol. 9 (1996), p. 386, the component system of 0.002C-1.5Mn-0.6Si-0.06P-0.04Ti, in which Ti-added ultra low carbon steels were suitably added with Mn, P, Si, etc. It has been reported that the high strength cold rolled steel sheet having a tensile strength of 45kgf / mm2. This technique changes the precipitation pattern from fine Ti4C2S2 to coarse MnS precipitation as the Mn content is increased, and increases the content of C in ferrite by adding Si to promote the precipitation of TiC, resulting in high formability. To make steel. The steel sheet produced by this method is excellent in strength but has a problem in terms of formability since the Rm value remains at about 1.8.

1994년도에 개재된 TMS-AIME(1989), p161 에서는 Ti-Mn-P 복합첨가강에서 Mn과 P 함량이 증가됨에 따라 인장강도 뿐 아니라, Rm값도 증가하여 Rm값 >2.2, TS≥40kg/mm2 급의 고성형 고강도강 제조가 가능하다고 보고하고 있다. 이를 위해, 열간 압연후 350℃이하의 극저온 권취(급냉후 350℃, 1hr 유지) 및, 소둔재가열시 급속가열 등의 엄격한 제조 조건이 요구되며, 또한 성형성 확보에 절대적으로 영향을 미치는 집합조직을 발달시키기 위해서는 열간 압연후 표층을 표면 연삭해야 한다.In TMS-AIME (1989), p161, which was published in 1994, as Mn and P content in Ti-Mn-P composite additive steel increased, not only the tensile strength but also the Rm value increased, and the Rm value> 2.2, TS≥40kg / It is reported that it is possible to manufacture high-strength steel of mm2 grade. To this end, strict manufacturing conditions such as cryogenic winding of 350 ° C. or less after hot rolling (maintaining 350 ° C. for 1 hr after quenching) and rapid heating when annealing materials are heated are required, and an aggregate structure that absolutely affects formability is required. To develop, the surface layer must be surface ground after hot rolling.

그러나, 이러한 제조기술은 실 조업시 많은 문제점을 안고 있다. 즉, 현재 설비로 350℃ 이하의 극저온 권취 및 급속 가열은 거의 불가능 하며, 특히 열연판의 표면 연삭은 작업상의 번거로움과 실수율 저하를 초래할 것이다.However, these manufacturing techniques have a lot of problems in actual operation. In other words, at present facilities, cryogenic winding and rapid heating below 350 ° C. are almost impossible, and surface grinding of hot-rolled sheets will in particular result in the inconvenience of work and decrease in error rate.

대한민국 특허출원 2001-0012538 에서는, C : 0.002% 이하, Mn : 0.6~1.0%, P : 0.06~0.1%, S : 0.006% 이하, N : 0.003% 이하, Al : 0.04% 이하, Nb : 0.0078~0.015%, B : 0.001% 이하 의 성분에서 Ti 의 함량을 다음 관계식 (48/14×N) + (48/12×C**) ≤ Ti ≤ ((48/14×N) + (48/32×S) + (48/12×C**)), C** = C - 0.4C*, C* = (12/93)Nb을 만족하는 범위로 조정한 후, 권취 온도 680~720℃, 냉간 압하율 77% 이상, 소둔온도 850℃ 이상의 조건으로 인장강도 35kg/mm2 이상, Rm 값 2.5 이상의 초고성형성 고강도 강판을 제조할 수 있다고 공시한 바 있다. 이 기술은 대한민국 특허출원 1999-0035104에서 P 의 함량을 다소 높여 평면 이방성을 개선시킨 방법으로 매우 우수한 성형성을 가진 고강도 강판을 제조할 수 있다. 그러나 이러한 기술은 850℃이상의 높은 소둔온도를 필요로 하므로 제조비용의 상승을 초래한다는 단점을 가지고 있다.In Korea Patent Application 2001-0012538, C: 0.002% or less, Mn: 0.6 ~ 1.0%, P: 0.06 ~ 0.1%, S: 0.006% or less, N: 0.003% or less, Al: 0.04% or less, Nb: 0.0078 ~ 0.015%, B: The content of Ti in a component of 0.001% or less is represented by the following relation (48/14 × N) + (48/12 × C **) ≤ Ti ≤ ((48/14 × N) + (48/32 × S) + (48/12 × C **)), C ** = C-0.4C *, C * = (12/93) after adjusting to a range satisfying Nb, winding temperature 680 ~ 720 ℃, It has been disclosed that ultra-high strength steel sheets having a cold rolling reduction of 77% or more, annealing temperature of 850 ° C. or more, a tensile strength of 35 kg / mm 2 or more, and an Rm value of 2.5 or more can be manufactured. This technique is a method of improving the planar anisotropy by slightly increasing the content of P in the Republic of Korea Patent Application 1999-0035104 can produce a high strength steel sheet with very excellent formability. However, this technique requires a high annealing temperature of more than 850 ℃ has the disadvantage of causing an increase in the manufacturing cost.

본 발명에서는 상술한 문제를 해결하기 위해, 강의 합금 성분과 그 함량을 적절하게 제어하여 일반적인 공정 조건으로 인장강도 35kg/mm2 이상, 연신율 38% 이상, Rm 값 2.0 이상의 우수한 특성을 가진 고성형 고강도 강판을 제조하는데 그 목적이 있다.In the present invention, in order to solve the above problems, by controlling the alloy components and the content of the steel appropriately, a high-strength high strength steel sheet having excellent properties such as tensile strength of 35kg / mm 2 or more, elongation of 38% or more, Rm value of 2.0 or more The purpose is to prepare.

본 발명은 상기와 같은 목적을 달성하기 위하여 소지철의 화학 성분을 다음과 같이 제한한다. 중량%로(이하 모두 중량%), 탄소(C) : 0.001∼0.03%, 망간(Mn) : 0.2∼0.5%, 인(P) : 0.04~0.07%, 니오븀(Nb) : 0.005~0.009%, 티타늄(Ti) : 0.003~0.05%, 황(S) : 0.008% 이하, 질소(N) : 0.003% 이하, 알루미늄(Al) : 0.06% 이하를 함유하고, 나머지 철(Fe)과 불가피한 불순물로 조성되는 것을 주요한 특징으로 하고, 상기 티타늄(Ti)의 함량이 관계식 48×(C/12+N/14+S/32-0.4Nb/93) + 0.01 ≤ Ti ≤ 48×(C/12+N/14+S/32-0.4Nb/93) + 0.03을 만족하도록 하는 것을 주요한 특징으로 한다. 상기 조성의 강 슬라브를 열간 압연 공정을 거쳐 600~700℃의 온도에서 권취한 다음, 70~80%의 압하율로 냉간 압연한 후, 800℃~850℃에서 20~100초간 재결정 소둔열처리를 실시하고, 2∼30℃/sec의 속도로 냉각하여 350℃∼450℃의 온도에서 2~5분 이하 동안 유지한 후 최종 냉각하는 것을 주요 내용으로 한다.The present invention limits the chemical composition of the base iron in order to achieve the above object as follows. In weight% (hereinafter all weight%), carbon (C): 0.001 to 0.03%, manganese (Mn): 0.2 to 0.5%, phosphorus (P): 0.04 to 0.07%, niobium (Nb): 0.005 to 0.009%, Titanium (Ti): 0.003 ~ 0.05%, sulfur (S): 0.008% or less, nitrogen (N): 0.003% or less, aluminum (Al): 0.06% or less The main feature is that the content of titanium (Ti) is 48 × (C / 12 + N / 14 + S / 32-0.4Nb / 93) + 0.01 ≦ Ti ≦ 48 × (C / 12 + N / 14 + S / 32-0.4Nb / 93) + 0.03 is a major feature. The steel slab having the composition was wound at a temperature of 600 to 700 ° C. through a hot rolling process, then cold rolled at a reduction ratio of 70 to 80%, and then subjected to recrystallization annealing heat treatment at 800 ° C. to 850 ° C. for 20 to 100 seconds. The main content is cooling at a rate of 2 to 30 ° C./sec, maintaining the temperature at 350 ° C. to 450 ° C. for 2 to 5 minutes or less, and then performing final cooling.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 강중 Ti 함량을 0.003 ~ 0.05%, 특히 그 중에서도 가급적 0.03 ~ 0.05% 의 범위 내에서 첨가하고 또한 관계식 48×(C/12+N/14+S/32-0.4Nb/93) + 0.01 ≤ Ti ≤ 48×(C/12+N/14+S/32-0.4Nb/93) + 0.03 을 만족시키는 함량으로 제어하여 통상적인 열연 및 냉연 공정으로도 인장강도 35kg/mm2 이상, 연신율 38% 이상, Rm 값 2.0 이상의 특성을 만족시키는 고성형 고강도 강판을 개발하는데 그 특징이 있다.The present invention adds the Ti content in the steel within the range of 0.003 to 0.05%, especially 0.03 to 0.05%, and also the relation 48 × (C / 12 + N / 14 + S / 32-0.4Nb / 93) +0.01 ≤ Ti ≤ 48 × (C / 12 + N / 14 + S / 32-0.4Nb / 93) + 0.03 to control the content to satisfy the tensile strength of 35kg / mm2 or more, elongation 38% even in the hot and cold rolling process In the above, there is a feature to develop a high strength high strength steel sheet that satisfies the characteristics of Rm value 2.0 or more.

주요 화학 성분Main chemical composition

탄소(C)는 강중에서 침입형 고용 원소로써, 냉연 및 소둔열처리 과정에서 강도 및 강판의 집합조직 형성에 큰 영향을 미친다. 강중 함유된 고용 탄소량이 많으면 강도는 높아지고, 가공성에 유리한 111 집합조직 보다는 가공성에 불리한 110, 100 집합조직이 발달하는 경향을 보인다. 또한 탄소량이 증가할수록 탄화물로 석출시키기 위한 Ti, Nb 함량이 상대적으로 높아져 제조 원가가 상승하고, TiC 석출물의 과도한 증가로 성형성이 급격히 악화된다. 따라서 탄소량이 많을수록 제조 단가 및 성형성 측면에서 좋지 않으므로 그 상한을 0.03%로 제한하였다. 반대로 탄소량이 너무 적을 경우가 확보되지 않으며, 또한 탈탄 제조 공정상의 어려움으로 단가가 상승하므로 그 하한을 0.001%로 제한하였다. 본 발명에서는 탄소(C)함량을 시험 결과 특히 0.001 ~ 0.003%사이에서 유지되도록 함이 안정적인 강도확보를 가져올 수 있음을 확인할 수 있었다.Carbon (C) is an invasive solid solution element in steel, and has a great influence on strength and texture formation of steel sheets during cold rolling and annealing heat treatment. When the amount of solid solution carbon contained in steel is high, the strength is increased, and 110 and 100 textures, which are disadvantageous to processability, tend to develop rather than 111 texture which is advantageous for processability. In addition, as the amount of carbon increases, the Ti and Nb contents for precipitation as carbides are relatively high, leading to an increase in manufacturing cost, and deterioration of moldability due to excessive increase in TiC precipitates. Therefore, the greater the amount of carbon is not good in terms of manufacturing cost and formability, so the upper limit was limited to 0.03%. On the contrary, when the amount of carbon is not too small, and the unit price increases due to difficulties in the decarburization manufacturing process, the lower limit thereof is limited to 0.001%. In the present invention, it was confirmed that keeping the carbon (C) content in particular between 0.001 and 0.003% can bring about stable strength.

망간(Mn)은 고용 강화 원소로 강도를 상승시키고, 강중 황(S)를 MnS로 석출시켜 열간 압연시 S 에 의한 판파단 발생 및 고온 취화를 억제 시킨다. 강중 망간의 농도가 0.2% 보다 낮을 경우 강도 확보 및 S 의 제거에 충분치 못하고, 0.5% 보다 높을 경우 성형성이 악화되므로 그 범위를 0.2~0.5%로 제한하였다.Manganese (Mn) increases the strength as a solid solution strengthening element, precipitates sulfur (S) in the steel to MnS to suppress the occurrence of plate breakage and high temperature embrittlement by S during hot rolling. When the concentration of manganese in the steel is lower than 0.2%, it is not sufficient to secure the strength and removal of S, and when the concentration of manganese in the steel is higher than 0.5%, the moldability is deteriorated, so the range is limited to 0.2 to 0.5%.

인(P) 역시 성형성을 크게 저하시키지 않고 강도를 상승시킬 수 있는 고용 강화원소로 강도 확보에 유리하지만 과잉 첨가했을 경우 입계에 편석하여 취성 파괴를 유발하므로 그 함량을 0.04~0.07%로 제한하였다.Phosphorus (P) is also a solid solution element that can increase the strength without significantly degrading the formability, which is advantageous for securing strength, but when excessively added, it is segregated at grain boundaries and causes brittle fracture, so its content is limited to 0.04 to 0.07%. .

니오븀(Nb)은 열연 공정 중 고용 탄소를 조대한 (Ti,Nb)C로 석출시켜 성형성을 향상시키는 원소이다. 그 함량이 0.005% 미만일 경우 (Ti,Nb)C 로 석출하는 양이 줄어들어 성형성 향상 효과가 감소하며, 0.009%를 초과 할 경우 NbC로 석출할 가능성이 증가함에 따라 역시 (Ti,Nb)C로의 석출 가능성이 상대적으로 적어지기 때문에 그 함량을 0.005~0.009%로 제한하였다.Niobium (Nb) is an element that precipitates solid solution carbon into coarse (Ti, Nb) C during hot rolling to improve moldability. If the content is less than 0.005%, the amount of precipitation to (Ti, Nb) C is reduced, and the effect of improving moldability is reduced.If the content is more than 0.009%, the possibility of precipitation to NbC also increases to (Ti, Nb) C. Since the precipitation probability is relatively small, the content is limited to 0.005 to 0.009%.

티타늄(Ti)은 본 발명에서 가장 중요한 원소로 제강 및 연속 주조 등의 열연 공정을 거치면서 강중에 혼입되어 있는 고용 질소 및 고용 탄소를 TiN, TiC 등의 화합물로 석출시켜 강판의 성형성을 크게 향상 시키는 역할을 한다. 특히 다음의 관계식 (1)을 만족시키는 함량 범위의 티타늄을 첨가할 경우 강중 고용 질소와 고용 탄소가 매우 효과적으로 제거되어 냉연 공정 중 850℃ 이상의 고온 소둔열처리를 실시하지 않아도 평균 소성 변형비(Rm) 2.0 이상의 높은 성형성을 갖는 고강도 강판을 제조할 수 있다.Titanium (Ti) is the most important element in the present invention, while undergoing hot rolling processes such as steelmaking and continuous casting, precipitated solid nitrogen and solid carbon in the steel with a compound such as TiN or TiC to greatly improve the formability of the steel sheet. It plays a role. In particular, when titanium in the content range satisfying the following relation (1) is added, the dissolved nitrogen and dissolved carbon in the steel are effectively removed, so that the average plastic strain ratio (Rm) 2.0 does not occur even if the high temperature annealing heat treatment of 850 ° C. or higher is not performed during the cold rolling process. The high strength steel plate which has the above high moldability can be manufactured.

48×(C/12+N/14+S/32-0.4Nb/93)+0.01≤Ti≤48×(C/12+N/14+S/32-0.4Nb/93) + 0.03 ··········(1)48 × (C / 12 + N / 14 + S / 32-0.4Nb / 93) + 0.01 ≦ Ti ≦ 48 × (C / 12 + N / 14 + S / 32-0.4Nb / 93) +0.03 ·······(One)

위 관계식(1)에서 48×(C/12+N/14+S/32-0.4Nb/93) 값은 니오븀에 의하여 석출되는 탄소량을 제외하고, 탄소와 질소 황을 석출시키기 위해 필요한 이론적인 티타늄 필요량이고, 이보다 티타늄을 과잉 첨가함으로써 고용 탄소와 질소를 보다 완벽히 석출시켜 성형성을 극대화시키게 된다. 여기서 티타늄 함량은 0.003~0.05%로 제한되는데, 0.003% 미만일 경우 고용 탄소와 질소를 충분히 석출시키지 못하여 성형성이 악화되고, 0.05% 보다 높을 경우 제조 단가가 올라가고, 강중 성형성을 저해 시킨다고 알려진 FeTiP 석출물이 증가하기 때문이다. 본 발명의 경우 Ti 함량은 탄소(C)함량이 0.001~0.003%로 낮은 범위에 있을 경우 가급적 0.03 ~ 0.05%로 유지하는 것이 가장 안정적이고도 바람직한 결과를 가져옴을 알 수 있었다.48 (C / 12 + N / 14 + S / 32-0.4Nb / 93) in the above relation (1) is the theoretical value needed to precipitate carbon and nitrogen sulfur except for the amount of carbon precipitated by niobium. Titanium is required, and by adding more titanium than this, the solid solution of carbon and nitrogen is more completely precipitated to maximize moldability. In this case, the titanium content is limited to 0.003 to 0.05%. If the content is less than 0.003%, FeTiP precipitates are known to deteriorate formability due to insufficient precipitation of solid solution carbon and nitrogen. Because it increases. In the case of the present invention, when the Ti content is in the low range of 0.001% to 0.003%, it was found that keeping it at 0.03% to 0.05% is the most stable and desirable result.

황(S) 및 질소(N)는 제강 공정 중 불순물로 불가피하게 첨가되는 원소들이기 때문에, 가능한 낮게 관리하는 것이 바람직하나. 현실적인 기술 수준 및 제조비용 증가를 고려하여, 그 함량을 통상적인 조업 조건에서 관리 가능한 범위인 황 0.008% 이하, 질소 0.003% 이하로 제한하였다.Since sulfur (S) and nitrogen (N) are elements that are inevitably added as impurities during the steelmaking process, it is desirable to manage them as low as possible. In consideration of the realistic technical level and the increase in manufacturing cost, the content was limited to 0.008% or less of sulfur and 0.003% or less of nitrogen, which are manageable ranges under normal operating conditions.

알루미늄(Al)은 강의 입도 미세화와 탈산을 위해 첨가되는 원소로 그 함량은 통상 첨가되는 범위인 0.06% 이하로 제한하였다.Aluminum (Al) is an element added to refine the particle size of steel and deoxidize, and its content is limited to 0.06% or less, which is usually added.

상기와 같이 조성되는 슬라브는 제강공정을 통해 용강을 얻은 다음 조괴 또는 연속주조를 통해 만든다. 이 슬라브를 열간압연공정, 권취공정, 냉간압연공정, 소둔공정을 통해 목표로 하는 기계적 성질을 갖는 강판을 제조하는데, 각 공정별 제조조건을 아래에서 구체적으로 설명한다.The slabs formed as described above are obtained by ingot or continuous casting after obtaining molten steel through a steelmaking process. The slab is produced by hot rolling, winding, cold rolling, and annealing to produce a steel sheet having a target mechanical property. The manufacturing conditions for each process will be described in detail below.

열간압연공정Hot rolling process

슬라브를 열간압연하는데 열간 압연 마무리 온도는 Ar3 변태 온도 이상의 온도에서 실시하여 미세한 열연 조직을 얻도록 한다. 열간 압연 후에는 고압의 스케일 제거 장치를 사용하거나 강한 산세척(pickling)을 적용함으로써 표면의 스케일을 제거하는 것이 바람직하다.The hot rolled slab is hot rolled at a temperature above the Ar3 transformation temperature to obtain a fine hot rolled structure. After hot rolling, it is desirable to descale the surface by using a high pressure descaling device or by applying strong pickling.

권취공정Winding process

상기 열간 압연한 강판을 600~700℃의 온도에서 권취 하는데, 이러한 권취온도는 냉간압연 및 재결정 열처리 후 최적의 기계적 물성을 얻기 위한 조직을 얻기위한 온도로써, 권취 온도가 600℃미만일 경우 (Ti,Nb)C 석출물 형성이 어렵고, 700℃초과일 경우 최종 미세조직이 조대해지므로 충분한 강도를 갖는 강판을 제조하기 힘들고 표면 스케일이 증가하여 표면특성이 좋지 않기 때문이다.The hot rolled steel sheet is wound at a temperature of 600 ~ 700 ℃, this winding temperature is a temperature for obtaining a structure for obtaining the optimum mechanical properties after cold rolling and recrystallization heat treatment, when the winding temperature is less than 600 ℃ (Ti, This is because it is difficult to form Nb) C precipitates, and when the temperature exceeds 700 ° C., the final microstructure becomes coarse, making it difficult to manufacture a steel sheet having sufficient strength and increasing the surface scale, and thus poor surface characteristics.

냉간압연공정Cold rolling process

상기 권취한 열연판을 산세한 후, 냉간압연하는데, 이 때 냉간 압하율은 70~80%로 하는 것이 바람직하다. 냉간 압연은 열연조직을 변형시키고 그 변형 에너지는 재결정 과정의 에너지가 되는데, 냉간 압하율이 70% 미만일 경우 성형성에 유리한 집합 조직의 형성이 어려워 성형성이 악화되고, 압하율이 80% 초과일 경우에는 강판의 가장자리에 균열이 생기고 판파단이 일어날 확률이 높아지므로 그 범위를 70~80%로 하는 것이 바람직하다.After the pickled hot rolled sheet is pickled, it is cold rolled, and the cold reduction rate is preferably 70 to 80%. Cold rolling deforms the hot-rolled structure and its strain energy becomes the energy of the recrystallization process. If the cold reduction rate is less than 70%, it is difficult to form an aggregate structure favorable for formability, and the moldability is deteriorated. Since the probability of cracking and plate breakage at the edge of the steel sheet increases, the range is preferably 70 to 80%.

소둔열처리Annealing Heat Treatment 공정 fair

냉간 압연한 후 압연한 강판을 800℃~850℃에서 20~100초간 재결정 소둔열처리를 실시한다. 재결정 소둔열처리는 냉간 압연 후 변형된 조직을 회복하고, 성형성에 유리한 집합조직을 형성하는 공정으로, 도 1에서 볼 수 있듯이 그 온도가 800℃보다 낮을 경우 성형성의 지표인 연신율이 급격히 저하되고, 도 2의 Rm 값 또한 2.0 미만으로 떨어지게 된다. 또한 온도가 850℃를 초과할 경우에는 인장강도가 35kgf/mm2 보다 미달하게 될 가능성이 크고, 고온작업으로 제조 비용이 상승하므로 그 범위를 800~850℃로 제한한다. 소둔열처리 시간은 20초 미만일 경우 재결정 회복이 충분히 일어나지 않고, 100초 초과일 경우 느린 생산속도로 생산성이 저하되므로 그 범위를 20~100초로 제한한다. 소둔열처리 후에는 350∼450℃의 온도 까지 2∼30℃/sec의 속도 범위로 서냉 및 급냉을 실시하는데, 냉각 속도는 통상적인 가스 냉각 방식의 냉각 능력 범위로 속도가 너무 느릴 경우 냉각 존이 필요 이상으로 길게 되어 장치 비용이 증가하고, 30℃ 초과의 경우 설비 보완 및 수냉 설비 등의 필요에 의해 역시 장치 비용이 증가하게 된다. 급냉 과정 후, 350℃∼450℃의 온도에서 2 ~ 5분 동안 과시효 열처리를 실시하는데, 이는 고용된 탄소를 최대한 석출시켜 주기 위한 구간으로 350℃미만의 경우 그 효과가 없거나 불균일 석출이 일어나고, 450℃를 초과할 경우 고온 작업에 따른 제조비용이 증가하게 되므로 그 범위를 350℃∼450℃로 제한하였다. 열처리유지기간 2 ~ 5분 설정이유도 같다. 과시효 열처리 후에는 통상적인 냉각 속도로 최종냉각을 실시하고 필요에 의해 조질 압연을 통해 표면 조도를 부여한다.After cold rolling, the rolled steel sheet is subjected to recrystallization annealing heat treatment at 800 ° C to 850 ° C for 20 to 100 seconds. The recrystallization annealing heat treatment is a process of recovering the deformed structure after cold rolling and forming an aggregate structure favorable to formability. As shown in FIG. 1, when the temperature is lower than 800 ° C., the elongation, which is an index of formability, is sharply lowered. The Rm value of 2 also falls below 2.0. In addition, when the temperature exceeds 850 ℃, the tensile strength is likely to be less than 35kgf / mm2, and the manufacturing cost is increased by high-temperature work, so the range is limited to 800 ~ 850 ℃. If the annealing heat treatment time is less than 20 seconds, recrystallization recovery does not occur sufficiently, and if it exceeds 100 seconds, the productivity is reduced at a slow production rate, so the range is limited to 20 to 100 seconds. After annealing heat treatment, slow cooling and quenching are carried out in a speed range of 2 to 30 ° C./sec to a temperature of 350 to 450 ° C., and a cooling zone is required if the speed is too slow as a cooling capacity range of a conventional gas cooling method. The longer the above, the higher the cost of the device, and in the case of more than 30 ° C., the cost of the device also increases due to the need for equipment supplementation and water cooling facilities. After the quenching process, an overaging heat treatment is performed for 2 to 5 minutes at a temperature of 350 ° C. to 450 ° C., which is a section for depositing the dissolved carbon as much as possible. If it exceeds 450 ℃ to increase the manufacturing cost according to the high temperature operation was limited to the range 350 ℃ ~ 450 ℃. The reason for setting the heat treatment holding period of 2 to 5 minutes is the same. After overaging heat treatment, final cooling is performed at a normal cooling rate, and surface roughness is imparted through temper rolling as necessary.

이렇게 해서 제조된 제품의 기계적 성질을 측정한다. 본 발명 실시예에서는 아래와 같이 측정 및 평균소성변형비(Rm)를 계산하였다. 즉 기계적 성질은 JIS 5호 규격 시험편을 압연 90° 방향으로 가공한 후, 인장 시험기를 사용하여 인장강도 및 연신율을 측정하였다. 평균 소성 변형비(Rm) 값은 역시 JIS 5호 규격으로 압연방향, 45°방향, 90°방향의 시편을 각각 가공하여, 2~15% 범위에서 R0, R45, R90,의 평균치를 취한 후, 다음의 관계식 (2)를 이용하여 Rm값을 계산하였다.The mechanical properties of the product thus produced are measured. In the present invention, the measurement and average plastic strain ratio (Rm) were calculated as follows. That is, the mechanical property measured the tensile strength and elongation using the tensile tester after processing the JIS No. 5 standard test piece to the rolling 90 degree direction. The average plastic strain ratio (Rm) value is also JIS 5 standard, after processing the specimen in the rolling direction, 45 ° direction, 90 ° direction, respectively, taking the average value of R0, R45, R90, in the range of 2-15%, Rm value was calculated using the following relation (2).

Rm=(R0 + 2R45 +R90)/4)··········(2)Rm = (R0 + 2R45 + R90) / 4) (2)

이하 본 발명을 일실시예를 들어 보다 구체적으로 설명한다. 단 본 발명은 이하의 실시예에 의해 한정되지 아니한다.Hereinafter, the present invention will be described in more detail with reference to one embodiment. However, the present invention is not limited by the following examples.

[실시예]EXAMPLE

표1에 표시된 화학 성분을 가지는 발명강(강번1~2)과 비교강(강번3~7)에 대하여 950℃에서 열간압연 마무리압연을 실시하고, 600~700℃에서 권취한 열연 강판을 표2에 표시된 공정조건으로 냉간압연 및 소둔열처리를 실시하였다.Hot rolled finish rolling was performed at 950 ° C for the inventive steels (steels 1 to 2) and comparative steels (steels 3 to 7) having the chemical components shown in Table 1, and the hot rolled steel sheets wound at 600 to 700 ° C. Cold rolling and annealing heat treatment were performed under the process conditions indicated in.

표 1에서 알 수 있듯이, 발명강 1번과 2번의 경우 Ti 함량을 관계식 1의 범위 내로 첨가하였으나. 비교강 3번부터 7번 까지는 관계식 (1) 보다 부족하에 Ti를 첨가하였다.As can be seen in Table 1, in the case of the invention steel No. 1 and No. 2 Ti content was added within the range of the relational formula 1. From Comparative Steel No. 3 to No. 7, Ti was added under the shortage of the relational formula (1).

발명강 1번과 2번은 약 3.6mm 두께의 열연 강판을 0.8mm 두께로 냉간 압연하여 약 78% 냉간 압연하였고, 비교강 3번부터 7번 까지는 70~76%의 압하율로 최종 두께 0.7~0.8mm 정도로 압연하였다. Inventive steel Nos. 1 and 2 were cold rolled to about 78% by cold rolling a hot rolled steel sheet of about 3.6mm thickness to 0.8mm thickness, and the final thickness of 0.7 ~ 0.8 in comparison steel Nos. 3 to 7 with 70 ~ 76% reduction ratio. It was rolled about mm.

냉간 압연 후 표2와 같이 다양한 온도로 소둔열처리를 실시한 후, 약 670℃ 까지 3℃/sec로 서냉 하였고, 다시 약 22℃/sec 로 급냉하여 400℃의 온도에서 과시효 열처리를 실시한 후 최종 냉각하였다.After cold rolling, the annealing heat treatment was performed at various temperatures as shown in Table 2, and then slowly cooled to 3 ° C./sec up to about 670 ° C., followed by quenching at about 22 ° C./sec and performing overaging heat treatment at a temperature of 400 ° C., followed by final cooling. It was.

상기 시험샘플들의 기계적 성질을 상술한 바와 같이 측정하고 평균소성변형비(Rm)를 산출하여 표 2의 결과를 얻을 수 있었다. 이를 살펴보면 다음과 같다.The mechanical properties of the test samples were measured as described above, and the average plastic deformation ratio (Rm) was calculated to obtain the results shown in Table 2. This is as follows.

먼저 관계식 (1)을 만족하는 강번 1번과 2번의 경우 본 발명의 공정 조건 내인 소둔온도 810~850℃ 일 경우, 인장강도가 35kg/mm2 이상, 연신율 38% 이상, Rm 값 2.0 이상의 우수한 특성을 보이는 것을 확인할 수 있다. 그러나 강번 1번과 2번의 경우에도, 본 발명의 공정 조건 밖인 800℃ 미만일 경우 성형성에 유리한 집합조직이 충분히 발달하지 않아 Rm 값이 2.0 미만의 수치를 보였고, 850℃를 초과하는 온도에서는 인장 강도가 35kg/mm2 미만으로 떨어지는 현상을 확인할 수 있다. 이러한 발명강 1번과 2번의 소둔온도에 따른 기계적 특성 변화를 도 1과 도 2 및 도 3에 나타내었다. 도 1은 소둔온도를 변화시켰을 때 발명강 1번의 기계적 특성이 변화하는 모습을 나타낸 그래프로, 소둔온도가 올라갈수록 항복 강도와 인장강도는 서서히 감소하고, 연신율은 증가하는 모습을 확인할 수 있다. 도 2 는 소둔온도를 변화시켰을 때 발명강 2의 기계적 특성이 변화하는 모습을 나타낸 그래프로 그 변화 양상은 1번 강과 유사하나 안정적 물성 확보를 위해서는 1번 강에 비하여 약간 높은 온도에서 소둔열처리를 실시해야 함을 알 수 있다. 도3은 소둔온도에 따른 Rm 값의 변화를 나타낸 그래프로 발명강 1, 2번 모두 소둔온도가 증가할 수록 Rm 값이 증가하는 경향을 보이고, 2.0 이상의 Rm값을 얻기 위해서는 소둔열처리 온도를 약 800℃ 이상으로 관리해야 한다는 사실을 알 수 있다.First, in case of steel No. 1 and No. 2 satisfying relation (1), when the annealing temperature of 810 ~ 850 ° C. within the process conditions of the present invention, the tensile strength is more than 35kg / mm2, the elongation is more than 38%, the Rm value is 2.0 or more. You can see it. However, in case of steel Nos. 1 and 2, when the temperature was less than 800 ° C outside the process conditions of the present invention, the Rm value was less than 2.0 due to insufficient development of an advantageous formability, and the tensile strength was higher than the temperature above 850 ° C. The phenomenon of falling below 35kg / mm2 can be confirmed. Mechanical properties change according to the annealing temperature of the invention steels 1 and 2 are shown in FIGS. 1 and 2 and 3. 1 is a graph showing a change in mechanical properties of the invention steel No. 1 when the annealing temperature is changed, the yield strength and tensile strength gradually decreases as the annealing temperature increases, the elongation can be seen to increase. 2 is a graph showing a change in the mechanical properties of the invention steel 2 when the annealing temperature is changed, the change pattern is similar to steel No. 1, but the annealing heat treatment is performed at a slightly higher temperature than steel No. 1 to ensure stable physical properties I can see. Figure 3 is a graph showing the change of the Rm value according to the annealing temperature Rm value tends to increase as the annealing temperature of the invention steel 1, 2 times increased, the annealing heat treatment temperature is about 800 to obtain an Rm value of 2.0 or more It can be seen that the temperature should be controlled at or above ℃.

강번 3번부터 7번 비교강의 경우 표 1에서 알 수 있듯이 관계식 (1)의 Ti 함량 범위에 미달하는 Ti를 함유하고 있기 때문에, 약 810~850℃의 온도 범위 내에서 인장강도와 연신율은 우수한 특성을 보임에도 Rm 값이 2.0에 미달하는 모습을 보이는 것을 확인 할 수 있었다.As shown in Table 1, the steels No. 3 to No. 7 contain Ti which is less than the Ti content in the relation (1), so the tensile strength and elongation are excellent in the temperature range of about 810 ~ 850 ° C. It can be seen that the Rm value is less than 2.0.

Figure 112005076949857-pat00001
Figure 112005076949857-pat00001

Figure 112005076949857-pat00002
Figure 112005076949857-pat00002

이상에서와 같이 본 발명에 의하면, 중량%로 탄소(C) : 0.001∼0.03%, 망간(Mn) : 0.2∼0.5%, 인(P) : 0.04~0.07%, 니오븀(Nb) : 0.005~0.009%, 티타늄(Ti) : 0.003~0.05%, 황(S) : 0.008% 이하, 질소(N) : 0.003% 이하, 알루미늄(Al) : 0.06% 이하를 함유하고, 나머지 철(Fe)과 불가피한 불순물로 조성되는 것을 주요한 특징으로 하고, 상기 티타늄(Ti)의 함량이 관계식 48×(C/12+N/14+S/32-0.4Nb/93)+0.01 ≤ Ti ≤ 48×(C/12+N/14+S/32-0.4Nb/93)+0.03을 만족하도록 하는 조성의 강 슬라브를 열간 압연 공정을 거쳐 600~700℃의 온도에서 권취한 다음, 70~80%의 압하율로 냉간 압연한 후, 800℃~850℃에서 20~100초간 재결정 소둔열처리를 실시하고, 2∼30℃/sec의 속도로 냉각하여 350℃∼450℃의 온도에서 2~5분 이하 동안 유지한 후 최종 냉각하는 제조 공정을 거쳐, 인장강도 35kgf/mm2 이상의 강도와 38% 이상의 연신율, 2.0 이상의 평균 소성 변형비 (Rm)값을 갖는 고성형 고강도 냉연강판을 제조하는 것이 가능하였다.As described above, according to the present invention, carbon (C): 0.001 to 0.03%, manganese (Mn): 0.2 to 0.5%, phosphorus (P): 0.04 to 0.07%, niobium (Nb): 0.005 to 0.009 %, Titanium (Ti): 0.003 ~ 0.05%, sulfur (S): 0.008% or less, nitrogen (N): 0.003% or less, aluminum (Al): 0.06% or less, remaining iron (Fe) and unavoidable impurities It is characterized in that the main composition, the content of titanium (Ti) is 48 × (C / 12 + N / 14 + S / 32-0.4 Nb / 93) + 0.01 ≤ Ti ≤ 48 × (C / 12 + A steel slab having a composition satisfying N / 14 + S / 32-0.4Nb / 93) +0.03 is wound at a temperature of 600 to 700 ° C. through a hot rolling process and then cold rolled to a rolling reduction of 70 to 80%. After that, recrystallization annealing heat treatment was performed at 800 ° C. to 850 ° C. for 20 to 100 seconds, cooled at a rate of 2 to 30 ° C./sec, held at 350 ° C. to 450 ° C. for 2 to 5 minutes or less, and finally cooled. Through the manufacturing process, the tensile strength of 35kgf / mm2 or more, 38% or more elongation, 2.0 or more Having a high strain plastic strain ratio (Rm) value, it was possible to prepare a molded high strength cold rolled steel sheet.

Claims (3)

인장강도 35kgf/mm2 이상, 연신율 38% 이상, 평균 소성 변형비(Rm) 2.0 이상의 고성형 고강도 냉연 강판을 제조하기 위하여 중량%로, 탄소(C) : 0.001∼0.03%, 망간(Mn) : 0.2∼0.5%, 인(P) : 0.04~0.07%, 니오븀(Nb) : 0.005~0.009%, 티타늄(Ti) : 0.003~0.05%, 황(S) : 0.008% 이하, 질소(N) : 0.003% 이하, 알루미늄(Al) : 0.06% 이하를 함유하고, 나머지 철(Fe)과 불가피한 불순물로 조성된 강 슬라브를 열간 압연 공정을 거쳐 600~700℃의 온도에서 권취한 다음, 70~80%의 압하율로 냉간 압연한 후, 800℃~850℃에서 20~100초간 재결정 소둔열처리를 실시하고, 2∼30℃/sec의 속도로 냉각하여 350℃∼450℃의 온도에 이르러 이 온도구간에서 2~5분 동안 유지한 후 최종 냉각하도록 한 냉연강판에 있어서,Tensile strength 35kgf / mm2 or more, elongation of 38% or more, average plastic strain ratio (Rm) 2.0 or more in order to produce a high strength high strength cold rolled steel sheet, carbon (C): 0.001 to 0.03%, manganese (Mn): 0.2 0.5%, phosphorus (P): 0.04% to 0.07%, niobium (Nb): 0.005% to 0.009%, titanium (Ti): 0.003% to 0.05%, sulfur (S): 0.008% or less, nitrogen (N): 0.003% Below, aluminum (Al): 0.06% or less, steel slab composed of the remaining iron (Fe) and inevitable impurities are wound at a temperature of 600 ~ 700 ℃ through a hot rolling process, and then reduced to 70 ~ 80% After cold rolling at a rate, a recrystallization annealing heat treatment was performed at 800 ° C. to 850 ° C. for 20 to 100 seconds, cooled at a rate of 2 to 30 ° C./sec, and reached a temperature of 350 ° C. to 450 ° C. at a temperature of 2 ° to this temperature range. In cold rolled steel sheet which is held for 5 minutes and then finally cooled, 상기 티타늄(Ti)의 함량은 상기 C, N, S, Nb 과의 관계에 있어 관계식 48×(C/12+N/14+S/32-0.4Nb/93)+0.01 ≤ Ti ≤ 48×(C/12+N/14+S/32-0.4Nb/93) + 0.03 되도록 하므로써 평균 소성변형비(Rm) 2.0이상을 만족한 것을 특징으로 하는 고성형 고감도 냉연강판The content of titanium (Ti) is in relation to the C, N, S, Nb 48 × (C / 12 + N / 14 + S / 32-0.4 Nb / 93) + 0.01 <Ti ≤ 48 × ( C / 12 + N / 14 + S / 32-0.4Nb / 93) + 0.03 to form a high sensitivity cold rolled steel sheet characterized by satisfying an average plastic deformation ratio (Rm) of 2.0 or more 삭제delete 삭제delete
KR1020050131112A 2005-12-28 2005-12-28 High strength cold rolled steel sheet with excellent plastic strain ratio and its manufacturing method Active KR100729125B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050131112A KR100729125B1 (en) 2005-12-28 2005-12-28 High strength cold rolled steel sheet with excellent plastic strain ratio and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050131112A KR100729125B1 (en) 2005-12-28 2005-12-28 High strength cold rolled steel sheet with excellent plastic strain ratio and its manufacturing method

Publications (1)

Publication Number Publication Date
KR100729125B1 true KR100729125B1 (en) 2007-06-14

Family

ID=38359663

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050131112A Active KR100729125B1 (en) 2005-12-28 2005-12-28 High strength cold rolled steel sheet with excellent plastic strain ratio and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100729125B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277558A (en) * 1988-09-13 1990-03-16 Kawasaki Steel Corp Cold rolled sheet metal having superior workability, reduced in in-plane anisotropy, and excellent in secondary working brittleness and its production
KR920000957A (en) * 1990-06-20 1992-01-29 도사까 시노부 Manufacturing method of high tensile cold rolled steel sheet for processing
JPH07278654A (en) * 1994-04-08 1995-10-24 Nippon Steel Corp Manufacturing method of high-strength cold-rolled steel sheet for automobiles, which has excellent formability, has paint bake hardenability, and has little fluctuation in paint bake hardenability in the width direction
JPH10130780A (en) * 1996-10-23 1998-05-19 Nippon Steel Corp Cold rolled steel sheet having small in-plane anisotropy and excellent formability, and method for producing the same
KR20010017609A (en) * 1999-08-12 2001-03-05 이구택 Low carbon cold rolled with low plastic deformation ratio and anisotropic coefficient
KR20050059817A (en) * 2003-12-15 2005-06-21 주식회사 포스코 Cold rolled steel sheet having homogeneous plastic deformation property and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277558A (en) * 1988-09-13 1990-03-16 Kawasaki Steel Corp Cold rolled sheet metal having superior workability, reduced in in-plane anisotropy, and excellent in secondary working brittleness and its production
KR920000957A (en) * 1990-06-20 1992-01-29 도사까 시노부 Manufacturing method of high tensile cold rolled steel sheet for processing
JPH07278654A (en) * 1994-04-08 1995-10-24 Nippon Steel Corp Manufacturing method of high-strength cold-rolled steel sheet for automobiles, which has excellent formability, has paint bake hardenability, and has little fluctuation in paint bake hardenability in the width direction
JPH10130780A (en) * 1996-10-23 1998-05-19 Nippon Steel Corp Cold rolled steel sheet having small in-plane anisotropy and excellent formability, and method for producing the same
KR20010017609A (en) * 1999-08-12 2001-03-05 이구택 Low carbon cold rolled with low plastic deformation ratio and anisotropic coefficient
KR20050059817A (en) * 2003-12-15 2005-06-21 주식회사 포스코 Cold rolled steel sheet having homogeneous plastic deformation property and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN113748219B (en) Cold rolled martensitic steel and method for martensitic steel thereof
KR101133870B1 (en) Hot-pressed steel sheet member and process for production thereof
CN109563575B (en) Hot press forming component
CN113330133A (en) Hot-dip galvanized steel sheet and method for producing same
CN111315908A (en) Cold-rolled steel sheet and method for producing same
US9297052B2 (en) High strength cold rolled steel sheet with excellent deep drawability and material uniformity in coil and method for manufacturing the same
CN113811624B (en) Cold rolled martensitic steel and method for martensitic steel thereof
CN102859020A (en) Heat-treated steel material, method for producing same, and base steel material for same
CN107002199B (en) Stainless steel and method for producing same
EP4259838A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
KR20230016218A (en) Heat-treated cold-rolled steel sheet and its manufacturing method
CN107964632B (en) Ferritic stainless steel sheet having excellent formability
KR20230016217A (en) Heat-treated cold-rolled steel sheet and its manufacturing method
WO2021116976A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
JP4325230B2 (en) High strength and high ductility cold-rolled steel sheet excellent in salt hot water secondary adhesion and method for producing the same
CN118574947A (en) Hot-stamping forming body
KR100729125B1 (en) High strength cold rolled steel sheet with excellent plastic strain ratio and its manufacturing method
JP2024538879A (en) Cold-rolled heat-treated steel sheet and its manufacturing method
CN114763594A (en) Cold-rolled steel sheet and method for manufacturing cold-rolled steel sheet
US20220259689A1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
KR100544724B1 (en) Cold rolled steel with excellent workability and manufacturing method
CN119137303A (en) Cold rolled martensitic steel and method for producing the same
WO2025056941A1 (en) A cold rolled martensitic steel and a method of martensitic steel thereof
EP4423304A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
WO2024201098A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20051228

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20061207

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20070605

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20070608

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20070608

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
G170 Re-publication after modification of scope of protection [patent]
PG1701 Publication of correction
PR1001 Payment of annual fee

Payment date: 20100601

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20110601

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20120601

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20130603

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20130603

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20140630

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20150528

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20150528

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20160523

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20160523

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20180530

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20190522

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20190522

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20200515

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20210427

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20220511

Start annual number: 16

End annual number: 16

PR1001 Payment of annual fee

Payment date: 20250514

Start annual number: 19

End annual number: 19