KR100657611B1 - Parallel Superconducting Current Limiting System for Transmission and Distribution Lines - Google Patents
Parallel Superconducting Current Limiting System for Transmission and Distribution Lines Download PDFInfo
- Publication number
- KR100657611B1 KR100657611B1 KR1020050020701A KR20050020701A KR100657611B1 KR 100657611 B1 KR100657611 B1 KR 100657611B1 KR 1020050020701 A KR1020050020701 A KR 1020050020701A KR 20050020701 A KR20050020701 A KR 20050020701A KR 100657611 B1 KR100657611 B1 KR 100657611B1
- Authority
- KR
- South Korea
- Prior art keywords
- fault current
- superconducting
- transmission
- superconducting fault
- current limiter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 31
- 238000009826 distribution Methods 0.000 title claims abstract description 24
- 238000011084 recovery Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 5
- 239000002887 superconductor Substances 0.000 claims description 2
- 230000003993 interaction Effects 0.000 abstract description 3
- 238000010791 quenching Methods 0.000 description 16
- 238000000926 separation method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 241000195493 Cryptophyta Species 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
- H02H9/023—Current limitation using superconducting elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H75/00—Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of power reset mechanism
- H01H75/02—Details
- H01H75/04—Reset mechanisms for automatically reclosing a limited number of times
- H01H75/06—Reset mechanisms for automatically reclosing a limited number of times effecting one reclosing action only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
본 발명은 전력계통의 고장전류 저감을 위한 초전도한류시스템에 대한 내용으로서, 초전도한류기의 기본특성과 동작시퀀스 및 전력계통의 자동재폐로와의 상호작용 등을 동시에 고려한 송배전선로용 병렬 초전도한류시스템에 관한 것이다. 초전도한류기는 전형적으로 복구시간(Recovery Time)이 선로 재투입시간(Reclosing Time)보다 길므로 단일 한류기로는 실 계통적용이 불가능하다. 따라서 이러한 문제점을 해결하기 위하여 본 발명에서는 제1차단기와 제1초전도한류기를 직렬로 연결한 제1세트와 제2차단기와 제2초전도한류기를 직렬로 연결한 제2세트의 2개 세트를 병렬로 연결하여 구성하고, 각 세트에 있어서 차단기에 인가되는 전류는 초전도한류기에 의하여 차단 정격전류 이하로 제한되도록 한 송배전선로용 초전도한류시스템을 제공한다.The present invention relates to a superconducting fault current limiting system for reducing the fault current of a power system.A parallel superconducting fault current limiting system for a transmission and distribution line simultaneously considering the basic characteristics of the superconducting fault current limiter and its interaction with the operation sequence and automatic recirculation of the power system. It is about. Superconducting fault current limiters typically have a longer recovery time than the line reclosing time, making a single fault current limiter impossible. Therefore, in order to solve this problem, in the present invention, two sets of the first set connecting the first circuit breaker and the first superconducting current limiter in series and the second set connecting the second circuit breaker and the second superconducting current limiter in series are connected in parallel. A superconducting fault current limiting system for transmission and distribution lines is provided in which the currents applied to the breakers in each set are limited to below the breaking rated current by the superconducting fault current limiter.
초전도한류기, 고장전류, 전력계통, 자동재폐로, 송배전선로 Superconducting fault current limiter, fault current, power system, automatic reclosing line, transmission and distribution line
Description
도 1은 초전도한류기 일반특성을 나타낸 그래프 1 is a graph showing the general characteristics of the superconducting fault current limiter
도 2는 초전도한류기의 유/무에 따른 실효치 고장전류 결과비교 2 is a comparison of the effective fault fault current results with and without superconducting fault current limiter.
도 3a는 초전도한류기의 유/무에 따른 순시치 a상 고장전류 결과비교 3a shows the results of instantaneous phase a fault currents with and without superconducting fault current limiters.
도 3b는 초전도한류기의 유/무에 따른 순시치 b상 고장전류 결과비교 3b shows the results of instantaneous b-phase fault currents with and without superconducting fault current limiters.
도 3c는 초전도한류기의 유/무에 따른 순시치 c상 고장전류 결과비교 Figure 3c is a comparison of the instantaneous c-phase fault current results with or without the superconducting fault current limiter
도 4는 송배전선로용 병렬 초전도한류 시스템의 구성을 나타낸 구조도 4 is a structural diagram showing the configuration of a parallel superconducting current limiting system for transmission and distribution lines
도 5는 자동재폐로시 고장 해소 상태일 때의 본 발명에 따른 초전도한류시스템 동작시퀀스도 5 is a sequence diagram of the superconducting fault current limiting system according to the present invention when the automatic reclosing failure is solved.
도 6은 자동재폐로시 고장 지속 상태일 때의 본 발명에 따른 초전도한류시스템 동작시퀀스도 6 is a sequence diagram of the operation of the superconducting fault current limiting system according to the present invention in the state of continuous failure during automatic reclosing
도 7은 초전도한류기 1대를 선로에 적용한 경우의 고장전류 그래프(고장선로 자동재폐로시 고장이 지속되는 경우) 7 is a graph of fault current when one superconducting fault current limiter is applied to a line (when a fault persists during automatic re-close of a fault line).
도 8은 본 발명에 따른 초전도한류시스템을 선로에 적용한 경우의 고장전류 그래프(고장선로 자동재폐로시 고장이 지속되는 경우) 8 is a graph of fault current when the superconducting fault current limiting system according to the present invention is applied to a line (when a fault persists during automatic reclose of a fault line).
<도면의 주요부분에 대한 부호의 설명> <Description of the symbols for the main parts of the drawings>
IL : 정상상태시 초전도한류기에 흐르는 전류I L : Current flowing to superconducting fault current limiter in steady state
IQ: 초전도 파괴 켄치(Quenching) 상태가 개시되는 임계전류I Q : threshold current at which the superconducting breaking quenching state is initiated
IR: 켄치 상태에서 복구(Recovery) 상태로 복구하는 임계전류I R : Threshold current to recover from quench to recovery
IF: 고장상태시 기기에 흐르는 전류I F : Current flowing through the device in case of fault
tQ: 켄치 상태가 개시되는 시간t Q : time when the quench state is started
tR: 복구 상태가 개시되는 시간t R : time when recovery status is started
t1: 임계전류가 초과하는 시점에서 완전 켄치 상태에 도달할 때까지의 시간t 1 : time to reach full quench state when threshold current is exceeded
t2: 복구 임계전류 도달시점에서 완전 초전도 상태로 복구하는데 걸리는 복구 시간t 2 : Recovery time taken to recover to full superconductivity when the recovery threshold current is reached
Rfinal: 켄치 상태에서의 최종 저항 값R final : Final resistance value in quench state
RQ: 최종 켄치 상태에 도달할 때까지의 켄치 저항R Q : Quench resistance until reaching final quench state
RRe: 복구 상태에서의 저항R Re : Resistance in recovery state
CB1, CB2 : 초전도한류기 직결 차단기 CB1, CB2: Superconducting fault current limiter direct breaker
SFCL1, SFCL2 : 초전도한류기 SFCL1, SFCL2: Superconducting fault current limiter
본 발명은 전력계통의 고장전류 저감을 위한 초전도한류시스템에 대한 내용으로서, 초전도한류기의 기본특성과 동작시퀀스 및 전력계통의 자동재폐로와의 상호작용 등을 동시에 고려한 송배전선로용 병렬 초전도한류시스템에 관한 것이다. 초전도한류시스템은 기본적으로 전력계통의 고장전류문제를 해소하기 위한 하나의 방안이므로, 시스템에 대한 상세한 구성 및 동작원리를 설명하기 전에 현재 국내의 고장전류 문제의 현황을 살펴보면 다음과 같다. The present invention relates to a superconducting fault current limiting system for reducing the fault current of a power system.A parallel superconducting fault current limiting system for a transmission and distribution line simultaneously considering the basic characteristics of the superconducting fault current limiter and its interaction with the operation sequence and automatic recirculation of the power system. It is about. Since the superconducting current limiting system is basically one way to solve the fault current problem of the power system, the current state of the fault current problem in Korea is explained before explaining the detailed configuration and operation principle of the system.
전력계통에서의 고장은 주로 이물접촉, 전력설비고장, 자연재해 등에 의해 발생하는 것으로서 전력계통의 안정적 운전에 매우 큰 영향을 미치는 요소 중 하나이다. 현재 전력계통에서는 이러한 고장의 파급을 방지하기 위해서 다양한 보호시스템을 적용하고 있다. 만약, 계통고장시 이러한 보호시스템이 적절한 대응을 하지 못하는 경우, 고장의 파급이 계통전체로 이어져 결국 북미정전과 같은 계통전체의 대정전이 발생할 가능성이 존재한다. 따라서 계통안정성 등 다양한 관점에서 고장발생시 보호시스템의 정상동작은 매우 중요한 사안이라고 할 수 있다. The failure in the power system is mainly caused by foreign material contact, power equipment failure, natural disaster, etc., and it is one of the factors that greatly affect the stable operation of the power system. The current power system is applying a variety of protection systems to prevent the spread of these failures. If the protection system fails to respond properly in the event of a system breakdown, there is a possibility that the failure spreads to the entire system, resulting in a major system-wide power outage such as North American power failure. Therefore, the normal operation of the protection system in case of failure from various points of view such as system stability is very important.
보호시스템을 이루고 있는 수많은 설비 중 가장 기본적인 것 중 하나가 차단기이다. 고장발생 순간에 고장 지점으로 유입되는 전류를 고장전류라 하는데, 차단기의 정격차단전류는 고장전류의 최대크기 이상이어야 한다. 여기서 정격차단전류는 차단기가 정상적으로 동작하기 위한 최대 전류를 말한다. 만약 계통의 고장전류가 차단기의 정격차단전류를 초과하는 경우, 차단기가 동작하지 못하여 보호시스템이 정상적인 동작을 할 수 없으며 이로 인해 위에서 언급한 바와 같이 계통전체 로 고장이 파급되어 대정전을 유발할 가능성이 존재한다.One of the most basic of the many facilities that make up a protection system is a breaker. The current flowing into the point of failure at the moment of failure is called the fault current, and the rated breaking current of the breaker must be greater than or equal to the maximum magnitude of the fault current. Here the rated breaking current is the maximum current for the circuit breaker to operate normally. If the fault current of the system exceeds the rated breaker current of the breaker, the breaker will not operate and the protection system will not be able to operate normally. As a result, as described above, it is possible that the fault will spread to the entire system and cause a large interruption. exist.
국내 송전계통의 154kV 한전 및 수용가 계통에서 사용되고 있는 차단기 기본정격은 170kV 31.5kA(일부 한전 변전소용 및 수용가설비) 및 50.0kA(대부분 한전 변전소용)이다. 현재 국내 154kV 계통의 고장전류 수준은 대부분 50kA 이하이지만 향후 국내 전력계통은 규모증가와 도심 부하집중으로 인해서 고장전류 문제가 점차 심화될 전망이며, 일부 지역은 이미 고장전류 50kA를 초과하여 임시방편의 다양한 고장전류 저감책을 사용하고 있는 실정이다. 현재 국내계통에서 검토되고 있는 고장전류 대책으로는 (1) 345kV 변전소간 154kV 연계선로를 각각 분리하여 시행, (2)모선을 분리하여 시행(모선의 각 Section에 차단기(CB) 설치), (3) 직렬리액터의 설치, (4) 대용량 차단기 적용(345kV에 대해서는 50kA 또는 63kA의 용량, 154kV에 대해서는 50kA의 용량 적용)과 같은 대책들을 들 수 있는데, 실 계통적용 시에는 경제성, 계통신뢰도 및 현장여건 등을 고려하여 선택적으로 추진되어야 할 것이다. The basic ratings of breakers used in the 154kV KEPCO and customer system of the Korean transmission system are 170kV 31.5kA (for some KEPCO substations and consumer facilities) and 50.0kA (mostly for KEPCO substations). Currently, the fault current level of the domestic 154kV system is mostly below 50kA, but in the future, the current problem of the domestic power system is expected to intensify due to the increase in size and the load concentration in the city, and some areas have already exceeded the fault current of 50kA. Fault current reduction measures are being used. Current countermeasures for fault currents currently under consideration in domestic systems include (1) separate 154kV interconnection lines between 345kV substations, and (2) separate buses (install breakers (CB) in each section of the bus), (3 (4) Measures such as installation of series reactor, (4) application of large capacity breaker (capacity of 50kA or 63kA for 345kV, capacity of 50kA for 154kV), etc. It should be promoted selectively in consideration of the
상기 대안 중에서 현재 국내 계통에서는 주로 고장전류 저감책으로서 모선분리 또는 송전선로 개방운전 등을 채택하고 있으나, 이러한 방안들은 계통신뢰도 및 계통안정도를 저하시킨다는 단점을 갖는 임시방편적인 방법이며 향후 이를 대체할 방안을 강구 중에 있다. 현재 가장 유력한 고장전류 저감책은 차단기를 교체함으로써 차단용량을 증대시키는 방안이지만, 비용이 많이 소요된다는 단점이 있으며, 또한 이는 근본적인 고장전류 저감책이라고 말할 수도 없다. 참고로, 2004년 6월 현재 국내계통의 변전소 모선분리 및 송전선로 개방운전(연계선로 분리 시행) 현황을 살펴보면 표 1과 같다.Among the alternatives, the current system adopts main circuit separation or transmission line opening operation as a measure of fault current, but these measures are temporary measures that have the disadvantage of reducing system reliability and system stability. Is in the process of making it. Currently, the most effective fault current reduction measure is to increase the breaking capacity by replacing the breaker, but it has a disadvantage of being expensive, and this cannot be said to be a fundamental fault current reduction measure. For reference, as of June 2004, Table 1 shows the current status of substation busbar separation and transmission line open operation in Korea.
[표 1]변전소 모선분리 및 송전선로 개방 운전 현황[Table 1] Current Status of Substation Busbar Separation and Transmission Line Opening Operation
이처럼 고장전류 문제가 심화되고 있는 시점에서 대두되고 있는 고장전류 저감책 중의 하나가 초전도한류기인데, 본 발명은 이러한 초전도한류기를 실제 계통의 운영과 고유특성을 고려하여 송배전선로에 적용하기 위한 현실적인 초전도한류시스템을 제안하였다.One of the measures to reduce the fault current that has emerged at the time of the fault current problem is intensifying, the present invention is a realistic superconductor for applying such a superconducting fault current limiter to the transmission and distribution line in consideration of the operation and the unique characteristics of the actual system. The Korean Wave System is proposed.
종래의 한류시스템 관련 특허는 한류기제작과 관련된 사항 혹은 차단기에 상전도저항을 단순하게 부가한 방식 등에 관련된 내용이다. 본 발명과 같이 초전도한류기의 물리적인 고유특성과 실 전력계통의 기본 특성을 동시에 고려하여 송배전선로에 적용하기 위한 한류시스템을 발명한 사례는 아직 보고된 바 없다. Conventional current-limiting patents are related to the manufacture of current-limiting devices, or the method of simply adding a phase conduction resistor to a circuit breaker. As mentioned in the present invention, there has been no case of inventing a current-limiting system to be applied to a transmission and distribution line considering the physical inherent characteristics of the superconducting fault current limiter and the basic characteristics of the real power system at the same time.
전력수요의 지속적인 증가에 따른 발전단과 송배전망의 증강으로 현재 전력계통에서 고장전류가 차단기의 차단용량을 초과하는 등 심각한 문제점으로 대두되고 있다. 실 계통에서 고장전류를 감소시키기 위한 유력한 방안으로서 초전도한류기가 제안되고 있으며, 현재 실 계통 적용 이전의 초보단계로서 Prototype 초전도한류기가 개발된 상태이다. 그러나 미래의 기술발전을 고려하더라도, 초전도한류 기는 근본적으로 고장전류의 한류 이후에 초전도상태로의 복구시간이 차단기의 재투입시간 0.3초보다는 길기 때문에 초전도한류기를 단독으로 송전선로에 적용하는 것은 불가능하다. Due to the continuous increase in power demand, power generation stages and transmission and distribution networks are becoming more serious problems such as fault currents exceeding the breaker capacity of breakers in power systems. A superconducting fault current limiter has been proposed as a viable solution for reducing fault currents in real systems, and a prototype superconducting fault current limiter has been developed as a first step before the actual system application. However, even considering future technological developments, it is impossible to apply the superconducting fault current limiter solely to the transmission line since the recovery time to the superconducting state after the fault current of the fault current is longer than 0.3 sec. .
전력계통에 초전도한류기를 적용하는 경우, 초기 고장에 의해 초전도한류기가 정상 동작하여 켄치되고, 계통보호시스템에 의해서 고장발생 이후 6cycle 이내에 고장선로가 개방하게 된다. 이와 동시에 초전도한류기에는 고장전류가 흐르지 않게 되며 복구상태가 된다. 또한 고장선로 개방 이후 0.3초가 되는 시점에 전력계통에서 자동재폐로 동작을 하여 고장선로를 재투입하게 된다.When the superconducting fault current limiter is applied to the power system, the superconducting fault current limiter is quenched by normal operation due to the initial failure, and the fault line is opened within 6 cycles after the failure by the grid protection system. At the same time, no fault current flows through the superconducting fault current limiter, and the state is restored. Also, 0.3 seconds after the fault line is opened, the system automatically reopens the fault line and re-inserts the fault line.
고장선로 재투입시 만약 고장이 지속되고 있으면 고장선로를 다시 6 cycle 이내에 개방하며, 복구상태의 초전도한류기는 고장선로가 재투입된 6 cycle동안 다시 고장전류를 통전해야 한다. 현재 개발 중인 초전도한류기의 켄치지속가능 시간과 고장전류의 2회 연속 통전시 정상동작 가능성 등에 대한 명확한 데이터는 미흡한 실정이므로, 초전도한류기 자체의 열용량 등을 감안할 때, 고장전류의 2회 연속 통전은 회피하는 것이 바람직하다.When re-entering the fault line, if the fault persists, the fault line is opened again within 6 cycles, and the superconducting fault current limiter in the restored state must energize the fault current again for 6 cycles when the fault line is reloaded. Clear data on the quench lasting time of the superconducting fault current limiter currently under development and the possibility of normal operation when two consecutive energizations of the fault current are insufficient is insufficient. Therefore, considering the heat capacity of the superconducting fault current limiter itself, two consecutive energizations of the fault current are performed. Is preferably avoided.
고장선로 재투입시 만약 고장이 제거된 상태의 경우에는 선로개방 없이 정상운전을 하게 된다. 이 경우라 하더라도 선로의 재투입으로 인하여 복구 과정에 있던 초전도한류기에 지속적인 부하전류가 흐르게 되는데, 초전도한류기는 켄치저항을 유지하고 있는 상태이며 이에 따라 수 초(초전도한류기 복귀시간)동안 켄치저항에 의한 열이 발생될 것으로 예상된다. 결국, 초전도한류기의 냉각능력 또는 열용량을 초과한 열발생에 의해서 초전도한류기가 파손되거나, 혹은 복귀 과정에 있던 초전도한류기가 정상적으로 복구되지 않을 가능성이 존재한다. 또한, 계통운영측면에서 보면 초전도한류기의 복구 과정 동안 한류저항에 의해 부하전류가 제한되어 정상상태보다 선로조류가 줄어들게 된다. 이러한 경우, 인근 선로에 우회조류가 흐르게 되어 선로과부하를 발생시킬 가능성 역시 내포하고 있다.When re-entering the fault line, if the fault is removed, normal operation is performed without opening the line. Even in this case, a continuous load current flows to the superconducting fault current limiter in the recovery process due to the re-entry of the line.The superconducting fault current limiter maintains the quench resistance, and thus the quench resistance is maintained for several seconds (return time of the superconducting fault current limiter). Heat is expected to be generated. As a result, there is a possibility that the superconducting fault current limiter is damaged or the superconducting fault current limiter which is in the process of returning is not normally restored by the heat generation exceeding the cooling capacity or the heat capacity of the superconducting fault current limiter. In addition, in terms of system operation, the load current is limited by the current-limiting resistor during the recovery process of the superconducting fault current limiter, which reduces the line algae than the normal state. In this case, there is also the possibility of detour algae flowing in nearby tracks, which can cause overloading.
이처럼 현재로서는 초전도한류기를 차단기에 직렬 연결하여 단독으로 적용하는 경우, 자동재폐로시 고장지속여부에 관계없이 문제점이 발생할 여지가 있다. 최악의 경우, 송전선로에 적용된 초전도한류기가 정상동작을 하지 못하고 파손된다면 고장전류가 저감되지 않고 차단기의 정격을 초과하여 차단기가 정상동작을 못하게 될 가능성도 있다.As such, if the superconducting fault current limiter is connected to the circuit breaker in series and applied alone, there is a possibility that a problem may occur regardless of whether the failure continues during automatic reclosing. In the worst case, if the superconducting fault current limiter applied to the transmission line fails to operate normally, the fault current may not be reduced and the circuit breaker may not operate normally due to exceeding the breaker rating.
본 발명에서는 이와 같은 문제점을 해결하기 위하여 초전도한류기의 기본특성과 동작 시퀀스 및 전력계통의 자동재폐로 동작과의 상호작용 등을 동시에 고려한 송배전선로용 병렬 초전도 한류시스템을 제공한다. 즉, 초전도한류기의 고유특성을 감안하여 실 전력계통의 선로용으로 적용할 수 있는 초전도한류시스템을 발명하였다.The present invention provides a parallel superconducting current limiting system for a transmission and distribution line simultaneously considering the basic characteristics of the superconducting fault current limiter, the interaction with the operation sequence and the automatic reclose operation of the power system. That is, in consideration of the inherent characteristics of the superconducting fault current limiter, the superconducting current limiting system which can be applied to the line of the real power system was invented.
제안된 선로용 초전도한류시스템의 상세 구성 및 동작원리의 이해를 돕기 위해서 초전도한류기의 기본 응동특성 및 효과를 살펴보면 다음과 같다.In order to understand the detailed configuration and operation principle of the proposed superconducting fault current limiting system, the basic response characteristics and effects of the superconducting fault current limiter are as follows.
도 1에서 나타낸 바와 같이 초전도한류기(SFCL, Superconducting Fault Current Limiter)는 계통고장으로 인해서 고장전류가 발생되어 켄치(Quenching) 개 시전류(즉, 임계전류) IQ를 넘는 경우, 초전도상태가 파괴되어 켄치 상태가 되며, 초전도기기의 저항(R_Q)은 전류, 온도, 자기장 등의 함수로서 증가하다가 시정수 t1이 지난 후에 최종 저항값인 R_final을 갖게 된다. 또한 특히 이물접촉 등 고장의 경우 계통고장이 자연적으로 해소된 후 고장전류가 감소하여 복구(Recovery) 개시전류 IR 이하가 되면 초전도한류기는 복구 상태가 되어 일정 시정수 t2 후에는 다시 초전도상태로 복구하게 된다.As shown in FIG. 1, a superconducting fault current limiter (SFCL) is a superconducting fault current when the fault current is generated due to system failure and exceeds the quench starting current (i.e., the critical current) I Q. It is a quench condition is, resistance (R_ Q) of the superconducting device will have a current, and temperature, while the final resistance value increases as a function of magnetic field, such as after the last time constant t 1 can R_ final. In particular, in case of a failure such as foreign matter contact, the superconducting fault current limiter becomes a recovery state when the fault current decreases after the system fault is naturally resolved and becomes below the recovery starting current I R , and then recovers to the superconducting state again after a certain time constant t2. Done.
이러한 초전도한류기는 전력계통 내에서 고장발생시 초전도상태가 파괴되어 켄치 저항에 의하여 고장전류를 저감시키는 효과를 갖는다. 도 2 및 3은 이러한 고장전류 저감효과를 나타낸 그래프로서 초전도한류기를 적용하지 않을 때(NO_SFCL)의 고장전류가 50kA 이상인 반면 초전도한류기를 적용할 때(SFCL)는 고장전류가 10kA이하로 감소함을 보여 주고 있다. Such a superconducting fault current limiter breaks the superconducting state when a fault occurs in the power system, thereby reducing the fault current by the quench resistance. 2 and 3 are graphs showing the effect of reducing the fault current, and when the superconducting fault current limiter is not applied (NO_SFCL), the fault current is 50 kA or more, whereas when the superconducting fault current limiter (SFCL) is applied, the fault current is reduced to 10 kA or less. Is showing.
도4는 본 발명에 따라 상기와 같은 초전도한류기를 사용하여 송배전 선로에 적용한 송배전선로용 초전도한류 시스템을 나타낸 것으로서 초전도한류기와 직렬 연결된 차단기 세트 2대를 병렬로 구성한 초전도한류시스템이다. 본 시스템은 각각의 초전도한류기에 연결되어 있는 차단기 중 하나는 상시 투입되고, 나머지 하나는 상시 개방하여 운전된다. 본 초전도한류시스템이 송배전선로에 연결된 실 전력계통에서 고장이 발생될 경우, 고장전류가 발생되더라도 상시투입 되어있는 초전도한류기1(SFCL1)이 켄치(Quench)동작하여 고장전류가 차단용량 이하로 제한되어 차단기1(CB1)은 성공적으로 작동되어 개방되며 전류가 흐르지 않는 상태에서 SFCL1 은 복구과정에 들어가게 된다. 이후 시스템 제어 수단에 의하여 미리 설정된 자동 재폐로 시간에 도달되면 상시개방 되어있던 차단기2(CB2)가 투입된다. CB1의 개방을 유발한 고장원인이 이물 접축 등의 일시적인 것으로서 재폐로시점에 그 원인이 해소되었다면 초전도한류기2(SFCL 2)의 상태는 초전도상태로 지속되어 차단기2(CB2)가 폐쇄 상태로 정상 운전된다. 만일 재폐로시점에 고장원인이 해소되지 않고 지속된다면 고장전류에 의해 SFCL2가 동작하고 CB2가 성공적으로 작동하여 개방되고, 이후 SFCL2는 복구 과정을 거치게 된다. 시스템제어 수단은 연속적인 자동 재폐로를 1회로 제한하여 CB2가 개방될 때 영구고장으로 판단하여 다시 CB1에 의한 자동재폐로를 시도하지 않도록 할 수 있다. 또는 필요에 따라 자동 재폐로를 재차 허용하여 이미 복구과정을 완료한 SFCL1이 직렬 연결된 CB1에 의하여 선로의 재폐로를 시도할 수도 있다.4 is a superconducting fault current limiting system for a transmission and distribution line applied to a transmission and distribution line using the superconducting fault current limiter according to the present invention, and is a superconducting fault current limiting system including two sets of circuit breakers connected in series with the superconducting fault current limiter. In this system, one of the breakers connected to each of the superconducting fault current limiters is operated at all times, and the other is operated at all times. If this superconducting fault current system fails in the real power system connected to the transmission and distribution line, even if a fault current occurs, the superconducting fault limiter 1 (SFCL1), which is always turned on, is quenched to limit the fault current to below the breaking capacity. As a result, breaker 1 (CB1) is successfully activated and opened, and SFCL1 enters the recovery process when no current flows. After that, when the automatic reclosing time set by the system control means is reached, the breaker 2 (CB2) normally opened is input. If the failure cause that caused the opening of CB1 is temporary, such as a foreign body contact, and the cause is solved at the time of reclosing, the state of superconducting fault current limiter 2 (SFCL 2) is maintained in superconducting state, and breaker 2 (CB2) is normally closed. Is driven. If the cause of failure remains unresolved at the time of reclosing, SFCL2 is operated by the fault current and CB2 is operated successfully and then opened, and SFCL2 is then recovered. The system control means can limit the continuous automatic reclosing to one time so that it can be regarded as a permanent failure when the CB2 is opened, so as not to attempt automatic reclosing by the CB1 again. Alternatively, if necessary, automatic reclosing may be allowed again, and SFCL1, which has already completed the recovery process, may attempt to reclose the line by CB1 connected in series.
도5는 자동 재폐로시 고장원인이 해소된 경우의 본 발명의 초전도한류시스템의 동작 시퀀스의 예를 나타낸 것이며, 그 시퀀스는 다음과 같다.Fig. 5 shows an example of the operation sequence of the superconducting fault current limiting system of the present invention when the cause of failure in automatic reclosing is solved. The sequence is as follows.
○ 정상상태 : CB 1 Close, CB 2 Open ○ Normal status:
○ 고장발생(t=0.2초) : SFCL 1 동작(Quench) ○ Failure (t = 0.2 seconds):
○ 고장선로 개방(t=0.3초) : CB 1 Open → SFCL 1 Recovery ○ Opening the fault line (t = 0.3 sec):
○ 고장 선로 자동 재폐로(t=0.6초) : CB 1 Open 지속, CB 2 Close ○ Automatic re-closing of fault line (t = 0.6 sec):
○ 고장제거시 (t=0.6초 이후) ○ When removing faults (after t = 0.6 seconds)
정상운전, SFCL 2 부동작(초전도상태) → 정상운전 Normal operation,
도6은 자동재폐로 시점에서 고장이 지속되는 경우의 본 발명의 초전도한류시스템의 동작 시퀀스의 예를 나타낸 것이며, 그 시퀀스는 다음과 같다.Fig. 6 shows an example of the operation sequence of the superconducting fault current limiting system of the present invention when the failure continues at the time of automatic reopening. The sequence is as follows.
○ 정상상태 : CB 1 Close, CB 2 Open ○ Normal status:
○ 고장발생(t=0.2초) : SFCL 1 동작(Quench) ○ Failure (t = 0.2 seconds):
○ 고장선로 개방(t=0.3초) : CB 1 Open → SFCL 1 Recovery ○ Opening the fault line (t = 0.3 sec):
○ 고장 선로 자동 재폐로(t=0.6초) : CB 1 Open 지속, CB 2 Close ○ Automatic re-closing of fault line (t = 0.6 sec):
○ 고장지속시 (t=0.6초) : SFCL 2 동작(Quench) ○ Fault duration (t = 0.6 second):
○ 고장지속시 (t=0.7초) ○ Fault duration (t = 0.7 sec)
고장선로 재개방(CB 2 Open) → SFCL 2 복구(Recovery) Reopen the fault line (
고장선로 자동재폐로시 고장이 제거되지 않고 지속되는 경우, 본 발명에서 제안하는 초전도한류시스템을 적용하는 경우와 초전도한류기 1대를 선로에 적용하는 일반적인 경우에 대한 고장해석 결과를 도시하여 비교하면 도 7 및 8과 같다. 도7에서 보는 바와 같이, 고장선로 자동재폐로시 고장이 지속되고 있다면 초전도한류기 1대를 적용한 경우는 재폐로 시점인 0.6초에서 고장전류가 초전도한류기에 인가될 때 냉각능력 상실이나 기타 소자 결함 발생에 의하여 초전도한류기 자체고장이 발생하여 정상동작을 하지 못하게 되고 이로 인하여 차단기에 흐르는 고장전류가 차단기 용량인 50kA를 초과하게 되어 차단기가 부동작하고, 고장이 전체 계통에 파급된다. 그러나 도8에서 보는 바와 같이 본 발명에 의한 초전도한류 시스템을 적용한 경우는 자동재폐로시 고장이 지속되어도 고장전류가 12kA내외로 제한되므로 선로를 재개방해야 하는 시점인 0.7초에 차단기2(CB2)가 성공적으로 동작하여 정상적인 보호동작을 할 수 있음을 알 수 있다. When failures are not eliminated during automatic reclose of the fault line, the results of the fault analysis for the case of applying the superconducting fault current limit system proposed by the present invention and the general case of applying one superconducting fault limiter to the line are shown and compared. 7 and 8 are the same. As shown in Fig. 7, if the failure continues during automatic reclosing of the fault line, if one superconducting fault current limiter is applied, a loss of cooling capacity or other element defects occurs when the fault current is applied to the superconducting fault current at 0.6 seconds, which is the time of reclosing. Occurrence of the superconducting fault current limiter itself causes the failure of normal operation, which causes the fault current flowing through the breaker to exceed 50kA, which is the breaker capacity, causing the breaker to malfunction and spreading the fault to the entire system. However, as shown in FIG. 8, when the superconducting fault current limiting system according to the present invention is applied, the fault current is limited to about 12 kA even when the failure is continued during automatic reclosing, so that the breaker 2 (CB2) at 0.7 seconds is required to reopen the line. It can be seen that normal operation can be performed by successfully operating.
상기한 바와 같이 본 발명은 실 전력계통의 송배전선로에 초전도한류기를 적용하기 위해서 반드시 해결해야 하는 초전도한류기의 복구시간 지연에 따른 문제점을 해결한 초전도한류시스템으로서, 실 전력계통의 고장상태와 재투입상태를 고려한 현실적인 적용방안이다. As described above, the present invention is a superconducting fault current limiting system which solves the problems caused by the delay of the recovery time of the superconducting fault current limiter, which must be solved in order to apply the superconducting fault current limiter to the transmission and distribution line of the actual electric power system. It is a realistic application method considering the input state.
초전도한류기의 고유특성 및 전력계통의 자동재폐로 동작을 고려할 때, 단일 초전도한류기로 송배전선로에 적용하는 것은 대단히 위험하다. 본 발명은 이러한 문제점을 해결하고 실제 전력계통의 송배전선로용으로 초전도한류기를 적용하기 위한 것이다. 초전도한류기를 송배전선로에 적용하는 경우 고장전류를 차단용량 이하로 감소시킴으로서 고장발생시에 전력계통의 안정성을 확보하여, 북미정전과 같은 전체 전력계통의 대정전 사고를 미연에 방지할 수 있다. 이는 현재 고장전류를 저감시키기 위하여 적용하고 있는 기설선로 분리운전, 모선분리 운영 등에 따른 경제적 비효율성을 개선함은 물론, 대정전을 예방함으로써 천문학적인 경제, 사회적 비용을 저감하는 효과를 나타낸다.Considering the inherent characteristics of the superconducting fault current limiter and the automatic reclosing operation of the power system, it is very dangerous to apply it to a transmission and distribution line as a single superconducting fault current limiter. The present invention is to solve this problem and to apply a superconducting fault current limiter for the transmission and distribution line of the actual power system. When the superconducting fault current limiter is applied to the transmission and distribution line, by reducing the fault current to below the breaking capacity, it is possible to secure the stability of the power system in the event of a failure, thereby preventing a large power failure of the entire power system such as North American power failure. This not only improves the economic inefficiency due to the existing line separation operation and the bus separation operation that is applied to reduce the fault current, but also has the effect of reducing the astronomical economic and social costs by preventing the blackout.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050020701A KR100657611B1 (en) | 2005-03-11 | 2005-03-11 | Parallel Superconducting Current Limiting System for Transmission and Distribution Lines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050020701A KR100657611B1 (en) | 2005-03-11 | 2005-03-11 | Parallel Superconducting Current Limiting System for Transmission and Distribution Lines |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060099321A KR20060099321A (en) | 2006-09-19 |
KR100657611B1 true KR100657611B1 (en) | 2006-12-19 |
Family
ID=37630604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050020701A Expired - Fee Related KR100657611B1 (en) | 2005-03-11 | 2005-03-11 | Parallel Superconducting Current Limiting System for Transmission and Distribution Lines |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100657611B1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100833691B1 (en) * | 2006-11-30 | 2008-05-29 | 한국전기연구원 | Power supply system and method by distributed distribution switchgear |
KR101050605B1 (en) * | 2009-08-07 | 2011-07-19 | 성균관대학교산학협력단 | Reclosing control system considering superconducting fault current limiter and its control method |
KR102368705B1 (en) | 2015-10-29 | 2022-03-02 | 한국전기연구원 | Determination system of the superconducting fault current limiter operation |
FR3056033B1 (en) * | 2016-09-14 | 2018-10-12 | Supergrid Institute | PROTECTION OF HVDC NETWORK |
CN113964855A (en) * | 2021-09-24 | 2022-01-21 | 中国电力科学研究院有限公司 | DC side fault ride-through method of flexible HVDC transmission system and HVDC transmission system |
CN114844021B (en) * | 2022-04-14 | 2025-06-20 | 西安交通大学 | A fast recovery resistor type superconducting current limiter and its working method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR890009040A (en) * | 1987-11-09 | 1989-07-13 | 아오이 죠이찌 | SUPERCONDUCTING CURRENT LIMITING APPARATUS |
JPH05328598A (en) * | 1992-05-18 | 1993-12-10 | Yaskawa Electric Corp | Short protector for distribution line |
JPH0970138A (en) * | 1995-06-20 | 1997-03-11 | Hitachi Ltd | Current limiting device |
KR20010086824A (en) * | 2000-03-03 | 2001-09-15 | 이종훈 | Device for noninductively limiting fault-current with superconductor |
-
2005
- 2005-03-11 KR KR1020050020701A patent/KR100657611B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR890009040A (en) * | 1987-11-09 | 1989-07-13 | 아오이 죠이찌 | SUPERCONDUCTING CURRENT LIMITING APPARATUS |
JPH05328598A (en) * | 1992-05-18 | 1993-12-10 | Yaskawa Electric Corp | Short protector for distribution line |
JPH0970138A (en) * | 1995-06-20 | 1997-03-11 | Hitachi Ltd | Current limiting device |
KR20010086824A (en) * | 2000-03-03 | 2001-09-15 | 이종훈 | Device for noninductively limiting fault-current with superconductor |
Also Published As
Publication number | Publication date |
---|---|
KR20060099321A (en) | 2006-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11264794B2 (en) | Series compensator and control method | |
CN1032835C (en) | Method and device for power system protection | |
Chabanloo et al. | Overcurrent relays coordination considering transient behaviour of fault current limiter and distributed generation in distribution power network | |
US6687573B2 (en) | Recloser and fuse coordination scheme | |
Froehlich et al. | Controlled closing on shunt reactor compensated transmission lines. I. Closing control device development | |
Ye et al. | System studies of the superconducting fault current limiter in electrical distribution grids | |
CN106159913B (en) | Multi-terminal flexible direct current system direct current fault protecting method | |
CN110350651A (en) | The prepared auto restart faulty action preventing method of 110kV single busbar failure | |
CN112152214A (en) | Method and system for restarting distributed power flow controller in two-wire operation mode | |
KR100657611B1 (en) | Parallel Superconducting Current Limiting System for Transmission and Distribution Lines | |
CN204947582U (en) | Loop is distributed in the jumping of 220kV failure protection connection rationally | |
KR100681485B1 (en) | Parallel Superconducting Current Limiting System for Substation Bus Placement | |
Ntshiba et al. | Digital Implementation of an Auto-Reclose Protection Scheme for a Distribution System | |
Woodley et al. | Solid-state 13-kV distribution class circuit breaker: planning, development and demonstration | |
CN110535141A (en) | A kind of current-limiting type loop network control device and control method | |
CN109412256B (en) | Standby power supply switching method and device | |
Kim et al. | Study on selection of SFCL's impedance for protection coordination with overcurrent relay in a distribution system | |
CN204349424U (en) | Microcomputer transformer backup protection loop | |
CN107666142A (en) | The input strategy of the automatic throw-in equipment of emergency power supply of power distribution network unconditional crank | |
CN107147081A (en) | A logic optimization method for transformer steady-state ratio differential protection | |
KR100635480B1 (en) | Protection Method of Small-scale Distributed Power Lines Considering Reclosure Operation Characteristics | |
CN112467703B (en) | Bus-tie dead zone protection device suitable for 110 kilovolt network characteristics | |
CN214204936U (en) | A 110kV substation based on a new bridge type high temperature superconducting current limiter | |
KR100735821B1 (en) | Resistance superconducting current-limiting system for power distribution system for parallel application with high-capacity transformer | |
CN204886155U (en) | A 220kV Failure Protection Interconnection Optimal Configuration Circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20050311 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20060925 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20061129 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20061207 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20061208 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20091208 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20101207 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20101207 Start annual number: 5 End annual number: 5 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |