KR100571542B1 - How to manufacture wear resistant machinery parts - Google Patents
How to manufacture wear resistant machinery parts Download PDFInfo
- Publication number
- KR100571542B1 KR100571542B1 KR1020040071427A KR20040071427A KR100571542B1 KR 100571542 B1 KR100571542 B1 KR 100571542B1 KR 1020040071427 A KR1020040071427 A KR 1020040071427A KR 20040071427 A KR20040071427 A KR 20040071427A KR 100571542 B1 KR100571542 B1 KR 100571542B1
- Authority
- KR
- South Korea
- Prior art keywords
- base material
- metal base
- wear
- sintered body
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/05—Boride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/10—Carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/20—Nitride
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
본 발명은 내마모 기계부품 제조방법에 관한 것이다. 본 발명의 제조방법은, 초경합금과 금속모재를 접합하여 내마모 기계부품으로 제조하는 방법에 있어서, 탄화물 또는 질화물 또는 붕화물로 된 경질입자 및 니켈과 실리콘과 붕소가 함유된 결합재 분말을 혼합하는 단계와; 혼합된 경질입자와 결합재 분말을 성형하는 단계와; 접촉된 상기 성형체와 금속모재를 대기중에서 1300℃ 온도에서 급속 가열 처리하여 성형체를 소결시킴과 동시에 소결체와 금속모재를 접합하는 단계와; 접합된 소결체와 금속모재를 공기중에서 서냉하는 단계를 구비한다. 이러한 본 발명에 의하면, 경질입자와 결합재와 모재를 대기중에서 1300℃ 온도에서 급속 가열함으로써, 대기중에서도 경질입자와 결합재의 소결을 가능하게 하고, 소결된 소결체를 금속모재에 접합할 수 있게 한다. 특히, 대기중에서도 소결체 형성을 가능하게 하고, 소결체와 금속모재의 접합을 가능하게 함으로써 고가의 진공장비가 필요치 않으며, 따라서 설비 투자 비용이 적게 든다. 또한, 소결 및 접합시간이 대폭적으로 줄어들므로 제작시간을 단축시킬 수 있고, 제작비용을 저감시킬 수 있다. 또한, 컨베이어를 통한 라인화가 가능하므로 내마모 기계부품의 대량 생산을 가능하게 한다. The present invention relates to a method for producing a wear resistant mechanical part. In the manufacturing method of the present invention, in the method of bonding a cemented carbide and a metal base material to produce wear-resistant mechanical parts, the step of mixing the hard particles of carbide or nitride or boride and the binder powder containing nickel, silicon and boron Wow; Molding the mixed hard particles and the binder powder; Sintering the molded body by simultaneously heating the contacted molded body and the metal base material at a temperature of 1300 ° C. in the air, and simultaneously bonding the sintered body and the metal base material to each other; And slowly cooling the joined sintered body and the metal base material in air. According to the present invention, by rapidly heating the hard particles, the binder and the base material at 1300 ° C. in the air, the hard particles and the binder can be sintered in the air, and the sintered sintered body can be joined to the metal base material. In particular, by enabling the formation of the sintered body in the air and the joining of the sintered body and the metal base material, expensive vacuum equipment is not required, and thus, equipment investment cost is low. In addition, since the sintering and joining time is drastically reduced, manufacturing time can be shortened and manufacturing cost can be reduced. In addition, it is possible to line through the conveyor to enable mass production of wear-resistant mechanical parts.
Description
도 1은 본 발명에 따른 내마모 기계부품 제조방법을 나타내는 블록도,1 is a block diagram showing a method for manufacturing a wear-resistant mechanical part according to the present invention,
도 2는 본 발명에 따른 내마모 기계부품 제조방법의 다른 실시예를 나타내는 블록도이다. 2 is a block diagram showing another embodiment of a method for manufacturing a wear-resistant mechanical part according to the present invention.
본 발명은 내마모 기계부품 제조방법에 관한 것으로, 보다 상세하게는 금속 모재에 초경합금층을 형성하여 내마모성이 요구되는 마찰 접촉부에 사용하는 내마모 기계부품 제조방법에 관한 것이다. The present invention relates to a method for producing a wear-resistant mechanical part, and more particularly, to a method for manufacturing a wear-resistant machine part for forming a cemented carbide layer on a metal base material to be used in a frictional contact requiring wear resistance.
초경합금은 텅스텐 탄화물, 크롬 탄화물 등의 탄화물, 질화물, 붕화물 등과 같은 경질의 입자와, 금속계 결합재로 구성된 것으로, 내마모성이 우수하여 공구류 및 내마모성이 크게 요구되는 기계부품에 널리 사용되고 있다. The cemented carbide is composed of hard particles such as carbides such as tungsten carbide and chromium carbide, nitrides and borides, and metal-based binders, and is widely used in machine parts requiring excellent wear resistance and high tool resistance.
이러한 초경합금을 기계적인 부품(이하, “내마모 기계부품”이라 칭함)으로 이용하기 위해서는, 경질의 입자와 겹합제를 혼합하고, 혼합된 혼합물을 원하는 모양으로 성형하며, 성형된 성형체를 일정한 온도로 가열하여 소결체로 제조한 후, 제조된 소결체를 철계합금 등과 같은 금속모재(이하 “모재”라 약칭함)에 접합한 뒤 사용한다. In order to use such cemented carbide as a mechanical part (hereinafter referred to as “wear-resistant mechanical part”), the hard particles and the binder are mixed, the mixed mixture is molded into a desired shape, and the molded body is formed at a constant temperature. After heating to prepare a sintered body, the prepared sintered body is used after bonding to a metal base material (hereinafter, abbreviated as "base material") such as an iron-based alloy.
여기서, 성형체를 소결체로 제조하는 소결공정과, 제조된 소결체를 금속모재에 접합하는 접합공정은, 진공분위기에서 이루어져야 한다. 왜냐하면, 대기중에서 소결공정과 접합공정을 시행하면, 성형체 내의 텅스텐 산화물이 산화하여 성형체의 소결과 접합이 제대로 이루어지지 않기 때문이다. Here, the sintering step of forming the molded body into a sintered body and the joining step of joining the manufactured sintered body to a metal base material should be performed in a vacuum atmosphere. This is because, if the sintering step and the joining step are performed in the air, tungsten oxide in the molded product is oxidized, and the molded product is not sintered and joined properly.
또한, 대기중에서는 소결공정과 접합공정을 시행하면, 성형체 내의 경질입자와 결합재의 사이 및, 소결체와 금속모재 사이에 존재하는 기포들이 그대로 존재하여 공정 후, 기공으로 남아 있기 때문이며, 따라서 진공분위기에서 소결공정과 접합공정을 시행함으로써, 경질입자와 결합재의 사이 및 소결체와 금속모재의 사이에 존재하는 기포들이 외부로 빠져나와 제거될 수 있게 하는 것이다. In addition, when the sintering process and the bonding process are performed in the air, bubbles existing between the hard particles and the binder in the molded body and between the sintered body and the metal base material remain as they are and remain as pores after the process. By performing the sintering process and the joining process, bubbles existing between the hard particles and the binder and between the sintered body and the metal base material can be taken out and removed.
한편, 이러한 종래의 내마모 기계부품 제조방법은, 성형체를 소결체로 제조하는 소결공정과, 제조된 소결체를 금속모재에 접합하는 접합공정이 진공분위기에서 이루어져야 하는 바, 이같은 공정을 시행하기 위해 고가(高價)의 진공 장비가 필요하다는 단점이 지적되고 있다. 이같은 단점은 고가의 진공 장비를 구비해야 하므로, 많은 설비 비용이 소요되는 문제점이 있다.On the other hand, the conventional wear-resistant mechanical parts manufacturing method, the sintering process for producing a molded body into a sintered body, and the joining process for joining the manufactured sintered body to a metal base material should be carried out in a vacuum atmosphere, so in order to implement such a process ( It is pointed out that the need for a high vacuum equipment. This disadvantage has to be equipped with expensive vacuum equipment, there is a problem that takes a lot of equipment costs.
이 뿐만 아니라, 진공 장비는 진공챔버 내부의 조건, 즉 챔버 내부의 진공도와 챔버 내부의 가열온도를, 성형체를 소결하고, 소결된 소결체를 금속모재에 접합하기에 최적의 진공도와 온도로 만들어 주어야 하기 때문에, 많은 시간과 많은 에 너지가 소요되는 단점도 있다. 이러한 단점은 내마모 기계부품의 제작시간을 지연시키는 원인이 되며, 또한 제작비용을 증가시키는 원인이 된다. 특히, 제작시간을 지연시키고, 제작비용을 증가시키므로 생산성을 저하시킨다. In addition to this, the vacuum equipment needs to make the conditions inside the vacuum chamber, that is, the vacuum degree inside the chamber and the heating temperature inside the chamber, at an optimum vacuum degree and temperature for sintering the molded body and joining the sintered sintered body to the metal base material. As a result, it takes a lot of time and a lot of energy. This disadvantage causes a delay in the production time of the wear-resistant mechanical parts, and also increases the manufacturing cost. In particular, the production time is delayed and the production cost is increased, thereby lowering the productivity.
또한, 진공 장비를 통하여 내마모 기계부품을 제조하는 방법은, 특성상 컨베이어를 통한 라인화가 불가능하기 때문에, 내마모 기계부품을 대량으로 생산하기에 부적합한 단점도 지적되고 있다. In addition, a method of manufacturing wear-resistant mechanical parts through vacuum equipment is also pointed out disadvantages that are inadequate for mass production of wear-resistant mechanical parts because it is impossible to line through a conveyor.
따라서, 본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로서, 그 목적은 대기중에서도 성형체를 소결할 수 있고, 소결된 소결체를 금속모재에 접합할 수 있는 내마모 기계부품 제조방법을 제공하는 데 있다. Accordingly, the present invention has been made to solve the above problems, and an object thereof is to provide a method for producing a wear-resistant mechanical part capable of sintering a molded body in the air, and joining the sintered sintered body to a metal base material. .
본 발명의 다른 목적은, 대기중에서도 성형체를 소결하고, 소결된 소결체를 금속모재에 접합할 수 있게 함으로써, 고가의 진공장비가 필요치 않는 내마모 기계부품 제조방법을 제공하는 데 있다. Another object of the present invention is to provide a method for producing a wear-resistant mechanical part that does not require expensive vacuum equipment by sintering a molded body in the air and bonding the sintered sintered body to a metal base material.
본 발명의 또 다른 목적은, 고가의 진공장비가 필요치 않음으로써 설비 투자 비용을 절감시킬 수 있는 내마모 기계부품 제조방법을 제공하는 데 있다. Another object of the present invention is to provide a wear-resistant mechanical parts manufacturing method that can reduce the equipment investment cost by not requiring expensive vacuum equipment.
본 발명의 또 다른 목적은, 진공 장비를 최적의 상태로 만들어주기 위한 별도의 시간과 에너지가 소요되지 않으므로, 제작시간을 단축시킬 수 있음은 물론, 제작비용을 저감시킬 수 있는 내마모 기계부품 제조방법을 제공하는 데 있다. Another object of the present invention, because it does not take a separate time and energy to make the vacuum equipment in an optimal state, it is possible to shorten the production time, as well as manufacturing wear-resistant mechanical parts that can reduce the manufacturing cost To provide a way.
본 발명의 또 다른 목적은, 컨베이어를 통한 라인화를 가능하게 함으로써 내마모 기계부품의 대량 생산을 가능하게 하는 내마모 기계부품 제조방법을 제공하는 데 있다.It is still another object of the present invention to provide a wear-resistant mechanical part manufacturing method that enables mass production of wear-resistant machine parts by enabling line through a conveyor.
이와 같은 목적을 달성하기 위해, 본 발명의 내마모 기계부품 제조방법은, 초경합금과 금속모재를 접합하여 내마모 기계부품으로 제조하는 방법에 있어서, 탄화물 또는 질화물 또는 붕화물로 된 경질입자 및 니켈과 실리콘과 붕소가 함유된 결합재 분말을 혼합하는 단계와; 혼합된 경질입자와 결합재 분말을 성형하는 단계와; 접촉된 상기 성형체와 금속모재를 대기중에서 1300℃ 온도에서 30초 이상 3분 이내로 급속 가열 처리하여 성형체를 소결시킴과 동시에 소결체와 금속모재를 접합하는 단계와; 접합된 소결체와 금속모재를 공기중에서 서냉하는 단계를 포함하는 것을 특징으로 한다. In order to achieve the above object, the wear-resistant mechanical part manufacturing method of the present invention is a method of manufacturing a wear-resistant mechanical part by joining a cemented carbide and a metal base material, the hard particles of carbide or nitride or boride and nickel Mixing the binder powder containing silicon and boron; Molding the mixed hard particles and the binder powder; Bonding the sintered body and the metal base material at the same time by rapidly heating the contacted molded body and the metal base material in the air at a temperature of 1300 ° C. for 30 seconds or more within 3 minutes; And slowly cooling the joined sintered body and the metal base material in air.
본 발명의 다른 제조방법은 초경합금과 금속모재를 접합하여 내마모 기계부품으로 제조하는 방법에 있어서, 금속모재 상에 탄화물 또는 질화물 또는 붕화물로 된 경질입자를 소정의 두께로 적층하는 단계와; 상기 경질입자층 위에 니켈과 실리콘과 붕소가 함유된 결합재 분말을 소정의 두께로 적층하는 단계와; 상기 금속모재와 경질입자층과 결합재층을 대기중에서 1300℃ 온도에서 30초 이상 3분 이내로 급속 가열 처리하여, 상기 경질입자와 결합재층을 소결시킴과 동시에 소결체와 금속모재를 접합하는 단계와; 접합된 소결체와 금속모재를 공기중에서 서냉하는 단계를 포함하는 것을 특징으로 한다. Another manufacturing method of the present invention comprises the steps of bonding a cemented carbide and a metal base material to produce wear-resistant mechanical parts, comprising the steps of: laminating hard particles of carbide, nitride or boride on a metal base material to a predetermined thickness; Stacking a binder powder containing nickel, silicon, and boron on the hard particle layer to a predetermined thickness; Rapidly heating the metal base material, the hard particle layer, and the binder layer at a temperature of 1300 ° C. for 30 seconds or more within 3 minutes to sinter the hard particles and the binder layer, and simultaneously join the sintered body and the metal base material; And slowly cooling the joined sintered body and the metal base material in air.
이하, 본 발명에 따른 내마모 기계부품 제조방법의 바람직한 실시예를 첨부 도면에 의거하여 상세히 설명한다.Hereinafter, preferred embodiments of the wear-resistant mechanical part manufacturing method according to the present invention will be described in detail with reference to the accompanying drawings.
먼저, 도 1에 도시된 바와 같이, 본 발명의 제조방법은, 초경합금의 원료가 되는 경질의 입자 및 결합재인 결합재 분말을 구비하고, 구비된 분말을 혼합 처리한다(S101). 여기서, 경질의 입자는 텅스텐 탄화물, 크롬 탄화물 등의 탄화물, 질화물, 붕화물 등을 포함하며, 결합재 분말은 금속계 분말, 예를 들면 코발트와 니켈(Ni)과 실리콘(Si)과 붕소(B) 및 탄소(C)와 철(Fe) 등을 포함한다. First, as shown in FIG. 1, the manufacturing method of the present invention includes hard particles, which are raw materials of cemented carbide, and a binder powder, which is a binder, and mixes the provided powder (S101). Herein, the hard particles include carbides such as tungsten carbide, chromium carbide, nitrides, borides, and the like, and the binder powder includes metal powders such as cobalt, nickel (Ni), silicon (Si), boron (B), and the like. Carbon (C), iron (Fe), and the like.
한편, 혼합 처리하는 단계가 완료되면, 혼합된 분말을 성형체로 성형하는 단계(S103)를 포함한다. 성형 단계(S103)는 혼합된 분말을 압축 성형하는 것으로, 접합하고자 하는 모재의 부분에 적합한 형상을 갖도록 성형하는 단계이다. On the other hand, when the step of the mixing process is completed, the step of forming a mixed powder into a molded body (S103). Molding step (S103) is a compression molding of the mixed powder, the step of molding to have a shape suitable for the portion of the base material to be bonded.
그리고 성형 단계(S103)가 완료되면, 성형된 성형체와 모재를 서로 접촉시키고, 접촉된 성형체와 모재를 대기중에서 1300℃ 온도에서 급속 가열처리한다(S105). 급속 가열처리 단계(S105)는 서로 접촉된 성형체와 모재를 대기중에서 1300℃ 온도에서 급속 가열함으로써, 성형체를 소결시킴과 동시에 소결된 성형체와 모재를 접합시키는 단계이다. When the molding step (S103) is completed, the molded body and the base material are brought into contact with each other, and the contacted molded body and the base material are rapidly heated at a temperature of 1300 ° C. in the air (S105). The rapid heat treatment step (S105) is a step of rapidly heating the molded body and the base material in contact with each other at a temperature of 1300 ° C. in the air, thereby sintering the molded body and simultaneously bonding the sintered molded body and the base material.
한편, 급속 가열처리 단계(S105)는 서로 접촉된 성형체와 모재를 대기중에서 1300℃ 온도에서 급속 가열함으로써, 대기중에서 소결공정과 접합공정을 시행하더라도 성형체 내의 텅스텐 산화물이 산화하는 것을 방지하며, 따라서 성형체의 소결이 원활하게 이루어질 수 있게 한다. On the other hand, the rapid heat treatment step (S105) by rapidly heating the molded body and the base material in contact with each other at a temperature of 1300 ℃ in the air, to prevent the oxidation of tungsten oxide in the molded body even if the sintering process and the bonding process in the air, and thus the molded body Sintering can be made smoothly.
즉, 대기중에서 성형체를 가열하면, 성형체 내의 텅스텐 산화물이 산화할 우려가 있으므로, 가능한 한 고온의 온도(1300℃)를 이용하여 상기 성형체를 소결온도까지 가열하되, 짧은 시간(1분 내외)내에 급속 가열함으로써, 성형체 내의 텅스텐 산화물이 산화되는 것을 미연에 방지하면서 소결시키는 것이다. In other words, when the molded body is heated in the air, the tungsten oxide in the molded product may be oxidized. Therefore, the molded product is heated to the sintering temperature using a temperature (1300 ° C.) as high as possible, but rapidly within a short time (about 1 minute). By heating, it sinters, preventing the tungsten oxide in a molded object from being oxidized beforehand.
또한, 급속 가열처리 단계(S105)는 서로 접촉된 성형체와 모재를 대기중에서 1300℃ 온도에서 급속 가열함으로써, 대기중에서 소결공정과 접합공정을 시행하더라도 성형체 내의 경질입자와 결합재의 사이 및, 성형체와 금속모재 사이에 존재하는 기포들이 외부로 빠져나와 제거될 수 있게 하며, 따라서 성형체의 소결 및, 소결체와 모재와의 접합이 원활하게 이루어질 수 있게 한다. In addition, the rapid heat treatment step (S105) is a rapid heating of the molded body and the base material in contact with each other at 1300 ℃ temperature in the air, even if the sintering process and the bonding process in the air between the hard particles and the binder in the molded body, the molded body and the metal The bubbles existing between the base materials can be taken out and removed to the outside, and thus the sintering of the molded body and the joining of the sintered body and the base material can be made smoothly.
즉, 대기중에서 성형체와 모재를 가열하면, 성형체 내의 경질입자와 결합재의 사이 및, 성형체와 금속모재 사이에 존재하는 기포들이 그대로 남아서 기공으로 존재할 우려가 있으므로, 가능한 한 고온의 온도(1300℃)를 이용하여 상기 성형체를 가열하되, 짧은 시간(1분 내외)내에 급속 가열함으로써, 성형체 내의 결합재가 순식간에 액상 상태에서 유동성을 가지게 하며, 따라서 충분한 유동성을 갖는 결합재로 하여금 성형체 내부 및, 성형체와 금속모재 사이에 존재하는 기포들을 충분히 외부로 배출시킬 수 있게 하는 것이다. That is, when the molded body and the base material are heated in the air, bubbles existing between the hard particles and the binder in the molded body and between the molded body and the metal base may remain and remain as pores. By heating the molded body by using a rapid heating within a short time (about 1 minute), the binder in the molded body has a fluidity in a liquid state in a moment, so that the binder having sufficient fluidity in the molded body and the molded body and the metal base material Bubbles existing in between will be enough to be discharged to the outside.
결과적으로, 이러한 급속 가열처리 단계(S105)는, 서로 접촉된 성형체와 모재를 대기중에서 1300℃ 온도에서 급속 가열함으로써, 대기중에서 소결공정과 접합공정을 시행하더라도 성형체의 소결과 성형체와 모재간의 접합이 원활하게 이루어질 수 있게 한다. As a result, this rapid heat treatment step (S105), by rapidly heating the molded body and the base material in contact with each other at a temperature of 1300 ℃ in the air, even if the sintering process and the bonding process in the air is performed, the sintering of the molded body and the bonding between the molded body and the base material Make it smooth.
한편, 이러한 급속 가열처리 단계(S105)에서 가열시간은 초경합금 소결체의 크기와 형상에 따라 30초 이상 3분이내가 적정하다. 가열시간이 30초 이하일 경우, 충분한 소결이 이루어지지 않으며, 3분 이상일 경우, 결합재 분말과 접합모재가 반응하여 접합모재가 용해될 우려가 있다. On the other hand, in this rapid heat treatment step (S105), the heating time is appropriate for 30 seconds or more and less than 3 minutes depending on the size and shape of the cemented carbide sintered body. When the heating time is 30 seconds or less, sufficient sintering is not performed. When the heating time is 3 minutes or more, the binder powder and the bonding base material may react to dissolve the bonding base material.
한편, 이러한 급속 가열처리 단계(S105)는, 고주파 유도 가열장치를 통해 시행한다. 고주파 유도 가열장치는 고주파 전류를 이용하여 가열물의 특정부위를 단시간내에 고온으로 가열하는 장치로서, 안전하고 환경공해 없이 급속 가열이 가능하다. 특히, 가열물의 특정부위만 급속히 가열할 수 있으므로 컨베이어를 통한 라인화를 가능하며, 아울러 가격이 저렴하여 시설 설비 투자 비용이 적게 들게 한다. On the other hand, this rapid heat treatment step (S105) is carried out through a high frequency induction heating apparatus. A high frequency induction heating apparatus is a device that heats a specific portion of a heating material to a high temperature in a short time by using a high frequency current, and can safely heat rapidly without environmental pollution. In particular, since only a specific portion of the heating material can be heated rapidly, it is possible to line through the conveyor, and the cost is low, thus making the facility equipment investment cost low.
뿐만 아니라, 고주파 유도 가열장치는, 가동 및 정지가 순간적으로 가능하며, 따라서 작업시간을 단축시킬 수 있고, 작업시간을 단축시킬 수 있으므로 생산성을 향상시킬 수 있게 한다. In addition, the high frequency induction heating apparatus can start and stop instantaneously, and thus can shorten working time and shorten working time, thereby improving productivity.
한편, 고주파 유도 가열장치 대신에, 레이저 조사장치를 이용하여 성형체와 모재를 급속 가열하는 하는 것도 가능하다. 레이저 조사장치는, 가열하고자 하는 특정부위에 레이저를 조사하여 가열하는 장치로서, 특정부위를 단시간내에 고온으로 가열할 수 있는 장치이다. 고주파 유도 가열장치와 레이저 조사장치는 이미 공지된 기술이므로 그에 대한 상세한 설명은 생략하기로 한다. In addition, it is also possible to rapidly heat a molded object and a base material using a laser irradiation apparatus instead of the high frequency induction heating apparatus. A laser irradiation apparatus is a device which irradiates a laser to heat a specific part to be heated, and is a device which can heat a specific part to high temperature in a short time. Since the high frequency induction heating apparatus and the laser irradiation apparatus are already known techniques, detailed description thereof will be omitted.
다시, 도 1을 참조하면, 본 발명의 제조방법은 급속 가열처리 단계(S105)후, 접합된 모재와 소결체(이하, “내마모 기계부품”이라 함)를 상온에서 서서히 냉각시키고(S107), 냉각된 내마모 기계부품을 기계 가공 처리한다(S109). Referring back to FIG. 1, in the manufacturing method of the present invention, after the rapid heat treatment step (S105), the bonded base material and the sintered body (hereinafter referred to as “wear resistance machine parts”) are gradually cooled at room temperature (S107), The cooled wear-resistant mechanical part is machined (S109).
냉각 단계(S107)는, 서로 접합된 모재와 소결체를 공기 중에서 서냉시킨다. In the cooling step S107, the base material and the sintered body joined to each other are slowly cooled in air.
그리고 기계 가공 처리 단계(S109)는 내마모 기계부품의 내?외면을 가공 및 연마 처리함으로써 높은 정밀도로 만들어준다.And the machining step (S109) is made with high precision by machining and polishing the inner and outer surfaces of the wear-resistant mechanical parts.
이상에서와 같이 여러 단계를 통하여 제조된 내마모 기계부품은, 높은 강도 를 가지면서 접합된다. 또한, 대기중에서 제조되므로 빠른 시간내에 다량으로 제조될 수 있다. As described above, the wear-resistant mechanical parts manufactured through various steps are joined with high strength. In addition, since it is manufactured in the atmosphere, it can be manufactured in large quantities in a short time.
한편, 본 발명자는 본 발명의 제조방법으로 내마모 기계부품을 제조해 보았으며, 제조된 내마모 기계부품의 경도를 시험해 보았다. 이에 따르면,On the other hand, the inventor tried to produce a wear-resistant mechanical part by the production method of the present invention, and tested the hardness of the manufactured wear-resistant mechanical parts. According to this,
(실시예 1)(Example 1)
탄소강 재질의 모재에 폭 10mm, 길이 100mm, 깊이 20mm의 홈을 형성하고, 형성된 홈에 경질입자인 텅스텐 탄화물 분말과 결합재인 니켈 합금 분말을 혼합/성형하여 장입하였다. 그리고 경질입자와 결합재가 장입된 모재를 고주파 유도 가열장치를 이용하여 1300℃의 온도로 1분간 가열하였으며, 가열 후, 공기중에서 서냉시켰다.A groove having a width of 10 mm, a length of 100 mm, and a depth of 20 mm was formed in a carbon steel base material, and tungsten carbide powder as a hard particle and nickel alloy powder as a binder were mixed and molded into the groove formed. Then, the base material loaded with the hard particles and the binder was heated at a temperature of 1300 ° C. for 1 minute using a high frequency induction heating apparatus, and after heating, was slowly cooled in air.
그 결과, 서냉된 경질입자와 결합재는, 소결되어 초경합금으로 형성되었으며, 형성된 초경합금은 모재와 높은 결합도로 접합되었다. 또한, 형성된 초경합금의 경도는 HRA 84 이상의 값이 측정되었다. As a result, the slow cooled hard particles and the binder were sintered to form a cemented carbide, and the cemented carbide was bonded to the base metal with high bonding. In addition, the hardness of the formed cemented carbide was measured with a value of HRA 84 or more.
다음으로, 도 2에는 본 발명에 따른 내마모 기계부품 제조방법의 다른 실시예를 나타내는 블록도가 도시되어 있다. Next, FIG. 2 is a block diagram showing another embodiment of a method for manufacturing a wear-resistant mechanical part according to the present invention.
다른 실시예의 제조방법은, 경질입자와 결합재를 혼합하는 상술한 실시예와는 달리, 모재 상에 경질입자를 소정의 두께로 적층(S101)한 다음, 그 위에 결합재 결합재 분말을 소정의 두께로 적층(S103)하도록 구성된다. Unlike the above-described embodiment in which the hard particles and the binder are mixed with each other, the manufacturing method of another embodiment laminates the hard particles with a predetermined thickness on the base material (S101), and then deposits the binder binder powder on the substrate with a predetermined thickness. (S103).
그리고 경질입자층과 결합재층의 적층이 완료되면, 모재와, 모재에 적층된 경질입자와 결합재를 대기중에서 1300℃ 온도에서 1분간 급속 가열처리한다(S105). 물론, 급속 가열처리 단계(S105)는 고주파 유도 가열장치 또는 제이저 조사장치를 통해 시행한다. When the lamination of the hard particle layer and the binder layer is completed, the base material and the hard particles and the binder laminated on the base material are rapidly heated at a temperature of 1300 ° C. for 1 minute in the air (S105). Of course, the rapid heat treatment step (S105) is carried out through a high frequency induction heating apparatus or a Jayzer irradiation apparatus.
그리고 급속 가열처리 단계(S105)가 완료되면, 접합된 모재와 소결체(이하, “내마모 기계부품”이라 함)를 상온에서 서서히 냉각시키고(S107), 냉각된 내마모 기계부품을 기계 가공 처리한다(S109).When the rapid heat treatment step S105 is completed, the bonded base material and the sintered body (hereinafter referred to as “wear-resistant mechanical parts”) are gradually cooled at room temperature (S107), and the cooled wear-resistant mechanical parts are machined. (S109).
이러한 단계를 갖는 다른 실시예의 제조방법은. 경질입자와 결합재를 혼합하지 않고 적층하므로 작업시간을 단축시킬 수 있다. 또한, 경질입자와 결합재를 적층하므로 별도의 성형작업이 필요 없으며, 따라서 작업시간을 단축시킬 수 있다. Another embodiment of the manufacturing method having these steps. Since the hard particles and the binder are laminated without mixing, the working time can be shortened. In addition, since the hard particles and the binder are laminated, a separate molding operation is not necessary, and thus the working time can be shortened.
한편, 본 발명자는 다른 실시예의 제조방법으로 내마모 기계부품을 제조해 보았으며, 제조된 내마모 기계부품의 경도를 시험해 보았다. 이에 따르면, On the other hand, the inventor tried to produce a wear-resistant mechanical parts by the manufacturing method of another embodiment, and tested the hardness of the manufactured wear-resistant mechanical parts. According to this,
(실시예 2)(Example 2)
탄소강 재질의 모재에 폭 10mm, 길이 100mm, 깊이 20mm의 홈을 형성하고, 형성된 홈에 경질입자인 텅스텐 탄화물 분말을 10mm 적층하며, 그 위에 결합재인 니켈-실리콘-붕소 합금 분말을 10mm 적층하였다. 그리고 경질입자와 결합재가 적층된 모재를 고주파 유도 가열장치를 이용하여 1300℃의 온도로 1분간 가열하였으며, 가열 후, 공기중에서 서냉시켰다.A groove having a width of 10 mm, a length of 100 mm, and a depth of 20 mm was formed on the base material of carbon steel, and 10 mm of tungsten carbide powder as hard particles was laminated on the formed groove, and 10 mm of nickel-silicon-boron alloy powder as a binder was laminated thereon. In addition, the base material, on which the hard particles and the binder were laminated, was heated at a temperature of 1300 ° C. for 1 minute using a high frequency induction heating apparatus, and after heating, was slowly cooled in air.
그 결과, 서냉된 경질입자와 결합재는, 소결되어 초경합금으로 형성되었으며, 형성된 초경합금은 모재와 높은 결합도로 접합되었다. 또한, 형성된 초경합금의 경도는 HRA 84 이상의 값이 측정되었다. As a result, the slow cooled hard particles and the binder were sintered to form a cemented carbide, and the cemented carbide was bonded to the base metal with high bonding. In addition, the hardness of the formed cemented carbide was measured with a value of HRA 84 or more.
결과적으로, 상기와 같은 제조방법에 의해 제조된 내마모 기계부품은, 높은 경도와 우수한 내마모 성능 및 우수한 내충격 성능을 갖는 것으로 나타났다. As a result, the wear-resistant mechanical parts manufactured by the manufacturing method as described above have been shown to have high hardness, excellent wear resistance and excellent impact resistance.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니며, 특허청구범위에 기재된 범주내에서 적절하게 변경 가능한 것이다.Although the preferred embodiments of the present invention have been described above by way of example, the scope of the present invention is not limited to these specific embodiments, and may be appropriately changed within the scope of the claims.
이상에서 설명한 바와 같이, 본 발명에 따른 내마모 기계부품 제조방법은, 경질입자와 결합재와 모재를 대기중에서 1300℃ 온도에서 급속 가열함으로써, 대기중에서도 경질입자와 결합재의 소결을 가능하게 하고, 소결된 소결체를 금속모재에 접합할 수 있게 한다. 특히, 대기중에서도 소결체 형성을 가능하게 하고, 소결체와 금속모재의 접합을 가능하게 함으로써 고가의 진공장비가 필요치 않으며, 따라서 설비 투자 비용이 적게 든다. 또한, 소결 및 접합시간이 대폭적으로 줄어들므로 제작시간을 단축시킬 수 있고, 제작비용을 저감시킬 수 있다. 또한, 컨베이어를 통한 라인화가 가능하므로 내마모 기계부품의 대량 생산을 가능하게 한다. As described above, the wear-resistant mechanical part manufacturing method according to the present invention, by rapidly heating the hard particles, the binder and the base material at 1300 ℃ in the air, it is possible to sinter the hard particles and the binder in the air, and It is possible to join the sintered body to the metal base material. In particular, by enabling the formation of the sintered body in the air and the joining of the sintered body and the metal base material, expensive vacuum equipment is not required, and thus, equipment investment cost is low. In addition, since the sintering and joining time is drastically reduced, manufacturing time can be shortened and manufacturing cost can be reduced. In addition, it is possible to line through the conveyor to enable mass production of wear-resistant mechanical parts.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040071427A KR100571542B1 (en) | 2004-09-07 | 2004-09-07 | How to manufacture wear resistant machinery parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040071427A KR100571542B1 (en) | 2004-09-07 | 2004-09-07 | How to manufacture wear resistant machinery parts |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060022566A KR20060022566A (en) | 2006-03-10 |
KR100571542B1 true KR100571542B1 (en) | 2006-04-14 |
Family
ID=37129059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040071427A Expired - Fee Related KR100571542B1 (en) | 2004-09-07 | 2004-09-07 | How to manufacture wear resistant machinery parts |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100571542B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102485876B1 (en) * | 2021-09-27 | 2023-01-06 | 홍익대학교 산학협력단 | Rapid Sintering Heating Apparatus having VCSEL Module |
-
2004
- 2004-09-07 KR KR1020040071427A patent/KR100571542B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR20060022566A (en) | 2006-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ye et al. | Fabrication of metal matrix composites by metal injection molding—A review | |
JP2003201504A (en) | Method of producing hardmetal-bonded body | |
JP5411334B2 (en) | Powder metal friction stir welding tool and manufacturing method thereof | |
EP1300209A2 (en) | Process of metal injection molding multiple dissimilar materials to form composite parts | |
US20090274923A1 (en) | Tools Having Compacted Powder Metal Work Surfaces, And Method | |
WO2012128708A1 (en) | Method of preparation of a metal/cemented carbide functionally graded material | |
CN103537699A (en) | Preparation method of polycrystalline cubic boron nitride composite sheet | |
JP2013030741A (en) | Rare earth permanent magnet and manufacturing method of the same | |
CN107866753B (en) | Metal bond grinding wheel with random porous structure, device and preparation process | |
JP2005187944A (en) | Wear-resistant mechanical component and method of producing the same | |
CN114101678B (en) | Preparation method of metal-ceramic composite material | |
KR100571542B1 (en) | How to manufacture wear resistant machinery parts | |
KR100623304B1 (en) | Cutting tip, manufacturing method and cutting tool | |
Robert-Perron et al. | Tensile properties of sinter hardened powder metallurgy components machined in their green state | |
KR100650409B1 (en) | Manufacturing method of complex shape material using powder injection molding and material produced accordingly | |
Tokita | Development of square-shaped large-size WC/Co/Ni system FGM fabricated by spark plasma sintering (SPS) method and its industrial applications | |
CN106735163A (en) | A kind of processing method of iron-nickel alloy part | |
KR101304758B1 (en) | Process for Composite Materials of Nanostructured Metal Carbides-Intermetallic Compounds | |
CN208132742U (en) | Metal bonded grinding wheel with random porous structure | |
KR20060040018A (en) | Composite layer material and its manufacturing method | |
KR100678589B1 (en) | Composite layer material and its manufacturing method | |
CN102312148B (en) | Composite material for cutter with strength and toughness and preparation method thereof | |
KR100678590B1 (en) | Composite layer material and its manufacturing method | |
KR100571541B1 (en) | Manufacturing method of wear resistant machinery parts | |
CN115156541B (en) | A kind of preparation method of high-performance laminated cemented carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20040907 |
|
PA0201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20060123 |
|
PG1501 | Laying open of application | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20060410 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20060411 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20090410 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20090410 Start annual number: 4 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20120410 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20120410 Start annual number: 7 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160304 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20160304 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20170324 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20170324 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20180328 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20180328 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20190401 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20190401 Start annual number: 14 End annual number: 14 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20240121 |