KR100701802B1 - Insulator coated with hydrophilic photocatalyst - Google Patents
Insulator coated with hydrophilic photocatalyst Download PDFInfo
- Publication number
- KR100701802B1 KR100701802B1 KR1020050084099A KR20050084099A KR100701802B1 KR 100701802 B1 KR100701802 B1 KR 100701802B1 KR 1020050084099 A KR1020050084099 A KR 1020050084099A KR 20050084099 A KR20050084099 A KR 20050084099A KR 100701802 B1 KR100701802 B1 KR 100701802B1
- Authority
- KR
- South Korea
- Prior art keywords
- insulator
- photocatalyst
- titanium dioxide
- hydrophilic
- coated
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/50—Insulators or insulating bodies characterised by their form with surfaces specially treated for preserving insulating properties, e.g. for protection against moisture, dirt, or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0219—Coating the coating containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Catalysts (AREA)
Abstract
본 발명은 송배전 설비의 애자 표면에 이산화티탄 나노입자를 포함하는 친수성 광촉매 졸을 코팅한 친수성 광촉매 코팅 애자에 관한 것이다. The present invention relates to a hydrophilic photocatalyst coating insulator coated with a hydrophilic photocatalyst sol comprising titanium dioxide nanoparticles on the insulator surface of a transmission and distribution facility.
본 발명에 따른 친수성 광촉매 코팅 애자는 절연체 표면에 대기오염 물질이 침적되어 발생하는 절연 파괴로 인한 정전 사고를 예방하고 대기오염 물질의 분해 작용을 통해 대기오염을 감소시킬 수 있다.The hydrophilic photocatalyst coating insulator according to the present invention can prevent the electrostatic accident caused by the dielectric breakdown caused by the deposition of air pollutants on the surface of the insulator and reduce the air pollution through the decomposition action of the air pollutants.
Description
도 1 및 도 2는 각각 본 발명의 친수성 광촉매가 코팅된 라인포스트 애자 및 장간 애자의 도면이고 (상기 도면에서, A는 애자의 표면이고, B는 광촉매 코팅으로 형성된 막이다.),1 and 2 are diagrams of the linepost insulator and the long insulator coated with the hydrophilic photocatalyst of the present invention, respectively (where A is the surface of the insulator and B is the film formed with the photocatalyst coating),
도 3은 본 발명의 실시예 및 비교예에서 제조된 광촉매가 코팅된 세라믹 판의 광분해 성능을 비교한 그래프이며,3 is a graph comparing the photodegradation performance of the photocatalyst-coated ceramic plate prepared in Examples and Comparative Examples of the present invention,
도 4는 본 발명의 실시예 1 및 비교예 1에서 제조된 광촉매가 코팅된 세라믹 판에서 친수성을 시험한 사진이다. Figure 4 is a photograph of the hydrophilicity test in the photocatalyst-coated ceramic plate prepared in Example 1 and Comparative Example 1 of the present invention.
본 발명은 송배전 설비인 애자 표면에 친수성 광촉매를 코팅한 친수성 광촉매 코팅 애자에 관한 것이다. The present invention relates to a hydrophilic photocatalyst coating insulator coated with a hydrophilic photocatalyst on the surface of the insulator, which is a transmission and distribution facility.
애자는 전력 수송 설비에 있어서 매우 중요한 설비이나, 대기오염 물질 등이 애자 표면에 누적되어 고착되면 절연 기능이 떨어져 누전이나 정전 사고를 일으키고 있다. 통상적으로 애자 표면에 누적된 대기오염 물질 등은 간헐적으로 내리는 비에 의해 세정되어 원상 회복이 되기도 하지만 가뭄 시기에는 비가 내리지 않아 대기 중에 대기오염 물질의 발생량도 많고, 이에 따라 애자 표면의 부착량도 증가되고, 세척도 되지 않아 애자 표면에 오염물이 계속 침적되는 악순환이 가속되어 결국 애자의 절연 파괴의 가능성이 한층 높아진다. 특히 도심에서는 자동차 배기가스에서 배출되는 오염물질이 합세하여 애자 표면에 오염물질의 부착량을 증가시키고 있다.Insulators are very important for electric power transportation facilities, but when air pollutants and the like accumulate and adhere to the insulator surface, the insulation function is reduced, causing an electric leakage or a power failure. Normally, air pollutants accumulated on the surface of the insulator are washed by intermittent rains to recover their original condition, but during the drought period, there is no rain, so the amount of air pollutants in the air is increased. As a result, the vicious cycle in which contaminants continue to be deposited on the surface of the insulator is accelerated, thus increasing the possibility of breakdown of the insulator. In particular, in urban areas, pollutants emitted from automobile exhaust gases join to increase the amount of contaminants attached to the insulator surface.
대한민국 등록 실용실안 제 20-0255176호에는 절연체로 사용되고 있는 애자의 표면에 산화티탄을 주성분으로 하는 광촉매를 코팅하여 대기오염 물질 등에 의한 침적물을 광촉매와 태양빛에 의해 분해시켜 제거함으로써 절연체에 대기오염 물질의 침적을 방지할 수 있는 송배전 설비의 절연체가 개시되어 있다. In Korea Utility Model No. 20-0255176, a photocatalyst composed mainly of titanium oxide is coated on the surface of an insulator used as an insulator, and the air pollutant is removed from the insulator by decomposing and removing deposits by air pollutants by photocatalyst and sunlight. An insulator of a power transmission and distribution facility that can prevent deposition of is disclosed.
애자의 표면에 광촉매를 코팅시키면 광촉매와 태양광의 광촉매 분해반응에 의해 대표적인 대기 오염물질인 질소 또는 황산화물을 제거할 수 있으며, 대기 중의 탄화수소를 이산화탄소 (CO2)와 물 (H2O)로 분해하는 기능을 나타내므로 기피 설비로 인식된 전력 설비에 환경 친화적 기능을 부가함으로서 이미지 개선도 강조할 수 있다. Coating the photocatalyst on the surface of the insulator can remove nitrogen or sulfur oxides, which are representative air pollutants, by photocatalytic decomposition of photocatalyst and sunlight, and decomposes hydrocarbons in the atmosphere into carbon dioxide (CO 2 ) and water (H 2 O). As a result, the improvement of image can be emphasized by adding environmentally friendly functions to the power facilities recognized as the evacuation facility.
이에, 본 발명자들은 상기 기능을 갖는 광촉매 코팅 애자를 연구하던 중 친수성이 뛰어난 개선된 광촉매 코팅 애자를 발견하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have found an improved photocatalytic coating insulator having excellent hydrophilicity while completing the study of the photocatalytic coating insulator having the above-described function, and completed the present invention.
따라서, 본 발명의 목적은 절연 파괴를 억제하여 정전 사고 예방 및 오염 방지 기능을 가지며 친수성이 뛰어난 코팅막을 가진 애자를 제공하는 것이다. Accordingly, it is an object of the present invention to provide an insulator having a coating film having excellent hydrophilicity and preventing electrostatic accidents by preventing dielectric breakdown.
상기 목적을 달성하기 위하여 본 발명에서는, 표면에 이산화티탄 나노입자를 포함하는 친수성 광촉매 졸이 코팅된 애자를 제공한다.In order to achieve the above object, the present invention provides a insulator coated with a hydrophilic photocatalyst sol comprising titanium dioxide nanoparticles on its surface.
이하 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에 따른 애자는 애자의 표면 (도 1 및 도 2의 A)에 친수성 기능을 갖는 광촉매 졸을 코팅하여 애자 표면에 광촉매 막 (도 1 및 도 2의 B)이 형성되어 있음을 특징으로 한다.The insulator according to the present invention is characterized in that the photocatalyst sol having a hydrophilic function is coated on the surface of the insulator (A of FIGS. 1 and 2) to form a photocatalytic film (B of FIGS. 1 and 2) on the insulator surface. .
본 발명에 사용되는 친수성 광촉매 졸은, TMOS (Tetra-methyl orthosilicate)를 기본 물질로 하는 바인더와 이산화티탄계 광촉매가 혼합되어 친수성이 강화된 것임을 특징으로 한다. The hydrophilic photocatalyst sol used in the present invention is characterized in that a hydrophilicity is enhanced by mixing a binder based on TMOS (Tetra-methyl orthosilicate) and a titanium dioxide photocatalyst.
상기 바인더는 TMOS, 물, 무기산 및 알콜성 용매를 1 : 2∼6 : 0.01∼0.06 : 5∼20의 몰비로 혼합하여 제조될 수 있으며, 상기 혼합시, 물의 함량이 증가되면 코팅이 불량해지므로 좋지 않다. The binder may be prepared by mixing a TMOS, water, an inorganic acid and an alcoholic solvent in a molar ratio of 1: 2 to 6: 0.01 to 0.05: 5 to 20. During the mixing, the coating becomes poor when the water content is increased. Not good.
상기에서 사용가능한 알콜성 용매로는 에탄올, n-프로필알콜, 아이소프로필알콜, n-부틸알콜 등이 있으며, 에탄올이 바람직하다. Alcoholic solvents usable above include ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol and the like, with ethanol being preferred.
또한, pH 조절을 위해 사용된 무기산으로는 염산, 질산, 황산 등이 있으며, 염산이 바람직하다.In addition, inorganic acids used for pH adjustment include hydrochloric acid, nitric acid, sulfuric acid, and the like, and hydrochloric acid is preferable.
본 발명에 사용된 이산화티탄계 광촉매는 대한민국공개특허공보 제10-2004-0100732호에 기재된 방법에 따라 제조될 수 있으며, 하기 단계를 포함한다.The titanium dioxide photocatalyst used in the present invention may be prepared according to the method described in Korean Patent Publication No. 10-2004-0100732, and includes the following steps.
1) 티타늄테트라이소프로폭사이드 (titaniumtetraisopropoxide, TTIP)를 초순수에 점적하여 수화반응시키는 단계; 1) hydration reaction of titanium tetraisopropoxide (TTIP) in ultrapure water;
2) 상기 단계에서 형성된 침전물을 여과하고, 초순수로 세척하여 불순물을 제거한 후, 건조시켜 무정질의 이산화티탄 분말을 제조하는 단계; 2) filtering the precipitate formed in the above step, washing with ultrapure water to remove impurities, and then drying to prepare amorphous titanium dioxide powder;
3) 상기 단계에서 제조된 무정질의 이산화티탄 입자와 해교제를 고압반응기에서 반응시켜 이산화티탄 졸을 형성하는 단계; 3) reacting the amorphous titanium dioxide particles prepared in the step and the peptizing agent in a high pressure reactor to form a titanium dioxide sol;
4) 승온하여 이산화티탄 졸을 이산화티탄 입자로 성장시키는 단계; 4) raising the temperature to grow the titanium dioxide sol into titanium dioxide particles;
5) 이산화티탄 결정을 원심분리하여 NaOH로 pH를 중성으로 조절한 후, 다시 원심분리와 초순수로 세척하여 분말화하는 단계; 및 5) centrifuging the titanium dioxide crystals to adjust the pH to neutral with NaOH, and then again centrifuging and washing with ultrapure water to powder; And
6) 상기 단계에서 얻어진 분말을 에탄올에 분산시켜 건조하는 단계.6) dispersing the powder obtained in the above step in ethanol and drying.
본 발명의 광촉매에 포함된 이산화티탄 입자는 아나타제, 부르카이트, 루타일의 세 가지 결정상이 존재하는데 이 중 아나타제와 루타일의 결정상의 분율은 단계 3)에서 해교제의 농도를 조절하거나 단계 4)에서 반응 온도를 변화시킴으로써 조절할 수 있으며, 이산화티탄 입자의 결정성은 반응 온도나 반응 압력을 변화시킴 으로써 조절할 수 있다. Titanium dioxide particles included in the photocatalyst of the present invention have three crystal phases of anatase, brookite, and rutile, among which the fraction of the crystal phase of anatase and rutile is adjusted in step 3) or the concentration of peptizing agent in step 3). It can be controlled by changing the reaction temperature at, the crystallinity of the titanium dioxide particles can be controlled by changing the reaction temperature or the reaction pressure.
상기의 방법에 따라 제조된 이산화티탄계 광촉매는 5 내지 10 nm 크기의 입자분포를 갖는 이산화티탄 나노입자를 포함하며, 결정성이 우수하여 광특성이 매우 우수하다.The titanium dioxide-based photocatalyst prepared according to the above method includes titanium dioxide nanoparticles having a particle distribution of 5 to 10 nm in size, and has excellent crystallinity and excellent optical properties.
또한, 본 발명에서는 친수성 광촉매 졸을 스프레이법, 함침법, 침지법 등 통상의 방법에 의해 애자의 표면에 코팅할 수 있다. In the present invention, the hydrophilic photocatalyst sol can be coated on the surface of the insulator by conventional methods such as spraying, impregnation, and dipping.
본 발명에서는 애자의 세라믹 표면에 광촉매 막을 견고하게 부착시키기 위하여 코팅된 애자를 통상의 방법에 따라 열처리 또는 열풍 건조 할 수 있으며, 바람직하게는 코팅된 애자를 건조 오븐에서 50 내지 100℃에서 5 내지 10분 동안 건조시키는 것이 좋다.In the present invention, the coated insulator may be heat-treated or hot-air dried according to a conventional method in order to firmly attach the photocatalytic film to the ceramic surface of the insulator. Preferably, the coated insulator is 5 to 10 at 50 to 100 ° C. in a drying oven. It is good to dry for minutes.
본 발명에 따라 애자의 표면에 코팅된 광촉매 코팅층의 두께는 두꺼울수록 친수성 기능이 떨어지고 투명성이 약해지므로, 2 내지 5 ㎛가 바람직하다. The thicker the photocatalytic coating layer coated on the surface of the insulator according to the present invention, the lower the hydrophilic function and the weaker the transparency.
본 발명에 따른 광촉매가 코팅된 애자는 그 막이 투명하기 때문에 애자 고유의 색상을 그대로 살릴 수 있으며, 광촉매의 강한 산화 작용으로 대기오염 물질 중에 오일 등과 같은 부착력이 있는 물질을 분해함으로써 부유분진과 기타 오염물질이 애자 표면에 잘 부착되지 않도록 하고, 대기 중의 이산화질소, 아황산가스, 탄화수소 등의 유해 가스를 분해 정화하는 기능도 제공할 수 있다.The insulator coated with the photocatalyst according to the present invention can preserve the intrinsic color of the insulator because its membrane is transparent.As a result of the strong oxidation of the photocatalyst, it is possible to decompose substances with adhesion, such as oil, in air pollutants. It is possible to prevent the substance from adhering well to the surface of the insulator and provide a function of decomposing and purifying harmful gases such as nitrogen dioxide, sulfurous acid gas and hydrocarbons in the atmosphere.
이하, 본 발명을 하기 실시예 및 비교예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following Examples and Comparative Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
제조예: 이산화티탄계 광촉매의 제조 Preparation Example: Preparation of Titanium Dioxide Photocatalyst
듀퐁사의 TTIP (titaniumtetraisopropoxide, 97%)를 전구물질로, 질산을 해교제로 사용하여 하기와 같은 방법으로 광촉매를 제조하였다.DuPont TTIP (titaniumtetraisopropoxide, 97%) was used as a precursor and nitric acid as a peptizing agent to prepare a photocatalyst in the following manner.
초순수 360 ㎖를 상온에서 강하게 교반하면서 TTIP 200 ㎖을 점적한 다음, TTIP와 초순수가 수화반응하여 백색의 침전물을 충분히 형성하도록 점적이 완료된 후 1시간 더 교반하였다. 상기 침전물을 여과하고, 초순수로 여러 차례 세척하여 불순물을 제거한 후, 80℃ 오븐에서 건조시켜 무정질의 이산화티탄 입자 분말을 얻었다.360 ml of ultrapure water was stirred dropwise at room temperature with 200 ml of TTIP, followed by further stirring for 1 hour after the drop was completed to sufficiently form a white precipitate by hydrating TTIP and ultrapure water. The precipitate was filtered, washed several times with ultrapure water to remove impurities, and then dried in an oven at 80 ° C. to obtain amorphous titanium dioxide particle powder.
상기 무정질의 이산화티탄 입자, 해교제 및 물을 1: 0.5: 100의 비로 120℃의 고압반응기에서 3시간 동안 반응시켜 이산화티탄 졸을 제조하였다.Titanium dioxide sol was prepared by reacting the amorphous titanium dioxide particles, peptizing agent and water in a high pressure reactor at 120 ℃ in a ratio of 1: 0.5: 100 for 3 hours.
상기에서 해교된 이산화티탄 졸을 250℃까지 승온시켜 12시간 동안 반응시키면서 이산화티탄 결정으로 성장시켰다. 이를 원심분리하여 이산화티탄 결정을 분리한 후, NaOH로 pH를 중성으로 조절한 다음, 다시 원심분리와 초순수로 세척하여 분말화하였다. 분말화된 이산화티탄을 에탄올에 분산시킨 후, 입자의 응집을 최대한 줄이기 위해 진공 오븐에서 빠르게 건조시켜 입도 분포가 약 5 내지 10 nm인 매우 균일한 이산화티탄계 광촉매를 제조하였다.The peptized titanium dioxide sol was heated to 250 ° C. and grown into titanium dioxide crystals while reacting for 12 hours. After centrifugation to separate the titanium dioxide crystals, the pH was adjusted to neutral with NaOH, and then again centrifuged and washed with ultrapure water to powderize. After dispersing the powdered titanium dioxide in ethanol, it was rapidly dried in a vacuum oven to minimize the aggregation of particles to prepare a very uniform titanium dioxide photocatalyst having a particle size distribution of about 5 to 10 nm.
실시예: 친수성 광촉매 졸의 제조 및 코팅 EXAMPLES Preparation and Coating of Hydrophilic Photocatalyst Sols
TMOS, H2O, HCl 및 에탄올을 1 : 4 : 0.04 : 10 몰비의 존재 하에 혼합하여 바인더를 합성한 후, 상기 제조예에서 제조된 이산화티탄계 광촉매를 상기 바인더와 3 : 1로 혼합하여 이산화티탄 나노입자를 포함하는 친수성 광촉매 졸을 제조하였다. TMOS, H 2 O, HCl, and ethanol were mixed in the presence of 1: 4: 0.04: 10 molar ratio to synthesize a binder, and then the titanium dioxide photocatalyst prepared in Preparation Example was mixed with the binder in a 3: 1 ratio to dioxide. A hydrophilic photocatalyst sol comprising titanium nanoparticles was prepared.
상기에서 제조된 광촉매 졸을 애자의 표면과 동일한 세라믹 판에 스프레이법 (분사 노즐: 0.4 mm)으로 코팅하고 건조 오븐에서 60℃로 10분간 건조시켜 광촉매 코팅된 세라믹 판을 제조하였다.The photocatalyst sol prepared above was coated on the same ceramic plate as the surface of the insulator by spray method (injection nozzle: 0.4 mm) and dried at 60 ° C. for 10 minutes in a drying oven to prepare a photocatalyst coated ceramic plate.
비교예Comparative example
시판되는 광촉매 졸 (TOTO사)을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 광촉매 코팅된 세라믹 판을 제조하였다.A photocatalyst coated ceramic plate was prepared in the same manner as in Example 2 except that a commercial photocatalyst sol (TOTO Co., Ltd.) was used.
시험예 1Test Example 1
본 발명에 사용된 광촉매 졸의 광분해 성능을 알아보기 위해, 실시예 및 비교예에서 제조된 광촉매 코팅된 세라믹 판을 이용하여 메틸렌 블루를 분해하는 실험을 실시하였다. 이 때, 광원으로는 BLB (Black Light Blue) 램프 (340 nm)를 사용하였고, 분해 정도를 색차색도계로 1시간 동안 5분마다 측정하여 그 결과를 도 3에 나타내었다.In order to determine the photodegradation performance of the photocatalyst sol used in the present invention, an experiment was performed to decompose methylene blue using the photocatalyst coated ceramic plates prepared in Examples and Comparative Examples. At this time, a BLB (Black Light Blue) lamp (340 nm) was used as the light source, and the degree of decomposition was measured every 5 minutes for 1 hour with a color difference colorimeter, and the results are shown in FIG. 3.
도 3에 나타난 바와 같이, 본 발명에 따른 이산화티탄 나노입자를 포함하는 광촉매가 코팅된 애자는 기존의 광촉매가 코팅된 애자보다 광분해 성능이 우수하다.As shown in FIG. 3, the photocatalyst coated insulator comprising titanium dioxide nanoparticles according to the present invention has superior photolysis performance than the conventional photocatalyst coated insulator.
시험예 2Test Example 2
실시예 및 비교예에서 제조된 광촉매가 코팅된 세라믹 판에 스프레이 분무기로 물을 분무하여 친수성 정도를 비교하였으며, 그 결과를 도 4에 나타내었다.The photocatalyst-coated ceramic plates prepared in Examples and Comparative Examples were sprayed with a spray sprayer to compare the degree of hydrophilicity, and the results are shown in FIG. 4.
도 4에 나타난 바와 같이, 본 발명에 따른 이산화티탄 나노입자를 포함하는 광촉매가 코팅된 애자는 기존의 광촉매가 코팅된 애자보다 친수성이 뛰어나다.As shown in Figure 4, the photocatalyst coated insulator comprising titanium dioxide nanoparticles according to the present invention is superior in hydrophilicity than the conventional photocatalyst coated insulator.
본 발명에 따른 친수성 광촉매가 코팅된 애자는, 친수성이 우수하여 빗물이나 대기의 흐름에 의한 오염물질을 태양광 조사로 발생되는 산화 환원력에 의해 보다 효율적으로 쉽게 제거되게 함으로써 애자 표면에 대기오염 물질의 침적에 의한 절연 파괴로 인한 정전 사고 예방할 수 있어 갑작스런 정전 사고에 대한 경제적 손실을 예방할 수 있으며, 절연 효과를 지속적으로 유지하여 애자의 수명을 연장하고 교체 및 세정 작업에 소요되는 비용을 절감할 수 있다. 또한, 도심의 자동차 배출 물질 등의 오염물질을 분해하는 환경 정화 기능도 가지고 있으므로 매우 효율적이다.The insulator coated with the hydrophilic photocatalyst according to the present invention has excellent hydrophilicity, and thus, the pollutants caused by rainwater or air flow can be easily removed by the redox generated by solar irradiation. It can prevent the blackout accident caused by the breakdown of insulation due to deposition, and can prevent the economic loss of sudden power failure, and can maintain the insulation effect to extend the life of the insulator and reduce the cost of replacement and cleaning work. . In addition, it is very efficient because it also has an environmental purification function that decomposes pollutants such as urban automobile emissions.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050084099A KR100701802B1 (en) | 2005-09-09 | 2005-09-09 | Insulator coated with hydrophilic photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050084099A KR100701802B1 (en) | 2005-09-09 | 2005-09-09 | Insulator coated with hydrophilic photocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070029377A KR20070029377A (en) | 2007-03-14 |
KR100701802B1 true KR100701802B1 (en) | 2007-03-30 |
Family
ID=38101606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050084099A KR100701802B1 (en) | 2005-09-09 | 2005-09-09 | Insulator coated with hydrophilic photocatalyst |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100701802B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101655991B1 (en) | 2016-05-13 | 2016-09-09 | 주식회사 리폼테크 | Insulator for coating apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5164542B2 (en) | 2007-12-04 | 2013-03-21 | ニチハ株式会社 | How to paint building materials |
CN116640005B (en) * | 2023-05-22 | 2024-10-15 | 醴陵市东方电瓷电器有限公司 | Anti-pollution porcelain insulator for direct-current ultrahigh-voltage transmission line and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5781207A (en) | 1980-11-10 | 1982-05-21 | Mitsubishi Electric Corp | Coating method for insulation |
KR200255176Y1 (en) * | 2001-08-07 | 2001-12-13 | (주) 빛과환경 | Insulator of Electrical Equipment Coated with Photocatalysts |
KR20020055176A (en) * | 2000-12-28 | 2002-07-08 | 박종섭 | Method for fabricating semicondductor device |
KR20030086971A (en) * | 2003-10-24 | 2003-11-12 | 최광철 | Road equipment of brightness catalyst coating |
KR20050013560A (en) * | 2002-05-30 | 2005-02-04 | 도토기키 가부시키가이샤 | Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating comopsitions, and self-cleaning member |
-
2005
- 2005-09-09 KR KR1020050084099A patent/KR100701802B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5781207A (en) | 1980-11-10 | 1982-05-21 | Mitsubishi Electric Corp | Coating method for insulation |
KR20020055176A (en) * | 2000-12-28 | 2002-07-08 | 박종섭 | Method for fabricating semicondductor device |
KR200255176Y1 (en) * | 2001-08-07 | 2001-12-13 | (주) 빛과환경 | Insulator of Electrical Equipment Coated with Photocatalysts |
KR20050013560A (en) * | 2002-05-30 | 2005-02-04 | 도토기키 가부시키가이샤 | Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating comopsitions, and self-cleaning member |
KR20030086971A (en) * | 2003-10-24 | 2003-11-12 | 최광철 | Road equipment of brightness catalyst coating |
Non-Patent Citations (2)
Title |
---|
1020050013560 * |
2002551760000 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101655991B1 (en) | 2016-05-13 | 2016-09-09 | 주식회사 리폼테크 | Insulator for coating apparatus |
Also Published As
Publication number | Publication date |
---|---|
KR20070029377A (en) | 2007-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4803180B2 (en) | Titanium oxide photocatalyst, its production method and use | |
JP6872114B2 (en) | Titanium oxide particles and a method for producing the same, a composition for forming a photocatalyst, a photocatalyst, and a structure. | |
JP6105998B2 (en) | Method for producing photocatalyst composition and method for producing photocatalyst | |
JP4053911B2 (en) | Photocatalyst and method for producing photocatalyst | |
JP6961931B2 (en) | Metatitanic acid particles and their production methods, photocatalyst-forming compositions, photocatalysts, and structures | |
US20070248831A1 (en) | Titanium Oxide Base Photocatalyst, Process for Producing the Same and Use Thereof | |
US20090123769A1 (en) | Visible light response-type titanium oxide photocatalyst, method for manufacturing the visible light response-type titanium oxide photocatalyst, and use of the visible light response-type titanium oxide photocatalyst | |
Kato et al. | Microstructure and crystallographic orientation of anatase coatings produced from chemically modified titanium tetraisopropoxide | |
KR100701802B1 (en) | Insulator coated with hydrophilic photocatalyst | |
JP4540971B2 (en) | Neutral titanium oxide sol and method for producing the same | |
CN101716519B (en) | Doped compound nano TiO2 powder and preparation method thereof | |
CN116554718B (en) | Preparation method and application of sea urchin-shaped titanium dioxide coating | |
JPH10167727A (en) | Modified titanium oxide sol, photocatalyst composition and its forming agent | |
KR102349217B1 (en) | Photocatalyst coating material, manufacturing method for the same, and construction material including the same | |
CN114682249B (en) | A kind of supported Mo-Ti double-doped TiO2 photocatalyst and its preparation and application | |
JPH09239277A (en) | Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them | |
CN105771949A (en) | Method for preparing titanium dioxide nano-semiconductor photocatalysis film | |
JP3885248B2 (en) | Photocatalyst composition | |
KR102060521B1 (en) | Water proofing material comprising visible light active photocatalyst for air cleaning | |
JP2007117999A (en) | Titanium oxide photocatalysts and their applications | |
CN100386143C (en) | Composite TiO2-TiO2 nanometer photocatalyst and its preparing process | |
CN110408243B (en) | Visible light photocatalytic function base coat containing quantum dots and preparation method thereof | |
CN108325511B (en) | Preparation method and application of nano metastable state/anatase mixed crystal titanium oxide hydrosol | |
JP2000303662A (en) | Air purification type ceramic exterior material | |
KR100631104B1 (en) | Hydrophilic glass coated with metal oxide and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20050909 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20060818 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20070220 |
|
PG1501 | Laying open of application | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20070326 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee | ||
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee | ||
PR1001 | Payment of annual fee | ||
FPAY | Annual fee payment |
Payment date: 20120228 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee | ||
FPAY | Annual fee payment |
Payment date: 20130227 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee | ||
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |