KR100587963B1 - Low resistance electric double layer capacitor and manufacturing method thereof - Google Patents
Low resistance electric double layer capacitor and manufacturing method thereof Download PDFInfo
- Publication number
- KR100587963B1 KR100587963B1 KR1020040034893A KR20040034893A KR100587963B1 KR 100587963 B1 KR100587963 B1 KR 100587963B1 KR 1020040034893 A KR1020040034893 A KR 1020040034893A KR 20040034893 A KR20040034893 A KR 20040034893A KR 100587963 B1 KR100587963 B1 KR 100587963B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrode
- double layer
- layer capacitor
- electric double
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
전극의 밀도를 향상시키는 동시에 저항을 감소시킬수 있는 전기 이중층 커패시터 및 그 제조방법이 제공된다. 본 발명에 의하면 폴리메스아크릴(poly methacrylic) 및 여기에 카르복시메틸셀롤로오스를 혼합하여 바인더를 형성한 다음 활성탄소분말 도전재 및 상기 바인더를 혼합하여 혼합물을 형성한후 상기 혼합물을 집전체에 도포하여 전극을 제조함으로써 본 발명의 목적이 달성된다.An electric double layer capacitor capable of reducing the resistance while increasing the density of an electrode and a method of manufacturing the same are provided. According to the present invention, a poly methacrylic and carboxymethyl cellulose are mixed to form a binder, and then the activated carbon powder conductive material and the binder are mixed to form a mixture, and then the mixture is applied to the current collector. The object of the present invention is achieved by manufacturing the electrode.
본 발명에서는, 아크릴계의 일종인 폴리메스아크릴을 카르복시메틸셀롤로오스를 혼합한 결합제 시스템을 사용함으로써 전극의 밀도를 30%이상 증가 시킬수 있는 동시에 저항을 70% 감소시킬수 있으며 동시에 이러한 전극을 포함하는 전기 이중층 커패시터의 성능을 크게 향상시킬수 있다.In the present invention, by using a binder system in which carboxymethyl cellulose is mixed with polymethacrylic, which is a type of acryl, it is possible to increase the density of the electrode by 30% or more and to reduce the resistance by 70%. The performance of the double layer capacitor can be greatly improved.
Description
본 발명은 전기 이중층 커패시터(Electric double layer capacitor : EDLC) 및 그 제조방법에 관한것으로서 보다 상세하게는 전극의 용량 증가와 저항을 감소시킬수 있는 전기 이중층 커패시터(EDLC) 및 그 제조방법에 관한 것이다The present invention relates to an electric double layer capacitor (EDLC) and a method for manufacturing the same, and more particularly, to an electric double layer capacitor (EDLC) and a method for manufacturing the same, which can increase an electrode capacity and reduce resistance.
통상적으로 커패시터(EDLC) 혹은 콘덴서(condenser)는 크게 정전 커패시터(electrostatic capacitor), 전해 커패시터 (electrolytic capacitor) 및 전기화학 커패시터 (electrochemical capacitor)로 분류된다Typically, capacitors (EDLC) or capacitors are classified into electrostatic capacitors, electrolytic capacitors, and electrochemical capacitors.
정전 커패시터로는 세라믹 커패시터, 글라스 커패시터 및 운모 커패시터등이 있으며 대부분이 약 1.0∼10㎌ 정도의 정전 용량을 갖는다 상기 전해 커패시터로는 알루미늄 전해 커패시터 또는 탄탈륨 전해 커패시터 등이 알려져 있으며 이들은 정전 커패시터 보다 약 100배 정도까지의 정전 용량을 가질 수 있다The electrostatic capacitors include ceramic capacitors, glass capacitors, and mica capacitors, and most have electrostatic capacitances of about 1.0 to 10 ㎌. The electrolytic capacitors are known as aluminum electrolytic capacitors or tantalum electrolytic capacitors. Can have up to twice the capacitance
슈퍼 커패시터라고도 불리우는 전기화학 커패시터는 활성탄소를 이용하는 전기이중층 커패시터와 금속산화물 및 전도성 고분자를 이용하는 의사(Pseudo) 커패시터 등이 개발되어 있으면 이들은 대략 1mF∼10000F 정도까지의 정전용량을 가질 수 있다Electrochemical capacitors, also called supercapacitors, may have capacitances ranging from about 1 mF to 10000 F if electric double layer capacitors using activated carbon and pseudo capacitors using metal oxides and conductive polymers have been developed.
상기 전기 이중층 커패시터는 전극과 전해질간의 계면에서 발생되는 전기 이중층에 전하를 흡·탈착하는 원리를 이용하여 전기에너지를 축전하는 축전기이다. 이러한 원리에 기인하여 전기 이중층 커패시터는 빠른 충전 및 방전 특성을 가지며 긴 수명과 빠른 충전, 또한 높은 파워가 요구되는 솔라셀 및 통신기기의 보조전원 또한 고용량을 요구하는 전기 자동차 및 UPS등의 주전원 혹은 보조전원으로 적합하다The electric double layer capacitor is a capacitor that stores electric energy by using a principle of absorbing and desorbing electric charges to an electric double layer generated at an interface between an electrode and an electrolyte. Due to this principle, electric double layer capacitors have fast charging and discharging characteristics, and main power supply or auxiliary power supply of solar cell and communication equipment which require long life, fast charging, and high power, and also high capacity of electric vehicle and UPS It is suitable as a power supply
이러한 다양한 용도를 가지는 전기 이중층 커패시터의 제조에 있어서 현재까지 활성탄소 섬유에 금속 집전체를 형성하여 분극성 전극을 제조하는 방법 또한 탄소 페이스트를 전도성 고무 또는 금속 집전체에 압착하는 방법 내지 활성탄 분말을 용매에 믹싱하여(mixing)하여 슬러리를 금속집전체 위에 도포하는 방법 등이 개발되어 왔다In the manufacture of electric double layer capacitors having such various uses, a method of preparing a polarizable electrode by forming a metal current collector on activated carbon fibers to date, and a method of pressing a carbon paste onto a conductive rubber or a metal current collector to activated carbon powder as a solvent Has been developed to apply the slurry on the metal current collector by mixing in
이들 슬러리를 집전체 상에 도포하는 방법에 있어서는 결합제로 폴리사카라이드(polysacaride)계의 카르복시 메틸 셀룰로오즈(carboxymethyl cellulose: CMC) 또는 불소계의 폴리테트라플루오르에틸렌 (PTFE) 그리고 스티렌부타디엔루버 (SBR)등이 많이 사용되어 왔다. 그러나 카르복시 메틸 셀롤로우즈(CMC)는 상당히 큰 경도를 갖기 때문에 작업이 쉽지 않고 롤 작업 공정에서 매우 불리한 특성을 가진다. 이에 비하여 폴리테트라플루오르에틸렌 (polytetrafluoroethylene: PTFE)은 상기 카르복시 메틸 셀롤로우즈(CMC)보다 우수한 성질을 보이는 반면에 페이스트 공정을 통하여서만 작업이 가능하기 때문에 전극의 두께를 줄이는 것이 매우 곤란하며 슬 러리를 집전체위에 도포하여 만드는 전극성형이 매우 까다로운 단점이 있다 그리고 스티렌부타디엔루버 (styene betadien rubber : SBR)는 전극 성형에 하는데 있어 좋은 장점을 가지고 있지만 전극 저항이 매우 커 전극제조에 적용하기 곤란한 단점이 있다In the method of applying these slurries onto the current collector, polysaccharides such as polysacaride-based carboxymethyl cellulose (CMC) or fluorine-based polytetrafluoroethylene (PTFE) and styrene-butadiene louver (SBR) It has been used a lot. However, Carboxymethyl Cellulose (CMC) has a very large hardness and therefore is not easy to work and has very disadvantageous properties in the roll working process. On the other hand, polytetrafluoroethylene (PTFE) has superior properties to the carboxy methyl cellulose (CMC), but it is very difficult to reduce the thickness of the electrode because it can only work through the paste process, Electrode molding made by coating on the current collector has a very difficult disadvantage. Styrene betadien rubber (SBR) has a good advantage in forming the electrode, but it has a disadvantage that it is difficult to apply to electrode production due to its large electrode resistance.
또한 활성탄소 섬유를 사용하는 방법에 있어서는 전극의 저항 및 캐패시터의 내부저항이 작은 장점이 있으나 전극의 충진밀도가 낮기에 커패시터의 고에너지 밀도를 달성하는데 어려움이 있으며, 탄소 페이스트는 충진밀도를 높이는 것이 가능하나 전극의 내부저항이 커져서 출력밀도을 높이기에는 어려운 문제가 있다In addition, the method of using activated carbon fiber has the advantages of low electrode resistance and internal resistance of capacitor, but it is difficult to achieve high energy density of capacitor due to low filling density of electrode. It is possible, but it is difficult to increase the output density by increasing the internal resistance of the electrode.
따라서 적절한 결합제를 선택하는 것이 고출력 고밀도 커패시터의 전극의 특성향상에 있어서는 중요한 요인이 되고 있다.Therefore, the selection of a suitable binder has become an important factor in improving the electrode characteristics of high power high density capacitors.
본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 폴리메스 아크릴을 카르복시메틸 셀롤로우즈와 혼합한 결합제를 사용함으로써 적은 결합제의 양으로도 전극성형이 가능하고 전극의 밀도 향상 및 저항을 감소시킬 수 있는 전극 이중층 커패시터 및 그 제조방법을 제공함에 있다.The present invention is to solve the above problems, an object of the present invention is to form an electrode with a small amount of binder and improve the electrode density by using a binder mixed with polymethacryl and carboxymethyl cellulose And an electrode double layer capacitor capable of reducing resistance and a method of manufacturing the same.
상기한 본 발명의 목적을 달성하기 위하여 본 발명은 활성탄소 분말, 도전성 재료, 그리고 상기 활성탄소 분말 및 상기 도전성 재료를 집전체상에 부착하기 위한 결합제를 포함하는 전극을 구비하는 전기 이중층 커패시터를 제공한다.In order to achieve the above object of the present invention, the present invention provides an electric double layer capacitor having an electrode including an activated carbon powder, a conductive material, and a binder for attaching the activated carbon powder and the conductive material to a current collector. do.
본 발명은 본 발명의 또다른 목적을 달성하기 위하여 활성탄소분말, 도전성 재료 및 상기 결합제를 혼합하여 혼합물을 형성하는 단계; 혼합물을 집전체에 도포하여 전극을 형성하는 단계; 및 전극의 밀도를 극대화하기 위해 프레스 성형 단계를 포함하는 전기이중층 커패시터 제조방법을 제공한다.The present invention comprises the steps of mixing the activated carbon powder, conductive material and the binder to achieve another object of the present invention to form a mixture; Applying the mixture to a current collector to form an electrode; And it provides an electric double layer capacitor manufacturing method comprising a press molding step to maximize the density of the electrode.
상기와 같은 본 발명에서, 상기 활성화 탄소분말은 60~90중량%, 도전성 재료는 10~20중량%를 사용함이 바람직하고, 상기 결합제는 폴리메스 아크릴, 카르복시메틸 셀룰로우즈 및 고무계 폴리머로부터 선택되는 2종 이상을 사용함이 바람직하다. In the present invention as described above, the activated carbon powder is preferably 60 to 90% by weight, the conductive material 10 to 20% by weight, the binder is selected from polymethacrylic, carboxymethyl cellulose and rubber-based polymer It is preferable to use 2 or more types.
또한, 상기 고무계 폴리머는 스티렌 부타디엔루버를, 상기 활성화 탄소의 평균입도는 5~15㎛로, 도전성 재료는 카본블랙을 사용하고, 상기 폴리메스 아크릴 및 카르복시 메틸 셀룰로우즈는 전극에 대하여 1~10중량%를, 상기 고무계 폴리머는 전극에 대하여 1~5중량%를 사용함이 좋다.In addition, the rubber-based polymer is styrene butadiene louver, the average particle size of the activated carbon is 5 ~ 15㎛, the conductive material using carbon black, the polymethacrylic and carboxy methyl cellulose is 1 ~ 10 to the electrode By weight%, the rubber-based polymer is preferably used 1 to 5% by weight based on the electrode.
또한, 상기 본 발명의 방법에 있어서, 상기 혼합물의 혼합시 용매로서 물 또는 유기용매를 사용할 수 있고, 이 경우, 상기 물은 이온수를, 상기 유기 용매는 N-메틸 피롤리온을 사용함이 바람직하다. In the method of the present invention, water or an organic solvent may be used as a solvent when the mixture is mixed. In this case, it is preferable that the water is ionized water and the organic solvent is N-methyl pyrrolion. .
또한, 본 발명에서, 상기 집전체로서 알루미늄 에칭포일 및/또는 발포니켈을 사용함이 바람직하며, 상기 집전체에 도포된 혼합물은 60~150℃로 열풍건조시킴이 바람직하다.In addition, in the present invention, it is preferable to use aluminum etching foil and / or foamed nickel as the current collector, and the mixture applied to the current collector is preferably hot-air dried at 60 to 150 ° C.
상기 프레스 성형은 50~200℃의 온도범위로 열압착 함이 바람직하다. The press molding is preferably hot pressing in a temperature range of 50 ~ 200 ℃.
상기와 같은 본 발명에서, 상기의 결합제는 알루미늄 포일위에 활성화 탄소를 도포할 때 활성화 탄소가 포일에서 떨어지지 않게 하는 역할을 하고, 결합제로 서 폴리머는 전극형성을 더욱 용이하게 하여 주기 위해 사용한다. 또한 집전체로서의 알루미늄 포일은 순도 99.8%의 것을 사용한다.In the present invention as described above, the binder serves to prevent the activated carbon from falling off the foil when applying the activated carbon on the aluminum foil, the polymer is used as a binder to facilitate the formation of the electrode. As the current collector, aluminum foil having a purity of 99.8% is used.
또한, 본 발명의 방법에서, 혼합물을 형성할 때는 상온, 즉, 10~40℃의 온도에서 혼합하고 이 때 용매로 사용하는 물 또는 유기용매는 활성 탄소 대비 2~7배를 사용한다. 여기서의 물은 이온수가, 유기용매는 N-메틸 피롤리온(NMP)가 바람직한데, 이는 이들의 결합제는 잘 녹이면서도 결합제의 물성 변화를 일으키지 않기 때문이다.In the method of the present invention, when the mixture is formed, the mixture is mixed at room temperature, that is, at a temperature of 10 to 40 ° C, and water or an organic solvent used as a solvent is used 2 to 7 times compared to activated carbon. The water here is preferably ionic water and the organic solvent is N-methyl pyrrolion (NMP), because these binders dissolve well and do not cause changes in the properties of the binder.
본 발명의 바람직한 실시예에 따르면 상기 결합제는 폴리메스아크릴 및 카르복시메틸 셀롤로우즈을 혼합하여 형성된다. 이 경우 상기 결합제는 상기 전극에 대하여 상기 폴리메스아크릴 1∼10중량% 및 상기 카르복시메틸셀롤로오즈 1∼10중량%을 혼합하여 형성된다According to a preferred embodiment of the present invention, the binder is formed by mixing polymethacryl and carboxymethyl cellulose. In this case, the binder is formed by mixing 1-10 wt% of the polymethacryl and 1-10 wt% of the carboxymethylcellulose to the electrode.
또한 본 발명의 다른 바람직한 실시예에 따르면 상기 결합제는 상기 폴리메스아크릴 및 상기 카르복시메틸셀롤로오즈를 고무계열의 폴리머를 더 혼합하여 형성되며 이 경우 상기 바인더는 폴리메스아크릴, 카르복시메틸셀롤로오즈 및 스티렌부타디엔루버(SBR)을 포함하며 상기 결합제는 상기 전극에 대하여 상기 폴리메스아크릴 1∼10중량%, 상기 카르복시메틸셀로로오스 1∼10중량% 및 상기 스티렌부타디엔루버 1∼5중량%를 혼합하여 형성된다In addition, according to another preferred embodiment of the present invention, the binder is formed by further mixing the polymethacryl and the carboxymethyl cellulose in a rubber-based polymer, in which case the binder is polymethacryl, carboxymethyl cellulose and Styrene-butadiene louver (SBR), and the binder is mixed with 1-10% by weight of the polymethacryl, 1-10% by weight of the carboxymethylcellulose, and 1-5% by weight of the styrene-butadiene louver with respect to the electrode. Is formed by
본 발명에 따르면 폴리사카라이드 결합체에 아크릴계의 일종인 폴리메스아크릴계의 결합제를 혼합한 시스템을 적용함으로써 전극의 밀도를 증가시킬수 있는 동시에 저항값을 크게 감소 시킬수 있다. 따라서 이러한 전극을 포함하는 전기 이중 층 캐패시터의 성능을 크게 향상시킬수 있다According to the present invention, by applying a system in which a polysaccharide binder is mixed with a polymethacrylic binder, which is a kind of acrylic, the density of the electrode can be increased and the resistance can be greatly reduced. Therefore, the performance of the electric double layer capacitor including the electrode can be greatly improved.
본 발명에 있어서 아크릴계에 일종인 폴리메스아크릴을 물 또는 유기용매에 분산시킨뒤 폴리사카라이드계 및 스틴렌부타디엔루버에 혼합하여 이를 전극제조 결착제로 사용한다. 폴리메스아크릴은 소량으로도 전극의 활물질 사이에 강한 결착력을 가지게 되므로 단위면적당 활물질의 양을 늘릴수 있어 전극밀도 향상 및 결착제에 의한 저항 증가를 막아 출력밀도를 향상 시킨 커패시터를 제조할수 있으나 제조상 전극성형을 용이하게 하기 위하여 폴리사카라이드계 내지 고무계등의 다른 바인더를 혼합하여 사용하는것이 요구된다.In the present invention, polymethacrylic, which is a kind of acryl-based, is dispersed in water or an organic solvent, and then mixed with polysaccharide-based and styrene-butadiene louver, and used as an electrode manufacturing binder. Polymethacryl has a strong binding force between the active materials of the electrode even with a small amount, so it is possible to increase the amount of active material per unit area, and to increase the density of the electrode by preventing the increase of the electrode density and the resistance by the binder, and to manufacture a capacitor with improved output density. In order to facilitate molding, it is required to mix and use other binders such as polysaccharide-based rubber.
종래에는 폴리사카라이드계 내지 불소계 결합제을 사용할 경우 전극 성형이 어려울 뿐만 아니라 열압착시 활물질들이 박리되는 문제와 전극전체의 결합제를 10중량%이상을 첨가해야 해서 용량저하와 결합제에 의한 저항증가의 문제가 있었다. 또한 고무계 결합제를 사용할 경우 전극 성형 및 열압착에 의한 전극밀도 증가는 용이하나 자체적인 큰 저항으로 인해 커패시터의 내부저항을 증가시키는 원인이 되었다. 그러나 아크릴계인 폴리메스아크릴를 사용할 경우 3중량%이하의 비율 즉 결합제의 양을 종래에 비하여 1/3이하 정도로 줄이더라도 기존의 물리적 강도 및 결착력을 가질수 있다.Conventionally, when using a polysaccharide-based or fluorine-based binder, not only electrode molding is difficult but also active materials are peeled off during thermal compression, and the binder of the entire electrode needs to be added at least 10% by weight, thereby reducing capacity and increasing resistance due to the binder. there was. In addition, when the rubber-based binder is used, it is easy to increase the electrode density by electrode forming and thermocompression, but the internal resistance of the capacitor is increased due to its large resistance. However, in the case of using acrylic polymethacryl, even if the ratio of 3% by weight or less, that is, the amount of the binder is reduced to 1/3 or less than the conventional, it may have the existing physical strength and binding strength.
그러므로 본 발명은 활물질의 양을 늘림과 동시에 결합제에 의한 저항이 감소되면서 커패시터의 전극 밀도는 30%이상 증대되는 동시에 저항은 70%이상 감소 될뿐만 아니라 열압착에 의해서도 결합상태를 유지하기에 전극밀도를 향상 시킬수 있는 장점을 가진다.Therefore, the present invention increases the amount of active material and at the same time decreases the resistance by the binder, thereby increasing the electrode density of the capacitor by 30% or more, while reducing the resistance by 70% or more, and maintaining the bonding state even by thermocompression bonding. Has the advantage of improving.
실시예 1Example 1
먼저 아크릴계의 폴리메스아크릴 (PMA) 및 폴리사카라이드계인 카르복시메틸셀롤로오즈(CMC)를 혼합하여 하기의 표와 같이 결합제를 제조한 다음 활성탄소 분말, 도전재을 상기 바인더와 균일하게 혼합하여 혼합체를 만든 다음 상기 혼합체를 집전체상에 도포 및 열풍건조시키고 열압착 공정을 통하여 커패시터의 전극을 제조한 후 1030 크기의 원통형 type으로 커패시터를 제조하였다First, an acrylic polymethacryl (PMA) and a carboxymethyl cellulose (CMC), which is a polysaccharide, are mixed to prepare a binder as shown in the following table, and then an activated carbon powder and a conductive material are uniformly mixed with the binder to prepare a mixture. Next, the mixture was applied onto a current collector, hot air dried, and a capacitor electrode was manufactured through a thermocompression bonding process, and then a capacitor was manufactured in a cylindrical type having a size of 1030.
[표1]Table 1
활성탄소분말 및 도전재, 용매량은 같은 조성으로 하여 혼합하였으며 도포 및 열압착후 전극 두께도 같은 두께로 조절하였다 위의 표와 같이 전극제조상에 바인더의 양이 증가될수록 전극밀도는 낮아지면서 저항은 높아지는 특성을 보였다. Activated carbon powder, conductive material, and solvent were mixed in the same composition, and the electrode thickness was adjusted to the same thickness after coating and thermocompression. As the amount of binder in the electrode manufacturing increases, the electrode density decreases while the resistance decreases. It showed higher characteristics.
실험예2, 5와 같이 전체적인 결합제의 사용량은 같아도 폴리메스아크릴(PMA)를 많이 사용한 전극이 저항이 작고 밀도면에서 유리한 결과을 얻을수 있었으며 또한 같은 비율의 카르복시메틸 셀롤로오즈(CMC) 사용량에 비하여 열압착후에 전극의 박리 현상이 덜 나타나며 저항도 높은 현상이 일어난다Although the total amount of binder used was the same as in Experimental Examples 2 and 5, the electrode using a lot of polymethacryl (PMA) was able to obtain favorable results in terms of low resistance and density, and also compared with the same amount of carboxymethyl cellulose (CMC). After crimping, less electrode peeling occurs and resistance is higher.
실험예1의 경우 가장 작은 결합제 사용량으로도 전극제조가 가능하였으며 전극밀도 및 저항 또한 우수하였다In case of Experiment 1, electrode production was possible with the smallest amount of binder, and electrode density and resistance were also excellent.
실시예2Example 2
아크릴계인 폴리메스아크릴(PMA)를 3중량%로 혼합시키고 거기에 카르복시메틸셀룰로우즈 각가 2중량%, 4중량% 또한 스티렌부타디엔루버(SBR)을 각각 1중량%, 3중량%, 5중량%를 첨가하여 결합제를 제조하였다 아래 표2는 각각에 경우에 대한 시험결과이다3% by weight of acryl-based polymethacryl (PMA) is mixed, and 2% by weight of carboxymethyl cellulose, 4% by weight, and 1% by weight of styrene butadiene louver (SBR), 3% by weight, and 5% by weight, respectively. Binder was prepared by adding Table 2 below.
[표2][Table 2]
상기 표와 같이 결합제의 사용량이 적어지면서 전극특성의 좋아짐 즉 저항은 낮아지면서 전극밀도는 높아지는 경향을 알수 있다 또한 스티렌부타디엔루버(SBR)의 적은량을 사용하면 열압착후에도 전극의 성형 및 전극밀도에 향상에 도움이 되나 많은 양을 사용하게 되면 저항증가의 원인이 됨을 알 수 있었다 전극 특성이 가장 좋은 실험예1에 따라 제조된 1030 원통형 사이즈의 커패시터를 제조하여 정전용량 및 등가직렬저항(ESR)을 측정한 결과 각기 14F 및 20mΩ의 값을 나타내었다 이는 종전에 쓰던 결합제 시스템인 카르복시메틸 셀룰로우즈(CMC)와 폴리테트라플로오르에틸렌(PTFE)로 제작된 커패시터의 정전 용량 및 저항값인 약 9F 및 60mΩ에 비하여 현저하게 향상된 성능을 가짐을 알 수 있다 As shown in the table above, as the amount of binder used decreases, the electrode characteristics are improved, that is, the resistance is lowered, and the electrode density is increased. It was found that the use of a large amount caused the increase of resistance. The capacitance and equivalent series resistance (ESR) were measured by manufacturing a 1030 cylindrical size capacitor manufactured according to Experimental Example 1 with the best electrode characteristics. The results showed values of 14F and 20mΩ, respectively, which are about 9F and 60mΩ of the capacitance and resistance of capacitors made of carboxymethyl cellulose (CMC) and polytetrafluoroethylene (PTFE). It can be seen that it has a significantly improved performance compared to
본 발명에 따르면 폴리사카라이드 결합제에 아크릴계의 일종인 폴리메스아크릴의 바인더를 혼합한후 첨가제로 고무계인 스티렌부타디엔루버를 사용함으로써 전극의 밀도를 30%이상 증가시킴과 동시에 그 저항을 70%이하로 감소 시킬수 있다. 이러한 전극을 채용한 전기 이중층 커패시터는 에너지밀도 및 출력밀도를 크게 향상 시킬수 있다According to the present invention, the polysaccharide binder is mixed with a binder of polymethacrylic, which is a kind of acrylic, and then the rubber is used as an styrene butadiene louver to increase the density of the electrode by 30% or more and at the same time the resistance to 70% or less. Can be reduced. An electric double layer capacitor employing such an electrode can greatly improve energy density and output density.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040034893A KR100587963B1 (en) | 2004-05-17 | 2004-05-17 | Low resistance electric double layer capacitor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040034893A KR100587963B1 (en) | 2004-05-17 | 2004-05-17 | Low resistance electric double layer capacitor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050110073A KR20050110073A (en) | 2005-11-22 |
KR100587963B1 true KR100587963B1 (en) | 2006-06-08 |
Family
ID=37285648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040034893A Expired - Lifetime KR100587963B1 (en) | 2004-05-17 | 2004-05-17 | Low resistance electric double layer capacitor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100587963B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009091102A1 (en) * | 2008-01-14 | 2009-07-23 | Nesscap Co., Ltd. | Electrode for electrochemical capacitor and process for preparing the same |
KR101341853B1 (en) | 2011-12-26 | 2013-12-16 | 한국제이씨씨(주) | A method of low resistance electrode for high capacitor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11222732A (en) | 1997-12-04 | 1999-08-17 | Petoca Ltd | Mesophase pitch-based activated carbon fiber and electric double layer capacitor using the same |
KR20010084422A (en) * | 2000-02-25 | 2001-09-06 | 김선욱 | Electric double layer capacitor and manufacturing method thereof |
KR20020062193A (en) * | 2001-01-17 | 2002-07-25 | 닛신보세키 가부시키 가이샤 | Battery active material powder mixture, electrode composition for batteries, secondary cell electrode, secondary cell, carbonaceous material powder mixture for electrical double-layer capacitors, polarizable electrode composition, polarizable electrode, and electrical double-layer capacitor |
KR100392507B1 (en) | 2000-12-11 | 2003-07-22 | 한국전기연구원 | Method for producing Al-coated activated carbon filament electrode and electrical double layer capacitor using the same |
-
2004
- 2004-05-17 KR KR1020040034893A patent/KR100587963B1/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11222732A (en) | 1997-12-04 | 1999-08-17 | Petoca Ltd | Mesophase pitch-based activated carbon fiber and electric double layer capacitor using the same |
KR20010084422A (en) * | 2000-02-25 | 2001-09-06 | 김선욱 | Electric double layer capacitor and manufacturing method thereof |
KR100392507B1 (en) | 2000-12-11 | 2003-07-22 | 한국전기연구원 | Method for producing Al-coated activated carbon filament electrode and electrical double layer capacitor using the same |
KR20020062193A (en) * | 2001-01-17 | 2002-07-25 | 닛신보세키 가부시키 가이샤 | Battery active material powder mixture, electrode composition for batteries, secondary cell electrode, secondary cell, carbonaceous material powder mixture for electrical double-layer capacitors, polarizable electrode composition, polarizable electrode, and electrical double-layer capacitor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009091102A1 (en) * | 2008-01-14 | 2009-07-23 | Nesscap Co., Ltd. | Electrode for electrochemical capacitor and process for preparing the same |
KR100917408B1 (en) | 2008-01-14 | 2009-09-14 | 주식회사 네스캡 | Electrochemical Capacitor Electrode and Manufacturing Method Thereof |
KR101341853B1 (en) | 2011-12-26 | 2013-12-16 | 한국제이씨씨(주) | A method of low resistance electrode for high capacitor |
Also Published As
Publication number | Publication date |
---|---|
KR20050110073A (en) | 2005-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101571191B1 (en) | Electrode structure for an energy storage device | |
KR101038869B1 (en) | Electrode for capacitor and electric double layer capacitor comprising the same | |
CN102930997B (en) | The preparation of nitrogen-doped carbon composite materials and the application in ultracapacitor thereof | |
KR101486429B1 (en) | Composite for supercapacitor electrode with low initial resistance, manufacturing method of supercapacitor electrode using the composite and supercapacitor using the supercapacitor electrode manufactured by the method | |
CN100557741C (en) | Electrochemical capacitors with high specific surface flake graphite as electrode material | |
KR20170068492A (en) | Binder, use thereof and method for producing electrode | |
KR101095863B1 (en) | Electrode of high power super capacitor and manufacturing method thereof | |
JP2002353074A (en) | Electric double-layer capacitor, paste for electrode used for the capacitor, and elctrode | |
KR101494622B1 (en) | Composite for supercapacitor electrode and manufacturing method of supercapacitor electrode using the composite | |
KR100587963B1 (en) | Low resistance electric double layer capacitor and manufacturing method thereof | |
KR100917408B1 (en) | Electrochemical Capacitor Electrode and Manufacturing Method Thereof | |
KR20050092976A (en) | Electrodes and capacitors composed with porous 3-dimensional current collector, and their fabrication methods | |
KR100762797B1 (en) | Electrode of Energy Storage Device and Manufacturing Method Thereof | |
KR101120504B1 (en) | Electrode for electrochemical capacitor and process for preparing the same | |
KR101860755B1 (en) | Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method | |
KR100334241B1 (en) | Electric double layer capacitor and manufacturing method thereof | |
KR102188237B1 (en) | Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method | |
CN112397319A (en) | Preparation method and application of electrode plate based on nickel mesh current collector | |
KR102116279B1 (en) | Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode and manufacturing method of ultracapacitor | |
JP2001307965A (en) | Electric double layer capacitor and the manufacturing method | |
KR102731894B1 (en) | Electric double layer capacitor having low resistance and extended reliability | |
KR200320683Y1 (en) | Electric Double Layer Capacitors | |
KR100596693B1 (en) | Method for manufacturing activated carbon electrode for ultracapacitor and pellet-type activated carbon electrode prepared accordingly | |
KR100476300B1 (en) | Electrode of Electric Double Layer Capacitor | |
KR100518627B1 (en) | Electric Double Layer Capacitors and their manufacturing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20040517 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20060214 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20060525 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20060601 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20060602 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20090413 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20100528 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20110601 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20120604 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20130604 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20130604 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140603 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20140603 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20150605 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20150605 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20160601 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20160601 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20170601 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20170601 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20190522 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20190522 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20200506 Start annual number: 15 End annual number: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20210601 Start annual number: 16 End annual number: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20220602 Start annual number: 17 End annual number: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20230601 Start annual number: 18 End annual number: 18 |
|
PC1801 | Expiration of term |
Termination date: 20241117 Termination category: Expiration of duration |