[go: up one dir, main page]

KR100572019B1 - Polymer mortar and concrete using waste mine tailings as filler - Google Patents

Polymer mortar and concrete using waste mine tailings as filler Download PDF

Info

Publication number
KR100572019B1
KR100572019B1 KR20040037126A KR20040037126A KR100572019B1 KR 100572019 B1 KR100572019 B1 KR 100572019B1 KR 20040037126 A KR20040037126 A KR 20040037126A KR 20040037126 A KR20040037126 A KR 20040037126A KR 100572019 B1 KR100572019 B1 KR 100572019B1
Authority
KR
South Korea
Prior art keywords
filler
polymer mortar
concrete
tailings
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR20040037126A
Other languages
Korean (ko)
Other versions
KR20050112208A (en
Inventor
윤성진
문경주
최낙운
채영배
정수복
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR20040037126A priority Critical patent/KR100572019B1/en
Publication of KR20050112208A publication Critical patent/KR20050112208A/en
Application granted granted Critical
Publication of KR100572019B1 publication Critical patent/KR100572019B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • C04B20/008Micro- or nanosized fillers, e.g. micronised fillers with particle size smaller than that of the hydraulic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/18Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

본 발명은 금속광산 폐기물인 폐광미를 충전재로 활용한 폴리머 모르타르 및 콘크리트에 관한 것이다.The present invention relates to polymer mortar and concrete utilizing waste tailings, which are metal mine wastes, as filler.

이는특히, 폴리머 모르타르 및 콘크리트의 제조시 충전재로 이용되고 있는 중질탄산칼슘의 일부를 적정량의 폐광미로 치환하여 사용하는 것을 특징으로 한다.In particular, it is characterized in that a part of the heavy calcium carbonate that is used as a filler in the production of polymer mortar and concrete is replaced with an appropriate amount of waste tailings.

이에 따라서, 충전재로 중질탄산칼슘만을 사용한 경우보다 높은 휨강도 및 압축강도를 발현하며, 보다 경제적인 제품의 제조가 가능하고, 폐자원을 재활용 및 자원절약과 더불어 환경오염을 방지하는 것이다.Accordingly, it expresses higher flexural strength and compressive strength than the case of using only heavy calcium carbonate as the filler, and enables the production of more economical products, recycling waste resources, saving resources, and preventing environmental pollution.

폐광미, 충전재, 폴리머모르타르Waste tailings, filler, polymer mortar

Description

폐광산 광미를 충전재로 활용한 폴리머 모르타르 및 콘크리트{Polymer mortar and concrete with waste mine tailing as a filler}Polymer mortar and concrete with waste mine tailing as a filler

도1은 본 발명에 따른 중질탄산칼슘과 폐광미의 흡수지량을 도시한 그래프 이다. 1 is a graph showing the absorption capacity of heavy calcium carbonate and waste tailings according to the present invention.

도2는 본 발명에서 중질탄산칼슘과 폐광미를 충전재로 한 폴리머 모르타르의 사용가능 시간을 도시한 그래프 이다.Figure 2 is a graph showing the usable time of the polymer mortar filled with heavy calcium carbonate and waste tailings in the present invention.

도3은 본 발명에서 중질탄산칼슘과 폐광미를 충전재로 한 폴리머 모르타르의 휨강도를 도시한 그래프 이다.Figure 3 is a graph showing the bending strength of the polymer mortar filled with heavy calcium carbonate and waste tailings in the present invention.

도4는 본 발명에서 중질탄산칼슘과 폐광미를 충전재로 한 폴리머 모르타르의 압축강도를 도시한 그래프 이다.Figure 4 is a graph showing the compressive strength of the polymer mortar filled with heavy calcium carbonate and waste tailings in the present invention.

도5는 본 발명에서 중질탄산칼슘의 일부를 폐광미로 치환한 폴리머 모르타르의 휨강도를 도시한 그래프 이다.FIG. 5 is a graph showing the bending strength of polymer mortar in which a part of heavy calcium carbonate is substituted with waste tailings in the present invention.

도6은 본 발명에서 중질탄산칼슘의 일부를 폐광미로 치환한 폴리머 모르타르의 압축강도를 도시한 그래프 이다.FIG. 6 is a graph showing the compressive strength of a polymer mortar in which a part of heavy calcium carbonate is substituted with waste tailings in the present invention.

본 발명은 폐광산 광미(폐광미)를 충전재로서 활용한 폴리머 모르타르 및 콘크리트에 관한 것으로서, 보다 상세하게로는 폴리머 모르타르 및 콘크리트에 사용되는 충전재의 일부 또는 전체를 폐광미로 치환하는 구성으로 강도특성이 개선되고, 폐광미 사용에 따른 경화지연 현상을 특수 촉진제-개시제 시스템을 통해 극복하도록 하는 폐광산 광미를 충전재로 활용한 폴리머 모르타르 및 콘크리트에 관한 것이다.The present invention relates to a polymer mortar and concrete using waste mine tailings (waste tailings) as a filler, and more specifically, to improve the strength characteristics by replacing part or all of the fillers used in the polymer mortar and concrete with waste tailings. The present invention relates to a polymer mortar and concrete using waste mine tailings as a filler to overcome the curing delay caused by the use of waste tailings through a special accelerator-initiator system.

일반적으로 폴리머 모르타르 및 콘크리트 제조시 사용되는 충전재는, 수지의 증량, 성형성 개선, 내마모성 및 내열성의 향상, 수축의 저감 및 균열 방지 등 각종 성능향상을 목적으로 사용되어지는 미립자 상의 골재로서, 그 특성은 수지의 흡착량이 크지 않고, 성형물의 외관이나 제물성을 저하 시키지 않아야 하며, 비중이 크지 않고, 입자의 형상 및 크기가 적당해야 한다.Generally, fillers used in the production of polymer mortars and concrete are aggregates of fine particles used for the purpose of increasing performance of resins, improving moldability, improving wear resistance and heat resistance, reducing shrinkage, and preventing cracks. The adsorption amount of the silver resin should not be large, the appearance or product properties of the molded product should not be reduced, the specific gravity should not be large, and the shape and size of the particles should be appropriate.

그리고, 폴리머 모르타르 및 콘크리트에서 충전재로는, 탄산칼슘이 주로 사용되고, 상기 탄산칼슘은 석회석을 분쇄하여 만든 초미립 분말로서 석회석의 순도, 입자의 크기, 제조 방법에 따라 보통탄산칼슘, 중질탄산칼슘, 경질 탄산칼슘으로 구분되며, 그 중 중질 탄산칼슘이 폴리머 모르타르 및 콘크리트용 충전재로 주로 사용된다. In addition, as a filler in polymer mortar and concrete, calcium carbonate is mainly used, and the calcium carbonate is an ultrafine powder made by crushing limestone, and is usually calcium carbonate, heavy calcium carbonate, It is divided into hard calcium carbonate, of which heavy calcium carbonate is mainly used as a filler for polymer mortar and concrete.

상기와 같은 탄산칼슘은, 석회석 광산에서 채굴 및 파쇄, 분급과정을 거치기 때문에 자연환경의 훼손이나 파쇄 및 분급 과정에서의 분진발생으로 환경적인 문제점을 야기하고 있다. As described above, the calcium carbonate undergoes mining, crushing, and classification in limestone mines, causing environmental problems due to damage to the natural environment, dust generation during crushing, and classification.

또한, 석회석 광산의 한정적인 가행년수 또한 커다란 문제점으로 인식되고 있다.In addition, the limited running years of limestone mines are also recognized as a major problem.

한편, 폐광미는 광산 폐기물로써 현재 그 대부분은 매립처리되고 있으나 이 방법은 처리후 매립장 부지의 활용이 제한되며, 차단재의 수명에 따라 일정기간 후에 재처리 등 관리가 필요하다. On the other hand, waste tailings are mine wastes, most of which are currently landfilled, but this method is limited to the use of landfill sites after treatment, and needs to be managed after a certain period depending on the life of the barrier material.

특히, 중석선광 폐광미는 막대한 양이 적치되어 있으며, 적절한 활용방안이 강구되지 못하고 적치상태로 놓여 있어 사회문제화 되고 있다.In particular, the enormous amount of bitumen waste tailings has been accumulated, and the proper utilization method has not been devised and placed in a state of accumulation, which is becoming a social problem.

본 발명은 상기의 문제점을 개선하기 위한 그 목적은, 중석을 회수하고 남은 폐기물인 중석선광 폐광미를 폴리머 모르타르 및 콘크리트의 충전재로 활용하도록 하고, 폐광미와 탄산칼슘을 주재료로 하는 충전재를 제공하도록 하는 폐광산 광미를 충전재로 활용한 폴리머 모르타르 및 콘크리트를 제공하는데 있다.The object of the present invention is to improve the above problems, and to utilize the bituminous beneficiation waste tailings, which are the wastes left after recovering the bitumen, as a filler for polymer mortar and concrete, and to provide a filler mainly containing the waste tailings and calcium carbonate. To provide polymer mortar and concrete using waste mine tailings as filler.

상기 목적을 달성하기 위해, 폴리머 모르타르 및 콘크리트용 충전재 100중량%에 대하여 분말도 3,000㎠/g, 흡수지량 30㎖/g인 탄산칼슘 30 내지 50 중량%와 분말도 3,000㎠/g, 흡수지량 34㎖/g인 폐 광미 잔량으로 구성되는 폐광산 광미를 충전재로 활용한 폴리머 모르타르 및 콘크리트가 제공된다.In order to achieve the above object, 30 to 50% by weight of calcium carbonate having a powder degree of 3,000 cm 2 / g, an absorbent amount of 30 ml / g, and a powder of 3,000 cm 2 / g, an absorbent amount of 34 with respect to 100% by weight of the filler for polymer mortar and concrete Polymer mortar and concrete utilizing waste mine tailings consisting of the residual tailings residues of ml / g as filler are provided.

이하, 본 발명의 조성물을 상세히 설명한다.Hereinafter, the composition of the present invention will be described in detail.

본 발명에서 사용되는 폐광미는, 중석 폐광산의 광미장에서 채취하여 선별과정을 거쳐 분말도 3,000㎠/g의 미립분을 사용하였다. The waste tailings used in the present invention were collected from the tailings tailings of the bituminous waste mines, followed by a screening process, and the fine powder having a powder degree of 3,000 cm 2 / g was used.

잘 알려진 바와 같이 충전재는, 폴리머 모르타르 및 콘크리트 제조시 수지의 증량, 성형성 개선, 내마모성 및 내열성의 향상, 수축의 저감 및 균열 방지 등 각종 성능향상을 목적으로 사용되어지는 미립자 상의 골재로서 수지의 흡착량이 크지 않고, 성형물의 외관이나 제물성을 저하 시키지 않아야 하며, 비중이 크지 않고, 입자의 형상 및 크기가 적당해야 한다. As is well known, fillers adsorb the resin as aggregates on fine particles, which are used for the purpose of increasing the performance of polymer mortar and concrete, improving moldability, improving wear resistance and heat resistance, reducing shrinkage, and preventing cracking. The amount should not be large, the appearance or product properties of the molding should not be reduced, the specific gravity should not be large, and the shape and size of the particles should be appropriate.

통상적으로 사용되는 중질탄산칼슘은, 고경도의 결정질 석회석을 분쇄한 후 입자들을 분급하여 제조하며, CaCO3(95-98%)의 고순도 원석을 사용하여 평균입경 18㎛(1.0-60㎛)로 가공한 미세한 분말이며, 수지의 흡착량을 평가하는 지표인 흡수지량이 30정도이다. Heavy calcium carbonate is commonly used in, and prepared by grinding and then classifying the crystalline limestone of high hardness particles, with an average particle diameter 18㎛ (1.0-60㎛) by using highly pure ore of CaCO 3 (95-98%) It is a fine powder processed and the absorption index which is an index which evaluates the adsorption amount of resin is about 30.

그리고, 본 발명의 폐광미는, 선별과정을 거쳐 얻어지는 평균입경 19㎛(10-70㎛)의 미립분으로 흡수지량이 34정도로 이는 통상적인 중질탄산칼슘과 거의 유사한 수치이다. In addition, the waste tailings of the present invention is a fine particle having an average particle diameter of 19 μm (10-70 μm) obtained through the screening process, and its absorption index is about 34, which is almost similar to that of conventional heavy calcium carbonate.

그 결과는, 도면 1에 나타낸 바와 같으며, 이에따르면 흡수지량 뿐만 아니라 입자의 형상 및 비중 또한 유사한 것을 알수 있다. The results are as shown in Figure 1, whereby it can be seen that not only the absorbing amount but also the shape and specific gravity of the particles are similar.

본 발명의 폴리머 모르타르 및 콘크리트의 원료로서 사용된 결합재와 충전재의 성질은 다음과 같다.The properties of the binder and filler used as raw materials of the polymer mortar and concrete of the present invention are as follows.

표1은 본 실험에 사용된 수지의 성질을 나타낸 것이다. Table 1 shows the properties of the resin used in this experiment.

Density (20℃, g/㎤)Density (20 ℃, g / cm 3) Viscosity (20℃, mPa·s)Viscosity (20 ℃, mPas) Acid valueAcid value Styrene conctent(%)Styrene conctent (%) 1.121.12 250250 20.020.0 3838

표 2는 중질 탄산칼슘과 폐광미의 화학조성이다.Table 2 shows the chemical composition of heavy calcium carbonate and waste tailings.

구분division SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 MgOMgO CaOCaO Na2ONa 2 O K2OK 2 O SO3 SO 3 Ig. LossIg. Los 중질탄산칼슘Heavy calcium carbonate -- -- 0.1이내0.1 or less -- 56이내Within 56 -- -- 0.1이내0.1 or less 43이내Within 43 폐 광 미Waste tailings 59이내Within 59 9이내Within 9 10이내Within 10 2이내Within 2 8이내Within 8 0.3이내0.3 or less 2이내Within 2 -- 4이내Within 4

[실시예 1]Example 1

충전재가 중질탄산칼슘과 폐광미로 구성되며, 충전재/(결합재+충전재) 비를 30-60%로 하고, 모르타르의 경우 잔골재를, 콘크리트의 경우 잔골재와 굵은 골재를 더하여 구성될 수 있다.The filler is composed of heavy calcium carbonate and waste tailings, the filler / (binder + filler) ratio of 30-60%, the fine aggregate in the mortar, the fine aggregate and coarse aggregate in the concrete may be configured.

이와 같이 조성되는 충전재는 흡수율 1% 미만으로 건조시켜 골재와 혼합한 후, 촉진제로서 디메틸파라톨루이딘(DMT), 개시제로써 벤조일 퍼옥사이드(BPO)를 사용한 불포화 폴리에스테르 수지 결합재와 혼련하여 폴리머 모르타르 혹은 폴리머 콘크리트로 제조된다. The filler thus prepared is dried to less than 1% of water absorption, mixed with aggregate, and then kneaded with an unsaturated polyester resin binder using dimethyl paratoluidine (DMT) as an accelerator and benzoyl peroxide (BPO) as an initiator to form a polymer mortar or polymer. It is made of concrete.

표 3은 실험에 사용된 배합조건을 나타낸 것이다.Table 3 shows the mixing conditions used in the experiment.

Unsaturated Polyester(%)Unsaturated Polyester (%) Styrene Monomer(%)Styrene Monomer (%) DMT (phr*)DMT (phr * ) BPO (phr)BPO (phr) Filler/(Filler+Binder), %Filler / (Filler + Binder),% 6262 3838 0.40.4 1.01.0 30∼6030 to 60 * phr : parts per hundred parts of resin* phr: parts per hundred parts of resin

[실험예 1]Experimental Example 1

중질탄산칼슘 및 폐광미를 충전재로 사용한 폴리머 모르타르의 사용가능시간 측정.Measurement of the usable time of polymer mortar using heavy calcium carbonate and waste tailings as filler.

사용가능시간이란 결합재에 개시제를 첨가한 직후부터 액상 수지가 경화반응을 개시하고 결합재 및 폴리에스테르 모르타르가 유동성을 상실해 사용이 불가능한 때까지의 시간을 말하며, KS F 2484(폴리에스테르 레진 콘크리트의 사용가능 시간 측정 방법)의 4.3(감촉법)에 따라 폴리에스테르 모르타르의 사용가능 시간을 측정하였다. 이때의 측정조건은 20±2℃, 60%(RH)였다. The usable time is the time from the addition of the initiator to the binder until the liquid resin starts the curing reaction and the binder and the polyester mortar lose their fluidity and cannot be used. KS F 2484 (Use of polyester resin concrete) The usable time of the polyester mortar was measured according to 4.3 (feel method) of the available time measurement method). The measurement conditions at this time were 20 +/- 2 degreeC and 60% (RH).

그 결과는 도2와 같다. The result is shown in FIG.

상기 실험예 1에서 알 수 있는 바와 같이, 폐광미 치환율이 증가함에 따라 폐광미 속에 존재하는 미량의 중금속성분에 의해 사용가능 시간은 길어지고 있으나 상기 실시예 1에서 폴리머 모르타르의 사용가능시간은 약 20∼60min 범위에 있었으며, 이는 일반적인 불포화 폴리에스테르 수지의 경화시스템인 코발트계 촉진제 및 메틸에틸 케톤퍼옥사이드를 개시제로서 사용한 경우보다 약 1.5배 빠른 경화속도로서, DMT-BPO 시스템을 이용함으로써 폐광미 중의 미량중금속에 의한 경화지연을 개선할 수 있음을 알 수 있다.As can be seen in Experimental Example 1, as the waste tailings substitution rate is increased, the usable time is increased by the trace heavy metal components present in the waste tailings, but the usable time of the polymer mortar in Example 1 is about 20 It was in the range of ˜60 min, which is about 1.5 times faster than the cobalt accelerator and methylethyl ketone peroxide, which are curing systems of general unsaturated polyester resins, as a initiator. It can be seen that the curing delay due to heavy metals can be improved.

[실험예 2]Experimental Example 2

중질탄산칼슘 및 폐광미를 충전재로 사용한 폴리머 모르타르의 휨강도 및 압축강도측정.Measurement of Flexural Strength and Compressive Strength of Polymer Mortar Using Heavy Calcium Carbonate and Waste Tailings as Fillers

충전재/(충전재+결합재) 비 30-50%로 하여 KS F 2419에 의거해서 폴리에스테르 모르타르 공시체를 40×40×160㎜의 크기로 각각 3개씩 제작한 후 20±2℃, 60%(RH)의 조건에서 7일간 양생하였다. According to KS F 2419, three polyester mortar specimens were prepared in the size of 40 × 40 × 160mm according to KS F 2419, and then each 20 ± 2 ℃ and 60% (RH). Cured for 7 days under the conditions of.

KS F 2482(폴리에스테르 레진 콘크리트의 휨강도 시험방법) 및 KS F 2483(보의 절편에 의한 폴리에스테르 레진 콘크리트의 압축강도 시험방법)에 의거하여 휨강도 및 압축강도를 측정하였으며, 그 결과를 도3 및 도4에 나타내었다. The flexural strength and the compressive strength were measured according to KS F 2482 (Testing method of bending strength of polyester resin concrete) and KS F 2483 (Testing method of compressive strength of polyester resin concrete by beam section). 4 is shown.

실험예 2의 결과를 살펴보면, 충전재/(결합재+충전재) 비가 50%에서 폐광미를 충전재로 혼입한 폴리머 모르타르의 휨강도 및 압축강도가 중질탄산칼슘을 사용한 경우보다 약 1.2배 높게 측정되었다. In the results of Experimental Example 2, the flexural strength and the compressive strength of the polymer mortar incorporating the waste tailings as a filler at 50% of the filler / (binder + filler) ratio was measured about 1.2 times higher than when using heavy calcium carbonate.

실험예 2의 결과에 나타낸 바와 같이, 충전재/(결합재+충전재)비 30-50%의 이내의 범위에서 충전재로 폐광미가 중질탄산칼슘을 대체할 수 있음을 확인하였다. As shown in the results of Experimental Example 2, it was confirmed that the waste tailings can replace the heavy calcium carbonate with the filler within the range of 30-50% filler / (binder + filler) ratio.

[실시예 2]Example 2

상기 실시예 1의 실험결과를 토대로 강도 성상이 높게 측정된 충전재/(결합재+충전재) 비 50%를 대상으로 폴리머 모르타르 및 콘크리트 제조시 일반적인 충전재로 사용되는 중질탄산칼슘(100중량%)의 30-100%를 폐광미로 치환하여 구성되며, 이외의 실험 재료 및 조건은 실시예 1과 같다. 30- of heavy calcium carbonate (100% by weight) used as a general filler in the production of polymer mortar and concrete, based on a 50% filler / (binder + filler) ratio with high strength properties based on the experimental results of Example 1 It is configured by replacing 100% with the waste tailings, and other experimental materials and conditions are the same as in Example 1.

[실험예 3]Experimental Example 3

충전재/(결합재+충전재)비 50% 폴리머 모르타르의 휨강도 및 압축강도 측정.Determination of flexural and compressive strength of 50% polymer mortar with filler / (binder + filler) ratio.

KS F 2419에 의거해서 폴리에스테르 모르타르공시체를 40×40×160㎜의 크기로 각각 3개씩 제작한 후 20±2℃, 60%(RH)의 조건에서 7일간 양생하였다. According to KS F 2419, three polyester mortar specimens were prepared, each having a size of 40 × 40 × 160 mm, and then cured under conditions of 20 ± 2 ° C. and 60% (RH) for 7 days.

KS F 2482(폴리에스테르 레진 콘크리트의 휨강도 시험방법) 및 KS F 2483(보의 절편에 의한 폴리에스테르 레진 콘크리트의 압축강도 시험방법)에 의거하여 휨강도 및 압축강도를 측정하였으며, 그 결과를 하기 도5과 도6에 나타내었다.The flexural strength and the compressive strength were measured according to KS F 2482 (Testing method of flexural strength of polyester resin concrete) and KS F 2483 (Testing method of compressive strength of polyester resin concrete by beam section). And shown in FIG.

상기 실험예3에서 알 수 있는 바와 같이 본 발명에 따른 충전재를 사용하여 폴리머 모르타르의 휨강도 및 압축강도가 폐광미 치환율이 증가함에 따라 증가하며, 충전재를 폐광미로 전량 치환했을 때의 휨강도 및 압축강도는 1-2MPa의 강도 감소가 관찰되었다. As can be seen in Experiment 3, the bending strength and the compressive strength of the polymer mortar using the filler according to the present invention increases as the waste tailings substitution rate increases, and the bending strength and the compressive strength when the filler is completely replaced by the waste tailings are A decrease in strength of 1-2 MPa was observed.

이러한 강도 감소의 이유는 충전재의 흡수지량과 입형 그리고 수지의 경화반응 지연작용의 차이에서 비롯되는 것으로 사료된다. The reason for the decrease in strength may be due to the difference between the absorbing amount of the filler, the shape of the filler, and the delaying action of the resin.

그러나, 기존의 충전재로 사용되고 있는 중질탄산칼슘의 30내지 50중량%를 분말도 3,000㎠/g-6,000㎠/g의 폐광미로 치환하여 사용함으로써 폴리머 모르타르를 제조할 경우 휨강도 및 압축강도 발현의 면에서 볼 때 보다 높은 강도를 나타냄을 확인 할 수 있었다. However, when the polymer mortar is manufactured by replacing 30 to 50% by weight of heavy calcium carbonate, which is used as a conventional filler, with waste tailings of 3,000 cm 2 / g-6,000 cm 2 / g in powder, the flexural strength and the compressive strength are expressed. It could be seen that it shows higher strength.

본 발명에 의하면 폴리머 모르타르 및 콘크리트 제조시 중질탄산칼슘의 30내지 50중량%를 폐광미로 치환하여 사용함으로써 중질탄산칼슘만을 사용한 경우보다 좀 더 높은 휨강도 및 압축강도를 나타내면서도 강도가 높고 보다 경제적이어서 제조 원가를 절감할 수 있다. According to the present invention, by using 30 to 50% by weight of heavy calcium carbonate by replacing waste tailings in the manufacture of polymer mortar and concrete, it exhibits higher flexural strength and compressive strength than that of heavy calcium carbonate alone, but is high in strength and more economical. Cost can be reduced.

또한, 중질탄산칼슘 자체를 폐광미와 같은 폐기물로 대체 사용함으로써 자원절약과 더불어 환경오염을 방지하는 등의 효과가 있다.In addition, by using heavy calcium carbonate itself as waste such as waste tailings, there is an effect such as saving resources and preventing environmental pollution.

본 발명은 특정한 실시예에 관련하여 도시하고 설명 하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 정신이나 분야를 벗어나지 않는 한도내에서 본 발명이 다양하게 개량 및 변화될수 있다는 것을 당업계에서 통상의 지식을 가진자는 용이하게 알수 있음을 밝혀 두고자 한다.While the invention has been shown and described with respect to specific embodiments thereof, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit or scope of the invention as provided by the following claims. I would like to clarify that those who have knowledge of this can easily know.

Claims (5)

충전재로 중질탄산칼슘을 사용하며 불포화 폴리에스테르 수지결합재로 혼련하여 제조되는 폴리머 모르타르 및 콘크리트에 있어서,In polymer mortar and concrete prepared by using heavy calcium carbonate as filler and kneading with unsaturated polyester resin binder, 분말도 3,000㎠/g, 흡수지량 30㎖/g인 탄산칼슘 30 내지 50 중량%와, 분말도 3,000㎠/g, 흡수지량 34㎖/g인 폐광미 광미로 이루어지는 충전재를 불포화 폴리에스테르 수지결합재로 혼련하여 제조하고, 촉진제로 디메틸파라톨루이딘이 사용되고, 개시제로 벤조일퍼옥사이드가 사용되는 것을 특징으로 하는 폐광산 광미를 충전재로 활용한 폴리머 모르타르 및 콘크리트.Filler consisting of 30 to 50% by weight of calcium carbonate having a powder degree of 3,000 cm 2 / g, absorbing amount 30 ml / g, and waste tailings tailings having a powder degree of 3,000 cm 2 / g and absorbing amount 34 ml / g as an unsaturated polyester resin binder A polymer mortar and concrete utilizing waste mine tailings as a filler, which are prepared by kneading, dimethyl paratoluidine is used as an accelerator, and benzoyl peroxide is used as an initiator. 삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 폐광미는, 평균입경이 10-70㎛인 것을 특징으로 하는 폐광산 광미를 충전재로 활용한 폴리머 모르타르 및 콘크리트.The polymer mortar and concrete using waste mine tailings as a filler according to claim 1, wherein the waste tailings have an average particle diameter of 10-70 µm.
KR20040037126A 2004-05-25 2004-05-25 Polymer mortar and concrete using waste mine tailings as filler Expired - Lifetime KR100572019B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20040037126A KR100572019B1 (en) 2004-05-25 2004-05-25 Polymer mortar and concrete using waste mine tailings as filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20040037126A KR100572019B1 (en) 2004-05-25 2004-05-25 Polymer mortar and concrete using waste mine tailings as filler

Publications (2)

Publication Number Publication Date
KR20050112208A KR20050112208A (en) 2005-11-30
KR100572019B1 true KR100572019B1 (en) 2006-04-17

Family

ID=37287140

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20040037126A Expired - Lifetime KR100572019B1 (en) 2004-05-25 2004-05-25 Polymer mortar and concrete using waste mine tailings as filler

Country Status (1)

Country Link
KR (1) KR100572019B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042702B1 (en) 2011-03-30 2011-06-20 김태진 Polymer Concrete Manhole Composition Using Copper Slag Fine Aggregate
CN108439837A (en) * 2018-04-29 2018-08-24 乐山市南联环资科技有限责任公司 A kind of technique technology of preparing preparing the extraordinary mortar of building materials using potassium feldspar tailings

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915977B1 (en) * 2008-10-14 2009-09-10 김휘중 Asphalt concrete solidified material using tailings and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042702B1 (en) 2011-03-30 2011-06-20 김태진 Polymer Concrete Manhole Composition Using Copper Slag Fine Aggregate
CN108439837A (en) * 2018-04-29 2018-08-24 乐山市南联环资科技有限责任公司 A kind of technique technology of preparing preparing the extraordinary mortar of building materials using potassium feldspar tailings

Also Published As

Publication number Publication date
KR20050112208A (en) 2005-11-30

Similar Documents

Publication Publication Date Title
Xu et al. Feasibility of kaolin tailing sand to be as an environmentally friendly alternative to river sand in construction applications
Al-Fakih et al. On rubberized engineered cementitious composites (R-ECC): A review of the constituent material
Rumšys et al. Comparison of material properties of lightweight concrete with recycled polyethylene and expanded clay aggregates
Spósito et al. Incorporation of PET wastes in rendering mortars based on Portland cement/hydrated lime
US20160039716A1 (en) Ultra-high performance glass concrete and method for producing same
KR101051097B1 (en) High Performance Concrete Composition Using Slag
CN103819109A (en) Processing method for waste old rubber powder used for cement-based material
GB2460707A (en) Polymer concrete aggregate
KR20210074783A (en) Construction materials using lithium residue
Cwirzen Properties of SCC with industrial by-products as aggregates
Xi et al. Utilization of solid wastes (waste glass and rubber particles) as aggregates in concrete
KR100572019B1 (en) Polymer mortar and concrete using waste mine tailings as filler
CN102557505B (en) Alkali-activated slag mortar capable of reducing drying shrinkage and plastic cracking
Kumar et al. Study of effect of nano-silica on strength and durability characteristics of high volume fly ash concrete for pavement construction
Willis et al. The effect of filler loading and process route on the three-point bend performance of waste based composites
CN107857539A (en) A kind of method of discarded concrete regeneration
KR100509963B1 (en) Artificial Stone by Using of Bottom Ash and Method of making the Same
bdulrahman Abdulkareem et al. The effect of using rubber tier and glass waste on the properties of cement mortar
KR20110000436A (en) Concrete composition containing slag
Naik et al. 12 Sustainable Concrete with Industrial and Postconsumer By-Product Materials
Nili et al. A review on the use of various kinds of debris and demolitions in concrete and mortar mixes
Layachi et al. Influence of the recycled sand on the cement mortars
KR101069775B1 (en) High Performance Concrete Composition Using Slag
Singh et al. Strengthening of cement concrete using fly ash and metakoline: A review
KR102694408B1 (en) Asphalt Mixture Using Ferronickel Slag

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20040525

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20051031

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20060329

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20060411

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20060411

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20090413

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20100408

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20110701

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20120412

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20120412

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20130329

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20160325

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20170327

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20180406

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20190402

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20190402

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20191231

Year of fee payment: 19

PR1001 Payment of annual fee

Payment date: 20191231

Start annual number: 15

End annual number: 19

PC1801 Expiration of term

Termination date: 20241125

Termination category: Expiration of duration