[go: up one dir, main page]

KR100695534B1 - Method for manufacturing a transition metal oxide positive electrode active material for lithium secondary battery - Google Patents

Method for manufacturing a transition metal oxide positive electrode active material for lithium secondary battery Download PDF

Info

Publication number
KR100695534B1
KR100695534B1 KR1020050026443A KR20050026443A KR100695534B1 KR 100695534 B1 KR100695534 B1 KR 100695534B1 KR 1020050026443 A KR1020050026443 A KR 1020050026443A KR 20050026443 A KR20050026443 A KR 20050026443A KR 100695534 B1 KR100695534 B1 KR 100695534B1
Authority
KR
South Korea
Prior art keywords
transition metal
metal oxide
active material
cathode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020050026443A
Other languages
Korean (ko)
Other versions
KR20060104345A (en
Inventor
이창우
문성인
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020050026443A priority Critical patent/KR100695534B1/en
Publication of KR20060104345A publication Critical patent/KR20060104345A/en
Application granted granted Critical
Publication of KR100695534B1 publication Critical patent/KR100695534B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • E02D5/808Ground anchors anchored by using exclusively a bonding material
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0004Synthetics
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/30Miscellaneous comprising anchoring details

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명에 따른 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법은, M1'[M1'M2'M3'M4']O2의 전이금속 산화물 양극 활물질 제조를 위한 M1'출발원료, M2'출발원료, M3'출발원료 및 M4'출발원료를 각각 선택하여 일정 화학량론에 의거하여 혼합하는 단계; 혼합용기에 상기 M1', M2', M3', 및 M4'출발원료가 혼합된 혼합물과 증류수를 소정의 부피비로 넣은 다음 소정 시간 동안 교반하는 단계; 교반된 혼합물을 산성의 수용액에서 일정 시간 동안 교반하고, 솔-젤 법에 의하여 중간합성물을 합성하는 단계; 상기 중간합성물을 소정 pH 값을 가지도록 조절 및 용매를 증발시켜 전구체를 합성하는 단계; 및 상기 전구체를 고온에서 열분해 공정을 통해 최종적으로 전이금속 산화물 양극 활물질을 제조하는 단계를 포함함을 특징으로 한다.Method for producing a transition metal oxide cathode active material for a lithium secondary battery according to the present invention, M1 'starting material, M2' starting material for the preparation of transition metal oxide cathode active material of M1 '[M1'M2'M3'M4'] O 2 Selecting M3 'starting material and M4' starting material, respectively, and mixing them based on a certain stoichiometry; Adding a mixture of the M1 ', M2', M3 ', and M4' starting materials and distilled water to a mixing vessel at a predetermined volume ratio and then stirring the mixture for a predetermined time; Stirring the stirred mixture in an acidic aqueous solution for a predetermined time, and synthesizing the intermediate by a sol-gel method; Synthesizing the precursor by adjusting the intermediate compound to have a predetermined pH value and evaporating the solvent; And finally preparing a transition metal oxide cathode active material through the pyrolysis process at high temperature.

이와 같은 본 발명에 의하면, 고용량의 충방전 능력을 발현하는 전이금속 산화물 양극 활물질을 제공할 수 있다. According to the present invention, it is possible to provide a transition metal oxide cathode active material exhibiting a high capacity charge and discharge capacity.

Description

리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법{Manufacturing method of transition metal oxide cathode active materials for lithium secondary batteries}Manufacturing method of transition metal oxide cathode active materials for lithium secondary batteries

도 1은 본 발명에 따른 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법을 보여주는 흐름도.1 is a flow chart showing a method of manufacturing a transition metal oxide cathode active material for a lithium secondary battery according to the present invention.

도 2는 본 발명의 제조방법에 의해 제조된 전이금속 산화물 양극 활물질의 X-선 회절패턴을 보여주는 도면.2 is a view showing an X-ray diffraction pattern of the transition metal oxide cathode active material prepared by the production method of the present invention.

도 3은 본 발명의 제조방법에 의해 제조된 전이금속 산화물 양극 활물질의 조성 1에서의 초기 사이클링 변화에 따른 전압구배 및 용량발현 관계를 보여주는 도면. 3 is a view showing the relationship between voltage gradient and capacity expression according to the initial cycling change in the composition 1 of the transition metal oxide cathode active material prepared by the manufacturing method of the present invention.

도 4는 본 발명의 제조방법에 의해 제조된 전이금속 산화물 양극 활물질의 조성 2에서의 초기 사이클링 변화에 따른 전압구배 및 용량발현 관계를 보여주는 도면. 4 is a view showing a voltage gradient and capacity expression relationship according to the initial cycling change in the composition 2 of the transition metal oxide cathode active material prepared by the production method of the present invention.

도 5는 본 발명에 따른 전이금속 산화물 양극 활물질의 조성 1과 2에서, 두 자리 수의 사이클링 후의 전압구배 및 용량발현 관계를 보여주는 도면.5 is a view showing a voltage gradient and capacity expression relationship after two-digit cycling in compositions 1 and 2 of the transition metal oxide cathode active material according to the present invention.

본 발명은 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법에 관한 것으로서, 특히 전이금속 층에 알칼리금속 및 알칼리토금속 원소를 포함하는 전이금속 산화물로서 고용량의 에너지능력 특성을 갖는 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법에 관한 것이다. The present invention relates to a method for producing a transition metal oxide positive electrode active material for a lithium secondary battery, and in particular, a transition metal oxide having a high capacity energy capability as a transition metal oxide containing an alkali metal and an alkaline earth metal element in a transition metal layer. It relates to a method for producing an oxide cathode active material.

리튬 2차전지는 기존의 납축전지, 니켈-카드뮴 전지 혹은 니켈-수소 전지 등에 비해, 체적당/중량당 높은 에너지 밀도를 가지므로, 휴대용 기기의 전원 공급원으로서 가장 널리 사용되는 충방전이 가능한 2차전지이다. 현재 상용화된 리튬 2차전지의 양극 및 음극 활물질은 리튬 이온의 삽입과 탈리가 가능한 리튬 전이금속 산화물 및 흑연으로 각각 사용하며, 그 외에 전극 간의 직접적인 접촉을 막는 고분자계열의 격리막과 리튬이온이 해리된 비수용성 유기전해질 또는 고분자전해질로 구성되어 있다. Lithium secondary batteries have a higher energy density per volume / weight than conventional lead acid batteries, nickel-cadmium batteries, or nickel-hydrogen batteries, and thus are the most widely used rechargeable battery for power supply of portable devices. . The positive electrode and the negative electrode active material of the commercially available lithium secondary battery are used as lithium transition metal oxides and graphite which can insert and detach lithium ions, respectively. It is composed of a water-insoluble organic electrolyte or a polymer electrolyte.

양극 활물질의 경우 Co 전이금속을 전이금속층에, 리튬을 리튬금속층에, 그리고 산소를 또 하나의 층으로 두는 층상구조를 가진 LiCoO2가 지금까지 상업적으로 오랫동안 널리 사용되어 오고 있는 대표적 리튬금속 산화물이다. 산소층이 리튬층과 전이금속층을 구분하여 층상을 이루는 구조이다. 또한, 전이금속층에 두 가지 이상의 전이금속을 화학량론에 근거하여 상호 치환시킴으로써 합성 제조하는 양극 활물질도 오랫동안 연구되어오고 있다. 그 예로 LiNixCo1-xO2의 경우는 전이금속 층에 있는 Co 전이금속 원소에 Ni 전이금속 원소를 일정 화학량론에 의거 치환하여 합성 제조하는 것이다. 더불어, 최근에 리튬을 리튬금속층 및 전이금속층에도 추가적으로 치환하여 합성 제조한 양극산화물이 연구되어 오고 있다. In the case of the positive electrode active material, LiCoO 2 having a layered structure in which a Co transition metal is used as a transition metal layer, lithium is used as a lithium metal layer, and oxygen is another layer, is a representative lithium metal oxide that has been widely used for a long time. The oxygen layer forms a layer by dividing the lithium layer and the transition metal layer. In addition, positive electrode active materials synthesized by substituting two or more transition metals on the basis of stoichiometry in the transition metal layer have been studied for a long time. For example, in the case of LiNixCo 1-x O 2 , the Ni transition metal element is substituted by Co stoichiometry in the transition metal layer based on a certain stoichiometry to produce a synthetic compound. In addition, recently, anodic oxides prepared by further substituting lithium in lithium metal layers and transition metal layers have been studied.

본 발명은 이상과 같은 사항을 감안하여 창출된 것으로서, 알칼리금속 및 알칼리토금속 원소가 전이금속 원소와 함께 전이금속 층에 공존하는 층상구조를 가진 고용량의 충방전 능력을 가진 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법을 제공함에 그 목적이 있다.The present invention has been made in view of the above-mentioned matters, and a transition metal oxide for a lithium secondary battery having a high capacity charge and discharge capacity having a layered structure in which an alkali metal and an alkaline earth metal element coexist in a transition metal layer together with a transition metal element. Its purpose is to provide a method for producing a positive electrode active material.

상기의 목적을 달성하기 위하여 본 발명에 따른 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법은,Method for producing a transition metal oxide positive electrode active material for a lithium secondary battery according to the present invention to achieve the above object,

삭제delete

삭제delete

a) M1'[M1'M2'M3'M4']O2의 전이금속 산화물 양극 활물질 제조를 위한 M1'출발원료, M2'출발원료, M3'출발원료 및 M4'출발원료를 각각 선택하여 일정 화학량론에 의거하여 혼합하는 단계; a) M1 '[M1'M2'M3'M4'] O 2 M1 'starting material, M2' starting material, M3 'starting material and M4' starting material for the preparation of transition metal oxide cathode active material Mixing based on the ron;

b) 혼합용기에 상기 M1', M2', M3', 및 M4'출발원료가 혼합된 혼합물과 증류수를 소정의 부피비로 넣은 다음 소정 시간 동안 교반하는 단계; b) adding a mixture of the M1 ', M2', M3 ', and M4' starting material and distilled water in a predetermined volume ratio in a mixing vessel and then stirring for a predetermined time;

c) 상기 교반된 혼합물을 산성의 수용액에서 일정 시간 동안 교반하고, 솔-젤 법에 의하여 중간합성물을 합성하는 단계; c) stirring the stirred mixture in an acidic aqueous solution for a predetermined time, and synthesizing the intermediate by the sol-gel method;

d) 상기 합성 단계에서의 중간합성물을 소정 pH 값을 가지도록 조절 및 용매를 증발시켜 전구체를 합성하는 단계; 및 d) synthesizing the precursor by adjusting the intermediate in the synthesis step to have a predetermined pH value and evaporating the solvent; And

e) 상기 전구체를 고온에서 열분해 공정을 통해 최종적으로 전이금속 산화물 양극 활물질을 제조하는 단계를 포함한다.e) finally preparing a transition metal oxide cathode active material through a pyrolysis process at a high temperature.

이하 첨부된 도면을 참조하면서 본 발명의 실시 예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따라 제조되는 리튬2차전지용 전이금속 산화물 양극 활물질은, M1'[M1'M2'M3'M4']O2의 화학적 조성을 가지며, M1'는 알칼리금속 군에서 선택된 적어도 하나의 원소이고, M2', M3', 및 M4'는 알칼리토금속이 적어도 하나인 원소이며, 나머지는 전이금속으로 이루어진 군에서 선택되는 원소로 구성된다.The transition metal oxide positive electrode active material for a lithium secondary battery prepared according to the present invention has a chemical composition of M1 '[M1'M2'M3'M4'] O 2 , and M1 'is at least one element selected from an alkali metal group, M2 ', M3', and M4 'are elements having at least one alkaline earth metal, and the rest are composed of elements selected from the group consisting of transition metals.

상기 M1'[M1'M2'M3'M4']O2의 M1'는 알칼리금속 군에서 선택된 원소로서, 바람직하게는 리튬(Li) 또는 나트륨(Na)이 사용될 수 있다. 이들 금속을 포함하는 화합물의 형태는 물에 용해되는 것이면 사용 가능하며, 특별한 제한이 없다. M1 'of M1'[M1'M2'M3'M4'] O 2 is an element selected from the group of alkali metals, and preferably lithium (Li) or sodium (Na) may be used. The form of the compound containing these metals can be used as long as it is dissolved in water, and there is no particular limitation.

상기 M1'[M1'M2'M3'M4']O2의 M2', M3', 및 M4' 중의 어느 하나는 알칼리토금속 군에서 선택되어 사용할 수 있으며, 바람직하게는 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 및 바륨(Ba)이 사용될 수 있다. 이들 금속을 포함하는 화 합물의 형태는 물에 용해되는 것이면 사용 가능하며, 특별한 제한이 없다. Any one of M2 ', M3', and M4 'of M1'[M1'M2'M3'M4'] O 2 may be selected from the group of alkaline earth metals, and preferably beryllium (Be) and magnesium (Mg). ), Calcium (Ca), strontium (Sr), and barium (Ba) may be used. Compounds containing these metals can be used as long as they are soluble in water, and there is no particular limitation.

또한, 상기 M1'[M1'M2'M3'M4']O2의 M2', M3', 및 M4' 중에서 알칼리토금속 원소를 선택한 것을 제외한 나머지는 전이금속군 가운데, 특히 원자궤도상 3d궤도를 가지는 Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, 또는 이들의 조합이 사용될 수 있다. 이들 금속을 포함하는 화합물의 형태는 물에 용해되는 것이면 사용 가능하며, 특별한 제한이 없다. In addition, except for selecting an alkaline earth metal element among M2 ', M3', and M4 'of M1'[M1'M2'M3'M4'] O 2, the transition metal group has a 3d orbital in the orbit of atoms. Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, or a combination thereof may be used. The form of the compound containing these metals can be used as long as it is dissolved in water, and there is no particular limitation.

그러면, 이상과 같은 조성을 가지는 본 발명의 리튬2차전지용 전이금속 산화물 양극 활물질 및 그 제조방법에 대하여 설명해 보기로 한다. Then, the transition metal oxide cathode active material for a lithium secondary battery of the present invention having the composition as described above and a method of manufacturing the same will be described.

(실시예)(Example)

도 1은 본 발명에 따른 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법을 보여주는 흐름도이다.1 is a flowchart illustrating a method of manufacturing a transition metal oxide cathode active material for a lithium secondary battery according to the present invention.

도 1을 참조하면, 본 발명에 따른 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법에 따라, 먼저 M1'[M1'M2'M3'M4']O2의 전이금속 산화물 양극 활물질 제조를 위한 M1'출발원료, M2'출발원료, M3'출발원료 및 M4'출발원료를 각각 선택하여 일정 화학량론에 의거하여 혼합한다(단계 S101). Referring to FIG. 1, according to the method of manufacturing a transition metal oxide cathode active material for a lithium secondary battery according to the present invention, M1 for preparing a transition metal oxide cathode active material of M1 '[M1'M2'M3'M4'] O 2 is described. 'Starting material, M2' starting material, M3 'starting material and M4' starting material are respectively selected and mixed based on a certain stoichiometry (step S101).

여기서, 상기 M1'출발원료로는 M1'을 포함하는 나이트레이트(nitrate), 카보네이트(carbonate), 아세테이트(acetate), 옥살레이트(oxalate), 옥사이드(oxide) 등이 사용될 수 있다. 그리고 M2', M3', 및 M4' 출발원료로는 M2', M3', 및 M4'을 각각 포함하는 나이트레이트(nitrate), 카보네이트(carbonate), 아세테이트 (acetate), 옥살레이트(oxalate), 옥사이드(oxide) 등이 사용될 수 있다. Here, as the starting material of M1 ', nitrate, carbonate, acetate, oxalate, oxide, etc. including M1' may be used. And nitrate, carbonate, acetate, oxalate, oxide containing M2 ', M3', and M4 'as starting materials for M2', M3 ', and M4', respectively. oxides and the like can be used.

예를 들면, 상기 M1'출발원료로는 리튬 아세테이트(Li(CH3COO)ㆍ2H2O, 알드리치사 제조), M2' 출발원료로는 니켈 아세테이트 (Ni(CH3COO)2ㆍ4H2O, 알드리치사 제조), M3' 출발원료로는 마그네슘 아세테이트 (Mg(CH3COO)2ㆍ4H2O, 알드리치 사 제조), 및 M4' 출발원료로는 (Mn(CH3COO)2ㆍ4H2O, 알드리치사 제조)로서 일정 화학량론에 의한 비로 혼합한다. For example, the M1 'starting material is lithium acetate (Li (CH 3 COO) .2H 2 O, manufactured by Aldrich), and the M2' starting material is nickel acetate (Ni (CH 3 COO) 2 .4H 2 O. , Manufactured by Aldrich), magnesium acetate (Mg (CH 3 COO) 2 4H 2 O, manufactured by Aldrich) as the M3 'starting material, and (Mn (CH 3 COO) 2 4H 2 as the M4' starting material) O, manufactured by Aldrich Co., Ltd.) at a ratio by constant stoichiometry.

또한, 상기 M1'는 알칼리금속으로 구성되며, 전이금속 층에 존재할 M1'의 중량은 바람직하게는 0.5 양극이온 비를 넘지 않도록 한다.In addition, M1 'is composed of an alkali metal, and the weight of M1' present in the transition metal layer is preferably not more than 0.5 anode ion ratio.

또한, 상기 M2', M3' 및 M4' 중 적어도 두 가지의 전이금속원소 중 적어도 하나는 고정된 중량비를 가진다.In addition, at least one of the at least two transition metal elements of M2 ', M3' and M4 'has a fixed weight ratio.

이상에 의해, M1' 출발원료, M2' 출발원료, M3' 출발원료 및 M4' 출발원료 의 혼합이 완료되면, 그 혼합물을 혼합용기에 상기 M1', M2', M3', 및 M4'출발원료가 혼합된 혼합물과 증류수를 소정의 부피비로 넣은 다음 소정 시간 동안 교반 한다(단계 S102). By the above, when the mixing of M1 'starting material, M2' starting material, M3 'starting material and M4' starting material is completed, the mixture is mixed in the mixing vessel with the M1 ', M2', M3 ', and M4' starting material. The mixed mixture and distilled water are put in a predetermined volume ratio and then stirred for a predetermined time (step S102).

여기서, 혼합물과 증류수는 충분한 교반과 혼합이 가능하도록 적어도 1:3의 부피 비를 유지하도록 하며, 교반 시간은 10시간∼24시간 동안 지속하도록 한다.Here, the mixture and distilled water are maintained at a volume ratio of at least 1: 3 to allow sufficient stirring and mixing, and the stirring time is maintained for 10 to 24 hours.

이렇게 하여, M1' 출발원료, M2' 출발원료, M3' 출발원료 및 M4' 출발원료의 혼합물과 증류수의 교반이 완료되면, 산성의 수용액을 첨가하여 일정 시간 동안 교반하고 솔-젤 법에 의하여 중간합성물을 합성한다(단계 S103). In this way, when stirring of the mixture of M1 'starting material, M2' starting material, M3 'starting material and M4' starting material and distilled water is completed, an acidic aqueous solution is added and stirred for a predetermined time. The composite is synthesized (step S103).

여기서, 상기 산성의 수용액은 합성단계에 있는 M1' 출발원료, M2' 출발원료, M3' 출발원료 및 M4' 출발원료들이 균일한 분포를 가지며 혼합될 수 있도록 하는 역할을 한다.Here, the acidic aqueous solution serves to allow the M1 'starting material, M2' starting material, M3 'starting material, and M4' starting material in the synthesis step to have a uniform distribution.

이렇게 하여, 산성의 수용액에서 솔-젤 법에 의하여 중간합성물을 합성시킨 다음, 중간합성물을 소정 pH 값을 가지도록 조절 및 용매를 증발시켜 전구체를 생성한다(S104).In this way, the intermediate is synthesized by the sol-gel method in an acidic aqueous solution, the intermediate is adjusted to have a predetermined pH value, and the solvent is evaporated to generate a precursor (S104).

여기서, 솔-젤 법에 의하여 합성시켜 만들어진 중간합성물을 하이드록시 (OH) 기를 가지는 시제를 사용함으로써 일정 수준의 pH 값을 가지도록 조절하며, 이후 100℃ 미만의 온도 하에서 충분한 시간과 함께 용매를 증발시킨다.Here, the intermediate synthesized by the sol-gel method is adjusted to have a certain pH value by using a reagent having a hydroxy (OH) group, and then the solvent is evaporated with a sufficient time under a temperature of less than 100 ° C. Let's do it.

이렇게 하여, 용매가 증발된 전구체를 고온 하에서 열분해 공정을 통해 최종적으로 전이금속 산화물 양극 활물질을 제조한다(S105).In this way, the precursor evaporated from the solvent is finally pyrolyzed under high temperature to prepare a transition metal oxide cathode active material (S105).

여기서, 상기 전구체를 전이금속 산화물로 제조하기 위해 고온에서 열분해 공정을 통해 양극 활물질을 제조함에 있어, 이때의 온도는 700℃ 이하의 온도를 유지해주며, 공기가 주입되어지는 산소 분위기에서 열분해하도록 한다.Here, in the preparation of the positive electrode active material through a pyrolysis process at a high temperature in order to produce the precursor as a transition metal oxide, the temperature is maintained at a temperature of 700 ℃ or less, so as to thermally decompose in an oxygen atmosphere in which air is injected.

도 2는 본 발명의 제조방법에 의해 제조된 전이금속 산화물 양극 활물질의 X-선 회절패턴을 보여주는 도면으로서, 알칼리금속이 알칼리토금속 및 전이금속과 함께 전이금속층에 공존하며 층을 이룰 수 있음을 α-NaFeO2 구조에 근거하여 색인될 수 있다.Figure 2 is a view showing the X-ray diffraction pattern of the transition metal oxide positive electrode active material prepared by the production method of the present invention, α and alkali metal coexist in the transition metal layer with the alkaline earth metal and the transition metal to form a layer Can be indexed based on the NaFeO 2 structure.

한편, 이상과 같은 본 발명의 제조방법에 의해 제조된 전이금속 산화물 양극 활물질과 접합성을 가지고 있는 아세틸렌 블랙(Acetylene Black)을 근거로 한 도전재 및 미량의 흑연을 사용하여 전극을 제조하였다. 상기의 재료는 각각 62:26:12의 중량비로서 슬러리를 제조한 다음, 알루미늄 호일 집전체 위에 도포하고 120℃, 24시간 건조 및 압착의 과정을 거쳐 양극을 제조하였다. 리튬금속을 음극으로 하였으며, 에틸렌 카보네이트(EC)와 디-메틸 카보네이트(DMC)를 1:1 중량비의 혼합용액에 1몰 리튬 헥사 플로로 포스페이트(LiPF6) 리튬 염이 녹아 있는 전해액을 사용하였고, 전극 간 단락을 방지하기 위해 격리막(Celgard 사 제조)을 사용하여 최종적으로 코인 타입의 전지를 제작하였다. On the other hand, the electrode was prepared using a conductive material and a trace amount of graphite based on acetylene black having a bonding property with the transition metal oxide cathode active material prepared by the production method of the present invention as described above. The above materials were each prepared in a weight ratio of 62:26:12, and then coated on an aluminum foil current collector, followed by drying at 120 ° C. for 24 hours and pressing to prepare a positive electrode. Lithium metal was used as a negative electrode, and ethylene carbonate (EC) and di-methyl carbonate (DMC) were used in an electrolyte solution in which 1 mol of lithium hexafluoro phosphate (LiPF 6 ) lithium salt was dissolved in a 1: 1 weight ratio mixture solution. In order to prevent the short circuit between electrodes, a coin-type battery was finally manufactured using a separator (manufactured by Celgard).

본 발명에 의해 제조된 전이금속 층에 알칼리금속 및 알칼리토금속 원소를 포함하는 리튬2차전지용 전이금속 산화물 양극 활물질의 용량과 수명특성을 알아보기 위해, 활물질 그램 중량 당 C/18 전류 속도의 일정 전류밀도로 2.7 ∼ 4.6 V (리튬이온 대비)의 전위제어 조건으로 충방전 시험을 실시하였다. In order to know the capacity and life characteristics of the transition metal oxide positive electrode active material for a lithium secondary battery including alkali metal and alkaline earth metal element in the transition metal layer prepared by the present invention, a constant current of C / 18 current rate per gram weight of the active material A charge and discharge test was conducted under a potential control condition of 2.7 to 4.6 V (vs. lithium ions) in density.

도 3 및 도 4는 본 발명의 제조방법에 의해 제조된 전이금속 산화물 양극 활물질의 초기 사이클링 변화에 따른 전압구배 및 용량발현에 관한 것으로서, 전이금속 산화물 양극 활물질의 조성 1에서, 초기 사이클링 변화에 따른 전압구배 및 용량발현에 관한 도면이고, 도 4는 전이금속 산화물 양극 활물질의 조성 2에서, 초기 사이클링 변화에 따른 전압구배 및 용량발현에 관한 도면이다. 3 and 4 are related to the voltage gradient and capacity expression according to the initial cycling change of the transition metal oxide cathode active material prepared by the manufacturing method of the present invention, in the composition 1 of the transition metal oxide cathode active material, according to the initial cycling change 4 is a diagram of voltage gradient and capacity expression, and FIG. 4 is a diagram of voltage gradient and capacity expression according to initial cycling change in composition 2 of a transition metal oxide cathode active material.

여기서, 상기 M1'[M1'M2'M3'M4']O2의 화학조성에서 M2', M3', 및 M4' 중 전이금속으로 사용되어진 두 원소 중, 적어도 한 원소는 동일한 중량을 고정으로 하 며 이를 제외한 적어도 다른 하나의 전이금속 원소를 상이한 중량비로 함에 있어서, 중량이 적은 것을 조성 1이라 하고 많은 것을 조성 2라 한다. Here, in the chemical composition of M1 '[M1'M2'M3'M4'] O 2 , at least one of two elements used as transition metals among M2 ', M3', and M4 'is fixed at the same weight. In the case where at least one other transition metal element except for this is in a different weight ratio, the lesser weight is referred to as the composition 1, and the greater is referred to as the composition 2.

도 5는 본 발명에 따른 전이금속 산화물 양극 활물질의 조성 1과 2에서, 두 자리 수의 사이클링 후의 전압구배 및 용량발현에 관한 도면으로서 조성 1과 조성 2 공히 두 자리 수의 사이클링에서도 안정된 전압구배 및 180 mAh/g 이상의 고용량을 발현함을 알 수 있다.5 is a diagram showing the voltage gradient and capacity expression after two-digit cycling in the transition metal oxide cathode active material according to the present invention. It can be seen that a high capacity of 180 mAh / g or more.

이상의 설명에서와 같이, 본 발명에 따른 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법은 전이금속 층에 알칼리금속 및 알칼리토금속 원소를 포함하고 사이클링 증가에 따른 전압구배의 변화가 거의 없기 때문에 전지수명 향상에 기여할 수 있으며, 또한 고용량의 충방전 능력을 발현하는 전이금속 산화물 양극 활물질을 제공할 수 있다. 특히, 알칼리토금속의 사용으로 산화수를 2+로 고정시켜 화학량론을 이룸으로써 전이금속 층에서 안정된 구조를 가진 산화물을 합성할 수 있다.As described above, the method of manufacturing a transition metal oxide cathode active material for a lithium secondary battery according to the present invention includes an alkali metal and an alkaline earth metal element in the transition metal layer and has almost no change in voltage gradient due to increased cycling. It is possible to provide a transition metal oxide cathode active material which can contribute to the improvement and also exhibits a high capacity charge and discharge capability. In particular, by using alkaline earth metals, the oxides having a stable structure in the transition metal layer can be synthesized by achieving a stoichiometry by fixing the oxidation number to 2+.

또한, 초기 제조단계에서 용매를 사용하지 않으므로, 용매의 회수 혹은 처리과정을 없앨 수 있으며, 그로 인해 용매의 비용을 절감할 수 있다. 특히, 초기 혼합공정에서 물을 사용함으로써 친환경성의 물질합성이 가능하며 합성에 따른 제조공정 상의 작업환경의 안전성을 극대화하는데 기여할 수 있다. 무엇보다, 초기 혼합공정, 합성공정 및 열분해공정 공정 등의 비교적 간단한 공정만으로 리튬2차전지용 전이금속 산화물 양극 활물질 합성이 가능하다는 장점이 있다. In addition, since the solvent is not used in the initial manufacturing step, it is possible to eliminate the recovery or treatment of the solvent, thereby reducing the cost of the solvent. In particular, by using water in the initial mixing process it is possible to synthesize environmentally friendly materials and contribute to maximize the safety of the work environment in the manufacturing process by the synthesis. First of all, there is an advantage in that the transition metal oxide cathode active material for lithium secondary batteries can be synthesized by a relatively simple process such as an initial mixing process, a synthesis process, and a pyrolysis process.

Claims (10)

삭제delete 삭제delete 삭제delete 삭제delete 리튬2차전지용 전이금속 산화물 양극 활물질을 제조하기 위한 방법에 있어서:In the method for producing a transition metal oxide positive electrode active material for a lithium secondary battery: a) M1'[M1'M2'M3'M4']O2의 전이금속 산화물 양극 활물질 제조를 위한 M1'출발원료, M2'출발원료, M3'출발원료 및 M4'출발원료를 각각 선택하여 일정 화학량론에 의거하여 혼합하는 단계; a) M1 '[M1'M2'M3'M4'] O 2 M1 'starting material, M2' starting material, M3 'starting material and M4' starting material for the preparation of transition metal oxide cathode active material Mixing based on the ron; b) 혼합용기에 상기 M1', M2', M3', 및 M4'출발원료가 혼합된 혼합물과 증류수를 소정의 부피비로 넣은 다음 소정 시간 동안 교반하는 단계; b) adding a mixture of the M1 ', M2', M3 ', and M4' starting material and distilled water in a predetermined volume ratio in a mixing vessel and then stirring for a predetermined time; c) 상기 교반된 혼합물을 산성의 수용액에서 일정 시간 동안 교반하고, 솔-젤 법에 의하여 중간합성물을 합성하는 단계; c) stirring the stirred mixture in an acidic aqueous solution for a predetermined time, and synthesizing the intermediate by the sol-gel method; d) 상기 합성 단계에서의 중간합성물을 소정 pH 값을 가지도록 조절 및 용매를 증발시켜 전구체를 합성하는 단계; 및 d) synthesizing the precursor by adjusting the intermediate in the synthesis step to have a predetermined pH value and evaporating the solvent; And e) 상기 전구체를 고온에서 열분해 공정을 통해 최종적으로 전이금속 산화물 양극 활물질을 제조하는 단계를 포함하는 것을 특징으로 하는 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법.e) a method of manufacturing a transition metal oxide cathode active material for a lithium secondary battery, comprising the step of finally preparing a transition metal oxide cathode active material through a pyrolysis process at a high temperature. 제5항에 있어서,The method of claim 5, 상기 단계 a)에서의 M1'는 알칼리금속으로 구성되며 전이금속 층에 존재할 M1'의 중량은 0.5 양극이온 비를 넘지 않는 것을 특징으로 하는 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법.M1 'in the step a) is composed of an alkali metal and the weight of M1' present in the transition metal layer does not exceed 0.5 cathode ion ratio, the method of producing a transition metal oxide cathode active material for a lithium secondary battery. 제5항에 있어서,The method of claim 5, 상기 단계 a)에서 M2', M3' 및 M4' 중 적어도 두 가지의 전이금속원소 중 적어도 하나는 고정된 중량 비를 가지는 것을 특징으로 하는 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법.At least one of the at least two transition metal elements of M2 ', M3' and M4 'in step a) has a fixed weight ratio of the method of manufacturing a transition metal oxide cathode active material for a lithium secondary battery. 제5항에 있어서,The method of claim 5, 상기 단계 b)에서 혼합물과 증류수는 적어도 1:3의 부피 비를 유지하고, 교반 시간은 10시간∼24시간 동안 지속하는 것을 특징으로 하는 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법.The mixture and distilled water in the step b) is maintained at a volume ratio of at least 1: 3, the stirring time is 10 hours to 24 hours, the method for producing a transition metal oxide cathode active material for a lithium secondary battery. 제5항에 있어서,The method of claim 5, 상기 단계 d)에서 상기 솔-젤 법에 의하여 합성시켜 만들어진 중간합성물을 하이드록시(OH) 기를 가지는 시제를 사용함으로써 일정 수준의 pH 값을 가지도록 조절하며, 이후 100℃ 미만의 온도 하에서 충분한 시간과 함께 용매를 증발시켜 전 구체를 합성하는 것을 특징으로 하는 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법.In step d), the intermediate compound synthesized by the sol-gel method is adjusted to have a pH level by using a reagent having a hydroxy (OH) group, and then a sufficient time under a temperature of less than 100 ° C A method for producing a transition metal oxide positive electrode active material for a lithium secondary battery, characterized in that the solvent is evaporated together to synthesize a whole sphere. 제5항에 있어서,The method of claim 5, 상기 단계 e)에서 상기 전구체를 전이금속 산화물로 제조하기 위해 고온에서 열분해 공정을 통해 양극 활물질을 제조함에 있어, 이때의 온도는 700℃ 이하의 온도를 유지해주며, 공기가 주입되어지는 산소 분위기에서 열분해하는 것을 특징으로 하는 리튬2차전지용 전이금속 산화물 양극 활물질의 제조방법.In preparing the positive electrode active material through a pyrolysis process at a high temperature to prepare the precursor as a transition metal oxide in step e), the temperature is maintained below 700 ℃, pyrolysis in an oxygen atmosphere where air is injected Method for producing a transition metal oxide cathode active material for a lithium secondary battery.
KR1020050026443A 2005-03-30 2005-03-30 Method for manufacturing a transition metal oxide positive electrode active material for lithium secondary battery Expired - Fee Related KR100695534B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050026443A KR100695534B1 (en) 2005-03-30 2005-03-30 Method for manufacturing a transition metal oxide positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050026443A KR100695534B1 (en) 2005-03-30 2005-03-30 Method for manufacturing a transition metal oxide positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
KR20060104345A KR20060104345A (en) 2006-10-09
KR100695534B1 true KR100695534B1 (en) 2007-03-14

Family

ID=37634407

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050026443A Expired - Fee Related KR100695534B1 (en) 2005-03-30 2005-03-30 Method for manufacturing a transition metal oxide positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
KR (1) KR100695534B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020064367A (en) * 1999-12-29 2002-08-07 킴벌리-클라크 월드와이드, 인크. Nickel-Rich and Manganese-Rich Quaternary Metal Oxide Materials as Cathodes for Lithium-Ion and Lithium-Ion Polymer Batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020064367A (en) * 1999-12-29 2002-08-07 킴벌리-클라크 월드와이드, 인크. Nickel-Rich and Manganese-Rich Quaternary Metal Oxide Materials as Cathodes for Lithium-Ion and Lithium-Ion Polymer Batteries

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1020020064367

Also Published As

Publication number Publication date
KR20060104345A (en) 2006-10-09

Similar Documents

Publication Publication Date Title
JP4082214B2 (en) Nonaqueous electrolyte secondary battery and its positive electrode active material
EP1724860B1 (en) Positive electrode for non-aqueous electrolytic secondary cell and non-aqueous electrolytic secondary cell
KR100389052B1 (en) Positive electrode active material, preparation method thereof and nonaqueous solvent secondary battery using the same
KR101946012B1 (en) Lithium ion conductor, electrolyte including the same, active material including the same and battery including lithium ion conductor
CN103022455B (en) For the high magnification of lithium battery and the cathode material of high-energy
JP2018116930A (en) Positive electrode active material and battery
KR20120099375A (en) Metal oxide coated positive electrode materials for lithium-based batteries
JP5099168B2 (en) Lithium ion secondary battery
KR20130031373A (en) Active material, process for production of active material, and lithium ion secondary battery
KR20030008704A (en) An active material for a battery and a method of preparing the same
KR20150010556A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and positive electrode and rechargeable lithium battery including the same
KR101762540B1 (en) Positive active material for sodium rechargeable batteries and method of manufacturing the same
JP2001148249A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery
JPWO2018163518A1 (en) Positive electrode active material and battery
JP3260282B2 (en) Non-aqueous electrolyte lithium secondary battery
KR20190076774A (en) Positive electrode active material precursor for rechargable lithium battery and manufacturing method of the same, positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
JP2016039134A (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
WO2023120670A1 (en) Positive electrode active material for secondary batteries, and secondary battery
KR20190077160A (en) Positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery
KR101711221B1 (en) A cathode material for a battery with improved cycle performance at a high current density
JP2002145619A (en) Lithium manganese composite oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing lithium manganese composite oxide
JP2013173632A (en) Lithium-manganese-based composite oxide, positive electrode active material for secondary battery, and secondary battery
KR101196962B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
KR20250053071A (en) Sodium layered oxide, uses thereof and methods of preparation thereof

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20050330

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20060524

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20070223

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20070308

Patent event code: PR07011E01D

PR1002 Payment of registration fee
PG1601 Publication of registration
PR1001 Payment of annual fee
PR1001 Payment of annual fee
FPAY Annual fee payment

Payment date: 20120305

Year of fee payment: 6

PR1001 Payment of annual fee
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 7

PR1001 Payment of annual fee
LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee