KR100656014B1 - Method for producing platinum catalyst supported on mesoporous molecular sieve for removing rare nitrogen oxides - Google Patents
Method for producing platinum catalyst supported on mesoporous molecular sieve for removing rare nitrogen oxides Download PDFInfo
- Publication number
- KR100656014B1 KR100656014B1 KR1020050004004A KR20050004004A KR100656014B1 KR 100656014 B1 KR100656014 B1 KR 100656014B1 KR 1020050004004 A KR1020050004004 A KR 1020050004004A KR 20050004004 A KR20050004004 A KR 20050004004A KR 100656014 B1 KR100656014 B1 KR 100656014B1
- Authority
- KR
- South Korea
- Prior art keywords
- molecular sieve
- mesoporous molecular
- platinum
- catalyst
- mesoporous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 82
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 76
- 239000003054 catalyst Substances 0.000 title claims abstract description 62
- 229910052697 platinum Inorganic materials 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title abstract description 119
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 27
- 229910017053 inorganic salt Inorganic materials 0.000 claims abstract description 17
- 239000012266 salt solution Substances 0.000 claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 239000007864 aqueous solution Substances 0.000 claims description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 6
- 229910052707 ruthenium Inorganic materials 0.000 claims description 6
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 5
- 239000012153 distilled water Substances 0.000 claims description 5
- 239000010948 rhodium Substances 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- 239000011135 tin Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000011572 manganese Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 229910000510 noble metal Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 21
- 238000006243 chemical reaction Methods 0.000 abstract description 19
- 150000002739 metals Chemical class 0.000 abstract description 8
- 239000003638 chemical reducing agent Substances 0.000 description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 239000010457 zeolite Substances 0.000 description 8
- 229910021536 Zeolite Inorganic materials 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 231100001135 endothelial toxicity Toxicity 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
본 발명은 희박 질소산화물 제거용 메조포러스 분자체 담지 백금계 촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 담체로서 메조포러스 분자체를 합성하고, 무기염 수용액에 상기 메조포러스 분자체를 침지하고 pH를 조절한 후 오븐에서 반응시킨 후 세척, 여과 및 건조한 후 소성시키고, 여기에 백금(Pt)을 도입함으로써 우수한 수열안정성을 갖는 메조포러스 분자체에 다양한 금속이 활성금속성분으로서 도입되어 종래의 제올라이트계 촉매에 비하여 넓은 활성온도창 및 높은 질소산화물 제거 활성을 갖는 메조포러스 분자체 담지 백금계 촉매를 제조할 수 있다The present invention relates to a method for preparing a mesoporous molecular sieve supported platinum-based catalyst for removing lean nitrogen oxide, and more particularly, to synthesize a mesoporous molecular sieve as a carrier, and to immerse the mesoporous molecular sieve in an aqueous inorganic salt solution and After the reaction was carried out in an oven and then washed, filtered and dried and calcined, platinum was introduced into the mesoporous molecular sieve having excellent hydrothermal stability by introducing platinum (Pt), thereby introducing various metals as active metal components. Compared with the catalyst, a mesoporous molecular sieve supported platinum-based catalyst having a wide activity temperature window and high nitrogen oxide removal activity can be prepared.
메조포러스, 백금, 촉매Mesoporous, platinum, catalyst
Description
도 1은 후염처리를 수행한 MCM-41를 500 ℃, 10 부피% H2O 조건(W/F = 0.012 g-촉매·시간/리터)에서 12시간 동안 처리(a), 후염처리를 수행한 MCM-41을 100 ℃의 끓는물에서 9시간 동안 처리(b), 후염처리를 수행한 MCM-48을 500 ℃, 10 부피% H2O 조건(W/F = 0.012 g-촉매·시간/리터)에서 12시간 동안 처리(c), 후염처리를 수행한 MCM-48을 100 ℃의 끓는물에서 9시간 동안 처리(d)하였을 경우의 메조포러스 분자체의 구조를 나타내는 X선 회절분석결과이다.1 shows that MCM-41 subjected to post-treatment was subjected to treatment (a) and post-treatment at 500 ° C. for 10 hours under 10 vol.% H 2 O conditions (W / F = 0.012 g-catalyst · hour / liter). Treatment of MCM-41 with boiling water at 100 ° C. for 9 hours (b), MCM-48 subjected to post-treatment at 500 ° C., 10 vol.% H 2 O conditions (W / F = 0.012 g-catalyst, hour / liter X-ray diffraction analysis shows the structure of the mesoporous molecular sieve when MCM-48 treated with c) and post-treatment for 12 h in () was treated for 9 h in 100 ° C. boiling water.
도 2는 본 발명에서의 후염처리를 수행한 메조포러스 분자체(MCM-41 및 MCM-48), 종래의 메조포러스 분자체(KIT-1 및 SBA-15) 및 제올라이트 ZSM-5에 백금을 담지한 촉매의 희박 질소산화물 제거 성능을 나타내는 그래프이다.FIG. 2 shows platinum supported on mesoporous molecular sieves (MCM-41 and MCM-48), conventional mesoporous molecular sieves (KIT-1 and SBA-15) and zeolite ZSM-5 subjected to post-treatment in the present invention. It is a graph showing the lean nitrogen oxide removal performance of one catalyst.
도 3은 본 발명에서의 후염처리를 수행한 메조포러스 분자체[MCM-41(a), MCM-48(b)]와 종래의 메조포러스 분자체[KIT-1(c), SBA-15(d)]에 백금과 조촉매로서 알루미늄을 첨가한 촉매의 희박 질소산화물 제거 성능을 나타낸 그래프이다.3 is a mesoporous molecular sieve [MCM-41 (a), MCM-48 (b)] subjected to post-treatment in the present invention, and a conventional mesoporous molecular sieve [KIT-1 (c), SBA-15 ( d)] is a graph showing the lean nitrogen oxide removal performance of a catalyst in which aluminum is added as platinum and a promoter.
도 4는 본 발명에서의 후염처리를 수행한 메조포러스 분자체[MCM-41(a), MCM-48(b)]와 종래의 메조포러스 분자체[KIT-1(c), SBA-15(d)]에 백금과 조촉매로서 루테늄을 첨가한 촉매의 희박 질소산화물 제거 성능을 나타낸 그래프이다.4 is a mesoporous molecular sieve [MCM-41 (a), MCM-48 (b)] subjected to post-treatment in the present invention, and a conventional mesoporous molecular sieve [KIT-1 (c), SBA-15 ( d)] is a graph showing the lean NOx removal performance of a catalyst added with ruthenium as a platinum and a promoter.
도 5는 본 발명에서의 후염처리를 수행한 메조포러스 분자체(MCM-48)에 백금 및 루테늄을 담지한 촉매를 사용하고 환원제로서 도데칸 및 프로필렌을 사용한 경우의 희박 질소산화물 제거 성능을 나타낸 그래프이다.5 is a graph showing the lean nitrogen oxide removal performance when using a catalyst carrying platinum and ruthenium in a mesoporous molecular sieve (MCM-48) subjected to post-treatment in the present invention and using dodecane and propylene as a reducing agent. to be.
본 발명은 희박 질소산화물 제거용 메조포러스 분자체 담지 백금계 촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 담체로서 메조포러스 분자체를 합성하고, 무기염 수용액에 상기 메조포러스 분자체를 침지하고 pH를 조절한 후 오븐에서 반응시킨 후 세척, 여과 및 건조한 후 소성시키고, 여기에 백금(Pt)을 도입함으로써 우수한 수열안정성을 갖는 메조포러스 분자체에 다양한 금속이 활성금속성분으로서 도입되어 종래의 제올라이트계 촉매에 비하여 넓은 활성온도창 및 높은 질소산화물 제거 활성을 갖는 메조포러스 분자체 담지 백금계 촉매를 제조할 수 있다.The present invention relates to a method for preparing a mesoporous molecular sieve supported platinum-based catalyst for removing lean nitrogen oxide, and more particularly, to synthesize a mesoporous molecular sieve as a carrier, and to immerse the mesoporous molecular sieve in an aqueous inorganic salt solution and After the reaction was carried out in an oven and then washed, filtered and dried and calcined, platinum was introduced into the mesoporous molecular sieve having excellent hydrothermal stability by introducing platinum (Pt), thereby introducing various metals as active metal components. Compared to the catalyst, a mesoporous molecular sieve supported platinum-based catalyst having a wide activity temperature window and high nitrogen oxide removal activity can be prepared.
최근 배기가스 규제가 엄격해지면서 디젤 및 희박연소(lean burn) 가솔린엔진에서 발생하는 희박 질소산화물(Lean NOx) 제거에 대한 관심이 집중되고 있다. 인구밀집지역에서 발생하는 질소산화물(NOx)은 주로 차량으로부터 배출되며, 대기 중에서 광화학 스모그 및 산성비를 유발시키고, 또한 기관지염, 폐렴, 기침, 호흡곤란 등 인체에 직접적인 해를 끼치는 것으로 알려져 있다.With the recent tightening of exhaust regulations, attention has been focused on the removal of lean NOx from diesel and lean burn gasoline engines. Nitrogen oxides (NOx), which occur in densely populated areas, are mainly emitted from vehicles, cause photochemical smog and acid rain in the atmosphere, and are known to directly harm humans such as bronchitis, pneumonia, cough and dyspnea.
가솔린엔진에서 발생되는 NOx의 경우는 삼원촉매(Three-way Catalyst)에 의해 효율적으로 제거할 수 있는데 반하여, 공기/연료비가 화학양론비보다 큰 조건에서 작동되는 디젤 또는 희박연소 가솔린엔진에서 발생되는 희박 질소산화물(Lean NOx)은 종래의 기술로는 제거하기가 곤란한 상태에 있다. 이것은 디젤 및 희박연소엔진 배기가스에 NOx보다 더 강력한 산화제인 산소가 과량 존재하고 이러한 산소가 NOx보다 선택적으로 촉매 표면에 흡착되기 쉽고 또한 환원제와 반응하여 NOx를 제거하기 어렵게 하기 때문이다. 따라서, 이러한 기술적 문제를 해결하기 위한 연구가 집중되고 있다.NOx from gasoline engines can be efficiently removed by three-way catalysts, while lean gas from diesel or lean-burn gasoline engines operating under conditions where the air / fuel ratio is higher than the stoichiometric ratio. Nitrogen oxides (Lean NOx) are in a difficult state to remove by conventional techniques. This is because there is an excessive amount of oxygen, a more powerful oxidant than NOx, in diesel and lean burn engine exhaust gases, and this oxygen is more likely to be selectively adsorbed on the catalyst surface than NOx and also difficult to remove NOx by reacting with a reducing agent. Therefore, research to solve these technical problems is concentrated.
현재 이동원(mobile source)에서 발생하는 희박 NOx를 제거하는 기술로서는, 엔진 개선에 의한 탈질(De-NOx) 기술; 고정원(stationary source)에서 상용화되어 있는 암모니아, 요소 등을 환원제로 이용하는 선택적 촉매환원장치를 응용한 이동성(mobile) 선택적 촉매 환원(Selective Catalytic Reduction, SCR) 방법 및 배기가스 중의 탄화수소를 환원제로서 이용하는 탄화수소(HC)-SCR 방법 등의 촉매를 이용한 탈질 기술; 흡착제를 이용하는 탈질 기술; 또는 플라즈마 기술을 이용한 탈질 기술 등을 들 수 있으나, 엔진 개선에 의한 탈질 기술을 제외하고는 아직 상용화하기에는 상당한 시간이 필요하다.As a technique for removing lean NOx generated at the current mobile source, de-NOx technique by engine improvement; Anchorage selective catalytic SCR reduced mobility (mobile) applying the device (Selective Catalytic Reduction, SCR) method and an exhaust gas hydrocarbons using the hydrocarbons as a reducing agent in the use of ammonia, urea, etc. which are commercially available from the (stationary source) with a reducing agent Denitrification techniques using catalysts such as the (HC) -SCR method; Denitrification techniques using adsorbents; Or a denitrification technique using a plasma technique, but a considerable time is still required for commercialization except for the denitrification technique by engine improvement.
엔진 개선에 의한 탈질 기술의 경우는 기술적인 진보는 가장 많이 이루어졌으나 NOx 제거에는 근본적인 한계가 있어서 후처리 장치의 장착이 불가피하다는 문 제점이 있다. NOx 직접분해 방식은 환원제를 사용하지 않고 촉매상에서 NOx를 분해하는 방식이지만 현재까지 디젤엔진 배기가스 조건에서 그 분해효율이 매우 낮아서 실제로 적용하기가 어렵다.In the case of the denitrification technology by improving the engine, the most technical progress has been made, but there is a problem that it is inevitable to install the aftertreatment device because there is a fundamental limitation in removing NOx. The NOx direct decomposition method is a method of decomposing NOx on a catalyst without using a reducing agent, but it is difficult to apply practically since the decomposition efficiency is very low under diesel engine exhaust gas conditions.
NOx 트랩(trap)은 희박(lean)영역으로부터 NOx를 포집한 후 농후(rich)영역으로 배출하여 NOx를 촉매에 의해 제거하는 방식이다. 희박 질소산화물 촉매(Lean NOx Catalyst, LNC)의 낮은 효율 때문에 NOx 트랩은 유망한 것으로 평가되고 있다. 이론공연비에서 종래의 삼원촉매 성능을 가지고 있으며 희박영역에서 NOx 트랩으로 NOx를 흡착하여 저장하며, 연료를 분사하거나 공연비가 농후할 경우 포집된 NOx를 정화시키고 동시에 NOx 트랩 성능을 복원한다. NOx 트랩 물질로서는 Ba, K, Sr 등을 사용한다. NOx 트랩은 고온내구성이 우수한 장점이 있으나 연료 중의 황 성분에 피독되는 문제점을 안고 있다.The NOx trap is a method of collecting NOx from a lean region and then discharging it into a rich region to remove NOx by a catalyst. NOx traps are considered promising because of the low efficiency of lean NOx catalysts (LNCs). It has the performance of conventional three-way catalyst in the theoretical performance ratio, and absorbs and stores NOx as a NOx trap in the lean region, and purifies the collected NOx when fuel injection or the air-fuel ratio is high, and at the same time restores the NOx trap performance. Ba, K, Sr or the like is used as the NOx trap material. NOx traps have the advantages of high temperature durability but have the problem of being poisoned by sulfur in the fuel.
플라즈마를 이용하는 방법은 NO를 NO2로 산화시키는데 유리하지만, N2 선택도가 매우 낮고 부산물 처리와 과도한 전력사용이 요구되고 유지 및 차량장착 공간 상의 문제 등이 있어서 아직까지 실용화하기가 곤란한 실정이다. 따라서, 최근에는 플라즈마 하에서 NO를 NO2로 산화시킨 후 촉매를 사용하여 NO2를 N2 로 전환시키는 플라즈마-촉매 혼성시스템에 대한 연구가 주로 진행되고 있다.The method using plasma is advantageous for oxidizing NO to NO 2 , but it is difficult to practically use it because of very low N 2 selectivity, by-product treatment, excessive power usage, and maintenance and vehicle mounting space. Therefore, in recent years, the NO 2 by using the then oxidize NO to NO 2 catalyst in the plasma of the plasma switch to N 2 - has been mainly conducted research on the hybrid catalyst system.
환원제를 사용하는 선택적 환원방법(SCR)은 현재 상용화되어 있는 고정원에서의 암모니아 탈질 기술을 응용한 것으로서, 암모니아를 환원제로 사용하여 디젤기관에서 발생되는 NO를 N2 및 O2로 환원시킨다. 질소산화물의 제거율이 60∼80% 정도로 다른 기술에 비해 높다는 장점이 있으나, 자동차에 적용하여 실용화하기 위해서는 별도의 암모니아 공급장치가 필요하고 장치 규모가 대형화된다는 문제점을 해결해야 한다. 최근에 장치구조의 소형화와 환원제로 요소를 사용하는 SCR 촉매로 인하여 실용성이 개선되고 있으나 구조가 복잡하고 가격이 고가여서 대형 엔진에 시범적으로 적용되고 있다.Selective reduction method using a reducing agent (SCR) is a commercial application of ammonia denitrification technology in a stationary source, which is currently commercialized, using ammonia as a reducing agent to reduce the NO generated in the diesel engine to N 2 and O 2 . Although the removal rate of nitrogen oxides is about 60 to 80% higher than other technologies, it is necessary to solve the problem that a separate ammonia supply device is required and the size of the device is enlarged in order to be practically applied to automobiles. Recently, due to the miniaturization of the device structure and the SCR catalyst using urea as a reducing agent, the practicality has been improved, but the structure is complicated and the price is high, and it is being applied to a large engine.
최근에는, 환원제로서 탄화수소를 이용하여 희박연소 내연 기관에서 배출되는 NOx를 촉매에 의하여 환원시키는 기술 개발에 대한 관심이 증대되고 있다. 일반적으로 이러한 촉매들은 활성금속으로서 구리 또는 백금이 담지된 알루미나/실리카-제올라이트를 담체로서 사용해왔다. 희박연소 조건에서 NOx의 선택적 촉매 환원 반응은 암모니아, 요소, 또는 그 밖의 고가이거나 사용이 불편한 환원제를 필요로 해왔기 때문에, 환원제로서 탄화수소를 사용하는 기술은 매우 중요하다.In recent years, there has been increasing interest in the development of a technology for reducing NOx discharged from a lean burn internal combustion engine by a catalyst using a hydrocarbon as a reducing agent. In general, these catalysts have used as a carrier alumina / silica-zeolites supported with copper or platinum as active metals. Since the selective catalytic reduction of NOx in lean burn conditions has required ammonia, urea, or other expensive or inconvenient reducing agents, the use of hydrocarbons as reducing agents is very important.
탄화수소를 환원제로서 사용하여 선택적으로 NOx를 저감하는 방법(HC-SCR)은 배기가스 중의 잔존 탄화수소나 연료를 환원제로서 이용할 수 있다는 점에서 극히 실용적인 기술이며, 1990년에 헬드(Held)그룹과 이와모토(Iwamoto)그룹에 의해 연구결과가 보고된 이래 현재까지 가장 실용화 가능성이 높은 희박 질소산화물 촉매(LNC)로서 광범위한 연구가 진행되고 있다. Cu-ZSM-5와 Pt-ZSM-5가 대표적인 촉매로 알려져 있다. Cu-ZSM-5 촉매는 300 ∼ 500 ℃ 에서 NOx 저감율이 가장 높으며 실험실 값으로 약 50∼60%의 제거율을 나타내고 있다. 그러나 실제 디젤 배기가스 배출온도(300 ℃)보다 높은 반응활성온도와, 수분과 이산화황에 대한 활성감소 현상으로 인해 실용화에 문제점을 나타내고 있다. 반면, Pt-ZSM-5 촉매 는 200∼300 ℃에서 약 40∼50%의 제거효율을 나타내지만 또다른 오염물인 N2O에 대한 선택도가 높고 활성온도창이 좁다는 단점을 나타내고 있다. The method of selectively reducing NOx by using hydrocarbon as a reducing agent (HC-SCR) is a very practical technique in that residual hydrocarbons or fuel in exhaust gas can be used as a reducing agent. Since the results were reported by the Iwamoto group, extensive research has been conducted as lean nitrogen oxide catalysts (LNCs) which are the most practical to date. Cu-ZSM-5 and Pt-ZSM-5 are known as representative catalysts. Cu-ZSM-5 catalyst has the highest NOx reduction rate at 300 ~ 500 ℃ and shows about 50 ~ 60% removal rate as laboratory value. However, due to the reaction activity temperature higher than the actual diesel exhaust gas discharge temperature (300 ℃), and the activity reduction phenomenon for moisture and sulfur dioxide has shown a problem in practical use. On the other hand, Pt-ZSM-5 catalyst shows the removal efficiency of about 40-50% at 200-300 ° C, but has a disadvantage of high selectivity to N 2 O, another contaminant, and a narrow window of active temperature.
따라서, 낮은 활성온도, 넓은 활성온도창, 높은 N2 선택도 및 내피독성을 갖는 새로운 촉매시스템을 개발하기 위한 다양한 시도가 이루어지고 있다.Thus, various attempts have been made to develop new catalyst systems having low activity temperatures, wide activity window, high N 2 selectivity and endothelial toxicity.
제올라이트에 담지된 금속촉매는 현재까지는 비활성화 현상을 해결하지 못하여서 알루미나와 같은 비 제올라이트 담체를 사용하려는 경향이 있다. 또한, 이러한 담체와는 별도로 단일금속촉매는 디젤차량에 적용하기에는 좁은 활성온도창 등의 문제점으로 인해 실용성이 충분하지 않으며, 여러 금속의 다양한 조합에 의한 촉매의 개발이 필수적이다.Metal catalysts supported on zeolites do not solve the deactivation phenomenon until now, so there is a tendency to use non-zeolitic carriers such as alumina. In addition, apart from such a carrier, a single metal catalyst is not practical enough due to problems such as a narrow active temperature window to be applied to a diesel vehicle, and development of a catalyst by various combinations of various metals is essential.
이에 본 발명의 발명자들은 상기와 같은 기대에 부응하기 위하 연구노력한 결과, 무기염 용액을 이용한 후염처리에 의해 수열안정성을 개선시킨 메조포러스 분자체를 담체로서 사용하고 귀금속 및 전이금속 등 다양한 금속을 활성금속성분으로 도입함으로써 종래의 제올라이트계 촉매에 비해 높은 활성을 나타내는 새로운 촉매를 제조할 수 있음을 알게되어 본 발명을 완성하였다.Accordingly, the inventors of the present invention have made efforts to meet the above expectations, using a mesoporous molecular sieve having improved hydrothermal stability by post-treatment using an inorganic salt solution as a carrier and activating various metals such as precious metals and transition metals. The present invention has been completed by incorporating a metal component into a new catalyst exhibiting higher activity than a conventional zeolite catalyst.
따라서, 본 발명은 수열안정성이 개선된 메조포러스 분자체 담체에 다양한 금속을 활성금속성분으로 도입하여 넓은 활성온도창 및 높은 질소산화물(NOx) 제거 활성을 갖는 새로운 메조포러스 분자체 담지 백금계 촉매의 제조방법을 제공하는 데 그 목적이 있다.
Accordingly, the present invention provides a novel mesoporous molecular sieve supported platinum-based catalyst having a wide active temperature window and high NOx removal activity by introducing various metals into the active metal component in the mesoporous molecular sieve carrier having improved hydrothermal stability. The purpose is to provide a manufacturing method.
본 발명은 (a) 담체로서 메조포러스 분자체를 합성하는 단계; (b) 무기염 수용액에 상기 메조포러스 분자체를 침지하고 pH 9.5 ∼ 10.5 으로 조절한 후 70 ∼ 110 ℃ 에서 1일 ∼ 20 일 동안 반응시키는 단계; (c) 상기 반응 완료된 메조포러스 분자체를 증류수로 세척, 여과 및 건조한 후 500 ∼ 650 ℃ 에서 소성시키는 단계; 및 (d) 상기 소성된 메조포러스 분자체에 백금(Pt)을 도입하는 단계를 포함하는 메조포러스 분자체 담지 백금계 촉매의 제조방법을 특징으로 한다.The present invention comprises the steps of (a) synthesizing mesoporous molecular sieve as a carrier; (b) immersing the mesoporous molecular sieve in an aqueous inorganic salt solution and adjusting the pH to 9.5 to 10.5 and then reacting at 70 to 110 ° C. for 1 day to 20 days; (c) washing the completed mesoporous molecular sieve with distilled water, filtration and drying and calcining at 500 to 650 ° C .; And (d) introducing platinum (Pt) into the calcined mesoporous molecular sieve.
또한, 본 발명은 상기 제조방법에 의하여 제조된 메조포러스 분자체 담지 백금계 촉매를 제공한다.The present invention also provides a mesoporous molecular sieve supported platinum-based catalyst prepared by the above production method.
이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 담체로서 메조포러스 분자체를 합성하고, 무기염 수용액에 상기 메조포러스 분자체를 침지하고 pH를 조절한 후 오븐에서 반응시킨 후 세척, 여과 및 건조한 후 소성시키고, 여기에 백금(Pt)을 도입함으로써 우수한 수열안정성을 갖는 메조포러스 분자체에 다양한 금속이 활성금속성분으로서 도입되어 종래의 제올라이트계 촉매에 비하여 넓은 활성온도창 및 높은 질소산화물 제거 활성을 갖는 메조포러스 분자체 담지 백금계 촉매를 제조할 수 있다The present invention synthesizes a mesoporous molecular sieve as a carrier, immersed in the inorganic salt aqueous solution of the mesoporous molecular sieve, and adjusted the pH, and then reacted in an oven and then washed, filtered and dried and calcined, and platinum (Pt) By introducing a variety of metals into the mesoporous molecular sieve having excellent hydrothermal stability as an active metal component, a mesoporous molecular sieve supported platinum-based catalyst having a broader temperature window and higher nitrogen oxide removal activity than a conventional zeolite catalyst I can manufacture it
이하 본 발명을 제조단계별로 구체적으로 설명한다.Hereinafter, the present invention will be described in detail for each manufacturing step.
먼저, 담체로서 메조포러스 분자체를 합성하는 단계이다.First, a step of synthesizing mesoporous molecular sieve as a carrier.
상기한 메조포러스 분자체는 골격이 실리카로 이루어져 있으며 기공크기가 2 ∼ 50 nm의 크기(메조포러스 물질 자체의 정의임)를 갖는 것을 사용하며, 구체적으로, 공지된 MCM-41, MCM-48, KIT-1, SBA-15 등을 사용할 수 있다.The mesoporous molecular sieve described above is composed of silica and has a pore size of 2 to 50 nm (which is a definition of mesoporous material itself). Specifically, known MCM-41, MCM-48, KIT-1, SBA-15, etc. can be used.
두번째로, 무기염 수용액에 상기 메조포러스 분자체를 침지하고 pH 9.5 ∼ 10.5 으로 조절한 후 70 ∼ 110 ℃ 에서 1일 ∼ 20 일 동안 반응시키는 단계이다. Secondly, the mesoporous molecular sieve is immersed in an aqueous inorganic salt solution, and then adjusted to pH 9.5 to 10.5, followed by reaction at 70 to 110 ° C. for 1 day to 20 days.
상기 무기염 수용액은 NaCl 또는 EDTANa4 를 사용할 수 있다. 이러한 무기염 수용액은 0.32 ∼ 13 중량% 농도인 것을 사용하는데, 이러한 무기염 수용액의 농도는 메조포러스 분자체의 종류에 따라서 달라질 수 있다. The inorganic salt aqueous solution may use NaCl or EDTANa 4 . The inorganic salt aqueous solution is used in a concentration of 0.32 ~ 13% by weight, the concentration of the inorganic salt aqueous solution may vary depending on the type of mesoporous molecular sieve.
예를 들어, 메조포러스 분자체로서 MCM-41을 사용할 경우 NaCl 수용액의 농도는 6.5 중량%, MCM-48의 경우 NaCl 수용액의 농도는 0.32 중량% 농도로 조절하는 것이 바람직하며, 무기염 수용액의 농도가 상기 범위를 초과할 경우에는 분자체의 수열안정성이 감소한다. For example, when MCM-41 is used as the mesoporous molecular sieve, the concentration of NaCl aqueous solution is 6.5% by weight, and in the case of MCM-48, the concentration of NaCl aqueous solution is preferably adjusted to 0.32% by weight. If exceeds the above range, the hydrothermal stability of the molecular sieve is reduced.
무기염 수용액의 농도와 양에 따라 후염처리된 메조포러스 분자체의 수열안정성이 최적화될 수 있으며, 상기 메조포러스 분자체에 상기 무기염 수용액을 분자체 g 당 12 ∼ 30 ml의 양을 넣어 침지하도록 하는 것이 바람직하다. The hydrothermal stability of the post-treated mesoporous molecular sieve can be optimized according to the concentration and amount of the inorganic salt aqueous solution, and the immersion of the inorganic salt aqueous solution in an amount of 12 to 30 ml per g of molecular sieve is immersed in the mesoporous molecular sieve. It is desirable to.
상기 메조포러스 분자체가 함유된 무기염 수용액의 pH 조절은 농축된 EDTANa4 등을 사용하여 수행할 수 있으며, pH를 9.5 ∼ 10.5 범위로 유지하도록 하며, 바람직하기로는 pH를 약 10 으로 유지하도록 하는 경우가 좋다.PH control of the aqueous solution of the inorganic salt containing the mesoporous molecular sieve can be performed using concentrated EDTANa 4 and the like, to maintain the pH in the range of 9.5 ~ 10.5, preferably to maintain the pH at about 10 The case is good.
상기와 같이 준비된 메조포러스 분자체 함유 무기염 수용액은 70 ∼ 110 ℃ 에서 반응시키는데, 바람직하기로는 약 100 ℃ 에서 반응시키는 것이 좋다. 이때, 반응온도가 상기 범위 미만이면 반응의 진행이 어려우며, 상기 범위 이상에서는 실익이 없다. 이러한 조건에서 1일 ∼ 20일 동안, 바람직하기로는 12 일 ∼ 20 일 동안 반응시키도록 하는데, 반응시간이 1일 미만이면 수열안정성 증진효과가 나타나지 않고, 20 일은 초과하면 실익이 없다. 가장 바람직하기로는 약 100 ℃ 오븐에서 12 일 이상 동안 반응시키는 것이 좋다.The aqueous solution of mesoporous molecular sieve-containing inorganic salt prepared as described above is reacted at 70 to 110 ° C, preferably at about 100 ° C. At this time, if the reaction temperature is less than the above range, the progress of the reaction is difficult, and there is no benefit above the above range. Under these conditions, the reaction is carried out for 1 day to 20 days, preferably for 12 days to 20 days. If the reaction time is less than 1 day, the effect of improving hydrothermal stability does not appear. Most preferably, the reaction is performed in an oven at about 100 ° C. for at least 12 days.
세번째로, 상기 반응 완료된 메조포러스 분자체를 증류수로 세척, 여과 및 건조한 후 500 ∼ 650 ℃ 에서 소성시키는 단계이다.Third, after the reaction is completed, the mesoporous molecular sieve is washed with distilled water, filtered and dried, and then calcined at 500 to 650 ° C.
소성은 특정온도에서 충분한 시간 이상으로 수행하는 것이 중요한데, 상기 소성 온도가 상기 범위 미만이면 계면활성제가 완전히 제거되지 않으며, 상기 범위를 초과하면 구조가 붕괴하여 표면적 및 기공 부피가 감소한다. 소성 시간은 5시간 이상으로 충분히 하여 계면활성제가 완전히 제거되도록 한다. Firing is important to be carried out at a specific temperature for more than a sufficient time. If the firing temperature is below the above range, the surfactant is not completely removed. If the firing temperature is above the above range, the structure collapses and the surface area and pore volume decrease. The firing time is sufficient to be at least 5 hours so that the surfactant is completely removed.
네번째로, 상기 소성된 메조포러스 분자체에 백금(Pt)을 도입하는 단계이다.Fourthly, platinum (Pt) is introduced into the calcined mesoporous molecular sieve.
이때 상기 백금의 도입량은 상기 메조포러스 분자체 100 중량부에 대하여 0.5 ∼ 5 중량부이다. 상기 백금의 도입은 함침법으로 수행되며, 백금 도입량이 상기 범위 미만이면 반응활성이 미미하고, 상기 범위를 초과하면 실익이 없다.In this case, the amount of platinum introduced is 0.5 to 5 parts by weight based on 100 parts by weight of the mesoporous molecular sieve. The introduction of the platinum is carried out by the impregnation method, the reaction activity is insignificant if the amount of platinum introduced is less than the above range, there is no profit if the platinum is introduced.
또한, 상기 메조포러스 분자체에 조촉매로서 루테늄(Ru), 로듐(Rh), 팔라듐(Pd) 및 은(Ag) 등 중에서 선택된 귀금속과, 바나듐(V), 망간(Mn), 코발트(Co), 구리(Cu), 주석(Sn) 및 알루미늄(Al) 등 중에서 선택된 금속 중에서 선택된 1종 또는 2종 이상을 추가로 사용할 수 있으며, 이러한 조촉매 사용량은 상기 메조포러스 분 자체 100 중량부에 대하여 0.5 ∼ 5 중량부 사용하는 것이 보다 바람직하다.In addition, precious metals selected from ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), and the like as cocatalysts on the mesoporous molecular sieve, vanadium (V), manganese (Mn), and cobalt (Co) , Copper (Cu), tin (Sn), aluminum (Al) and the like may be further used one or two or more selected from a metal selected from, such that the amount of the promoter is 0.5 to 100 parts by weight of the mesoporous powder It is more preferable to use-5 weight part.
상기와 같이 제조된 메조포러스 분자체 담지 백금계 촉매는 종래의 제올라이트계 촉매에 비하여 넓은 활성온도창 및 높은 질소산화물 제거 활성을 갖는다.The mesoporous molecular sieve supported platinum-based catalyst prepared as described above has a broader activity temperature window and higher nitrogen oxide removal activity than conventional zeolite-based catalysts.
이하, 본 발명을 실시예에 의거하여 구체적으로 설명하겠는바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the following Examples.
실시예 1: 수열안정성이 개선된 메조포러스 분자체 합성 Example 1 Synthesis of Mesoporous Molecular Sieves with Improved Hydrothermal Stability
우선, 메조포러스 분자체인 MCM-41 및 MCM-48은 학계에 보고된 종래의 방법을 이용하여 제조하였으며, 하기에 설명한 것처럼 수열안정성을 향상시키기 위하여 후염처리(post-salt treatment)를 수행하였다. First, the mesoporous molecular sieves MCM-41 and MCM-48 were prepared using conventional methods reported in the academic world, and post-salt treatment was performed to improve hydrothermal stability as described below.
무기염인 NaCl을 증류수에 용해시켜 염용액(salt solution)을 만들고 여기에 건조된 메조포러스 분자체를 염용액 25ml 당 1g의 비율로 넣었다. 이때 염용액의 농도는 메조포러스 분자체가 MCM-41인 경우는 6.5 중량%, MCM-48인 경우는 0.32 중량%로 조절하였다. 농축 EDTANa4 용액을 사용하여 pH를 10으로 조절한 후 100 ℃ 오븐에서 12일 동안 반응시켰다. 반응 완료 후 증류수에 의한 세척 및 여과, 건조과정을 거쳐 550 ℃ 에서 5시간 동안 소성하여 메조포러스 분자체 담체를 제조하였다.NaCl, an inorganic salt, was dissolved in distilled water to make a salt solution, and the dried mesoporous molecular sieve was added at a rate of 1 g per 25 ml of salt solution. At this time, the concentration of the salt solution was adjusted to 6.5% by weight for the mesoporous molecular sieve MCM-41, 0.32% by weight for the MCM-48. The pH was adjusted to 10 using a concentrated EDTANa 4 solution and then reacted in an oven at 100 ° C. for 12 days. After completion of the reaction, the mixture was washed with distilled water, filtered and dried, and then calcined at 550 ° C. for 5 hours to prepare a mesoporous molecular sieve carrier.
도 1에서 보는 바와 같이 500 ℃, 10 부피% H2O 조건(W/F=0.012 g-촉매·시 간/리터)으로 12시간 동안 처리하였을 때 후염처리를 수행한 MCM-41 및 MCM-48의 구조가 후염처리를 수행하지 않은 경우에 비해 잘 유지됨을 확인할 수 있었다. 100 ℃의 끓는 물에서 9시간 처리하였을 때에도 후염처리를 수행한 MCM-41 및 MCM-48의 구조가 후염처리를 수행하지 않은 경우에 비해 상대적으로 잘 유지됨을 확인 할 수 있었다. 실제 NOx 제거 공정에서는 수분 함량과 온도가 높게 유지되는 상황이 존재하므로, 이렇게 개선된 수열안정성은 NOx 제거 촉매의 필수적인 요소이다.As shown in FIG. 1, MCM-41 and MCM-48 were subjected to post-treatment when treated at 500 ° C. for 10 hours at 10% by volume H 2 O conditions (W / F = 0.012 g-catalyst, time / liter). It can be seen that the structure of is maintained better than the case where the post-treatment was not performed. Even after 9 hours in boiling water at 100 ℃, the structure of the MCM-41 and MCM-48 after the post-treatment was maintained relatively well compared to the case without the post-treatment. In the actual NOx removal process, there is a situation where the moisture content and the temperature are kept high, so this improved hydrothermal stability is an essential element of the NOx removal catalyst.
실시예 2: 메조포러스 분자체 담지 금속촉매의 제조Example 2 Preparation of Mesoporous Molecular Sieve Supported Metal Catalysts
상기 실시예 1에서 제조된 메조포러스 분자체에 단일금속성분으로서 Pt를 도입하고 조촉매로서 Ru, Pd, Rh, Ag, Sn, V, Cu, Co를 도입하였다. Al을 제외한 조촉매는 초기함침법으로 담지한 후 100 ℃ 에서 건조 및 550 ℃에서 소성시켰고, Al을 사용한 경우는 AlCl3를 에탄올에 용해시킨 후 건조된 메조포러스 분자체와 함께 30분 동안 교반한 후 여과하여, 100 ℃에서 건조시키고 550 ℃에서 소성시켰다. Pt 함유량은 1 중량%로, 조촉매 함유량은 0.5 ∼ 5 중량%로 조절하였으며, Al 조촉매의 경우는 Si/Al의 몰비를 90 이하로 조절하였다.Pt as a single metal component was introduced into the mesoporous molecular sieve prepared in Example 1, and Ru, Pd, Rh, Ag, Sn, V, Cu, and Co were introduced as cocatalysts. The promoter except Al was dried by 100 impregnation and calcined at 550 ° C. after Al impregnation, and in case of Al, AlCl 3 was dissolved in ethanol and stirred for 30 minutes with the dried mesoporous molecular sieve. It was then filtered, dried at 100 ° C. and calcined at 550 ° C. The Pt content was adjusted to 1 wt%, the cocatalyst content was adjusted to 0.5 to 5 wt%, and in the case of Al cocatalyst, the molar ratio of Si / Al was adjusted to 90 or less.
실시예 3: 메조포러스 분자체 담지 금속촉매의 NOx 제거 성능Example 3 NOx Removal Performance of Mesoporous Molecular Sieve Supported Metal Catalyst
상기 실시예 2에서 제조된 메조포러스 분자체 담지 백금촉매는 0.2g의 분말 을 사용하였고 온도조절이 가능한 석영관에서 연속흐름식으로 반응을 수행하였다. NO의 농도는 2,000ppmv로 하였고 환원제, 산소의 농도 및 공간속도를 변화시켜 가며 반응을 수행하였으며 출구 흐름을 온라인 가스크로마토그라피와 NOx 분석기로 측정하였다.The mesoporous molecular sieve supported platinum catalyst prepared in Example 2 was 0.2g of powder, and the reaction was carried out in a continuous flow type in a quartz tube with temperature control. The concentration of NO was 2,000ppmv and the reaction was carried out by changing the concentration of reducing agent, oxygen and space velocity. The outlet flow was measured by on-line gas chromatography and NOx analyzer.
본 발명에서의 후염처리를 수행한 메조포러스 분자체(MCM-41 및 MCM-48) 및 종래의 메조포러스 분자체(KIT-1, SBA-15) 및 제올라이트 ZSM-5에 백금을 담지한 촉매의 희박 질소산화물 제거 성능(반응조건: 2,000ppmv NO; 2,000ppmv C3H6, 5 부피% O2, W/F = 0.012g-촉매·시간/리터)을 도 2에 나타내었다.Mesoporous molecular sieves (MCM-41 and MCM-48) and the conventional mesoporous molecular sieves (KIT-1, SBA-15) and zeolite ZSM-5 supported by platinum were subjected to the post-treatment process. The lean nitrogen oxide removal performance (reaction conditions: 2,000ppmv NO; 2,000ppmv C 3 H 6 , 5% by volume O 2 , W / F = 0.012 g-catalyst / hour / liter) is shown in FIG. 2.
Pt를 단일금속으로 도입한 경우, 종래에 가장 널리 알려진 Pt/ZSM-5에 비하여 본 발명의 메조포러스 분자체 담지 금속촉매의 NOx 제거 활성이 높고 활성온도창이 넓음을 확인할 수 있다.When Pt is introduced as a single metal, it can be seen that the mesoporous molecular sieve-supported metal catalyst of the present invention has a higher NOx removal activity and a wider activation temperature window than the most widely known Pt / ZSM-5.
다성분 금속을 도입한 촉매의 경우 Al을 조촉매로 사용하였을 때 반응활성이 증가하였다[첨부도면 도 3 참고]. 또한 Ru을 도입하였을 때 고온영역에서의 NOx 제거활성이 증가하였다[첨부도면 도 4 참고]. 따라서 최적화된 Ru 함유량을 통해 활성온도창을 넓힐 수 있음을 확인할 수 있다. 본 발명에서의 후염처리를 수행한 메조포러스 분자체(MCM-41 및 MCM-48) 및 종래의 메조포러스 분자체(KIT-1 및 SBA-15)에 백금 또는 조촉매로서 알루미늄(또는 루테늄)을 도입한 다성분 금속담지촉매의 희박 질소산화물 제거 성능(반응조건: 2,000ppmv NO; 2,000ppmv C3H6, 5 부피% O2, W/F = 0.012g-촉매·시간/리터)을 첨부도면 도 3과 도 4에 나타 내었다.In the case of a catalyst incorporating a multi-component metal, the reaction activity increased when Al was used as a promoter (see FIG. 3). In addition, when Ru was introduced, the NOx removal activity in the high temperature region was increased (see FIG. 4). Therefore, it can be seen that the active temperature window can be widened through the optimized Ru content. Mesoporous molecular sieves (MCM-41 and MCM-48) and conventional mesoporous molecular sieves (KIT-1 and SBA-15) subjected to post-treatment in the present invention are made of aluminum (or ruthenium) as platinum or a promoter. The lean nitrogen oxide removal performance (reaction conditions: 2,000ppmv NO; 2,000ppmv C 3 H 6 , 5% by volume O 2 , W / F = 0.012g-catalyst, time / liter) of the introduced multicomponent metal supported
도 5(반응조건: 2,000ppmv NO; 5 부피% O2, W/F = 0.012g-촉매·시간/리터)에서 보는 바와 같이 도데칸(dodecane; C12H26)을 환원제로 사용하였을 때의 본 발명의 메조포러스 분자체(MCM-48) 담지 금속촉매의 반응활성은 프로필렌(C3H6)을 사용한 경우보다는 낮게 나타났으나 프로필렌을 환원제로 사용한 종래의 Pt/ZSM-5 촉매의 반응활성보다 높게 나타났다. 따라서 환원제로서 디젤연료를 직접 사용할 경우에도 본 발명에 의한 촉매를 유용하게 적용할 수 있다.When dodecane (C 12 H 26 ) was used as a reducing agent, as shown in FIG. 5 (reaction conditions: 2,000 ppmv NO; 5 vol% O 2 , W / F = 0.012 g-catalyst, hour / liter) The reaction activity of the mesoporous molecular sieve (MCM-48) -supported metal catalyst of the present invention was lower than that of propylene (C 3 H 6 ), but the reaction activity of the conventional Pt / ZSM-5 catalyst using propylene as a reducing agent. Higher. Therefore, the catalyst according to the present invention can be usefully applied even when diesel fuel is directly used as a reducing agent.
상술한 바와 같이 본 발명의 메조포러스 분자체 담지 금속촉매의 제조방법에 의하면, 우수한 수열안정성을 갖는 메조포러스 분자체에 다양한 금속이 활성금속성분으로서 도입되어 종래의 제올라이트계 촉매에 비하여 넓은 활성온도창 및 높은 질소산화물 제거 활성을 갖는 메조포러스 분자체 담지 백금계 촉매를 제조할 수 있다.As described above, according to the method for preparing a mesoporous molecular sieve supported metal catalyst, various metals are introduced as active metal components into mesoporous molecular sieves having excellent hydrothermal stability, and thus have a wider active temperature window than conventional zeolite catalysts. And a mesoporous molecular sieve supported platinum-based catalyst having high nitrogen oxide removal activity.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050004004A KR100656014B1 (en) | 2005-01-15 | 2005-01-15 | Method for producing platinum catalyst supported on mesoporous molecular sieve for removing rare nitrogen oxides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050004004A KR100656014B1 (en) | 2005-01-15 | 2005-01-15 | Method for producing platinum catalyst supported on mesoporous molecular sieve for removing rare nitrogen oxides |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060083083A KR20060083083A (en) | 2006-07-20 |
KR100656014B1 true KR100656014B1 (en) | 2006-12-08 |
Family
ID=37173576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050004004A Expired - Fee Related KR100656014B1 (en) | 2005-01-15 | 2005-01-15 | Method for producing platinum catalyst supported on mesoporous molecular sieve for removing rare nitrogen oxides |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100656014B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101528672B1 (en) * | 2013-08-13 | 2015-06-15 | 숭실대학교산학협력단 | Supporting material for oxygen reduction electrode |
WO2024143820A1 (en) * | 2022-12-28 | 2024-07-04 | 한국에너지기술연구원 | Nitrogen oxide removal catalyst having form in which active metal component is trapped in regular mesoporous silica, and nitrogen oxide removal method using same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101305182B1 (en) * | 2010-11-30 | 2013-09-12 | 현대자동차주식회사 | Highly efficient catalyst by using precious metal |
CN116212946B (en) * | 2023-03-23 | 2025-05-13 | 南京师范大学 | High-performance copper-based denitration catalyst and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980033126A (en) * | 1996-10-25 | 1998-07-25 | 가나이쯔도무 | Catalysts and purification methods for exhaust gas purification of internal combustion engines |
JPH1133405A (en) | 1997-07-23 | 1999-02-09 | Nissan Motor Co Ltd | Catalyst for purification of exhaust gas and its use |
KR20010043393A (en) * | 1998-05-07 | 2001-05-25 | 스티븐 아이. 밀러 | Catalytic Material Having Improved Conversion Performance |
JP2002320850A (en) | 2001-04-25 | 2002-11-05 | Toyota Motor Corp | Catalyst and exhaust gas purification device using the catalyst |
-
2005
- 2005-01-15 KR KR1020050004004A patent/KR100656014B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980033126A (en) * | 1996-10-25 | 1998-07-25 | 가나이쯔도무 | Catalysts and purification methods for exhaust gas purification of internal combustion engines |
JPH1133405A (en) | 1997-07-23 | 1999-02-09 | Nissan Motor Co Ltd | Catalyst for purification of exhaust gas and its use |
KR20010043393A (en) * | 1998-05-07 | 2001-05-25 | 스티븐 아이. 밀러 | Catalytic Material Having Improved Conversion Performance |
JP2002320850A (en) | 2001-04-25 | 2002-11-05 | Toyota Motor Corp | Catalyst and exhaust gas purification device using the catalyst |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101528672B1 (en) * | 2013-08-13 | 2015-06-15 | 숭실대학교산학협력단 | Supporting material for oxygen reduction electrode |
WO2024143820A1 (en) * | 2022-12-28 | 2024-07-04 | 한국에너지기술연구원 | Nitrogen oxide removal catalyst having form in which active metal component is trapped in regular mesoporous silica, and nitrogen oxide removal method using same |
Also Published As
Publication number | Publication date |
---|---|
KR20060083083A (en) | 2006-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mohan et al. | NOx reduction behaviour in copper zeolite catalysts for ammonia SCR systems: A review | |
Brandenberger et al. | The state of the art in selective catalytic reduction of NOx by ammonia using metal‐exchanged zeolite catalysts | |
CN101711991B (en) | Fe molecular sieve composite catalyst and preparation method thereof | |
JPWO2005044426A1 (en) | Method for catalytic reduction of nitrogen oxides and catalyst therefor | |
WO1996040418A1 (en) | Copper-silver zeolite catalysts | |
WO2005023421A1 (en) | Catalyst and method for contact decomposition of nitrogen oxide | |
CN106334577A (en) | Preparation method of Mo modified Cu-SSZ-13 catalyst | |
JPH05220403A (en) | Exhaust gas purifying catalyst | |
KR20210087743A (en) | Catalyst and manufacturing method thereof | |
KR100656014B1 (en) | Method for producing platinum catalyst supported on mesoporous molecular sieve for removing rare nitrogen oxides | |
EP1304165B1 (en) | Hydrothermally stable catalyst for improved lean NOx reduction | |
KR101274468B1 (en) | Oxidation catalyst for exhaust gas purification of diesel engine | |
US8894952B1 (en) | Method of reducing nitrogen oxide using amine compound as reductant | |
US20050207957A1 (en) | Catalyst and method for clarifying exhaust gas | |
JP2605956B2 (en) | Exhaust gas purification catalyst | |
JP3721112B2 (en) | Method for catalytic reduction of nitrogen oxides and catalyst therefor | |
JP3257686B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method using the same | |
JP2004009034A (en) | Method for catalytic removal of nitrogen oxides and catalyst therefor | |
JP2004068717A (en) | Method and apparatus for catalytically removing nitrogen oxides | |
JPH05154349A (en) | Method and catalyst for removing nitrogen oxide in combustion exhaust gas | |
JPH0679140A (en) | Method for purifying combustion exhaust gas and catalyst using the method | |
KR20240076133A (en) | Zeolite catalysts for reducing simultaneously N2O and NOx from exhausted gas for ship engine and method of manufacturing the same | |
JP4352486B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP3242946B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method using the same | |
KR100408503B1 (en) | Catalyst for purifying exhaus gas of vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20050115 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20060526 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20060927 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20061204 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20061201 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20091202 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20101201 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20111202 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20121130 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20121130 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20131129 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20131129 Start annual number: 8 End annual number: 8 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20151109 |