KR100547256B1 - Crack Inhibition Method for Alumina Ceramics Molded by Wet Molding - Google Patents
Crack Inhibition Method for Alumina Ceramics Molded by Wet Molding Download PDFInfo
- Publication number
- KR100547256B1 KR100547256B1 KR1020030067932A KR20030067932A KR100547256B1 KR 100547256 B1 KR100547256 B1 KR 100547256B1 KR 1020030067932 A KR1020030067932 A KR 1020030067932A KR 20030067932 A KR20030067932 A KR 20030067932A KR 100547256 B1 KR100547256 B1 KR 100547256B1
- Authority
- KR
- South Korea
- Prior art keywords
- polymer
- strength
- alumina
- molded body
- gel
- Prior art date
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000000465 moulding Methods 0.000 title claims abstract description 28
- 239000000919 ceramic Substances 0.000 title abstract description 34
- 230000005764 inhibitory process Effects 0.000 title 1
- 229920000642 polymer Polymers 0.000 claims abstract description 71
- 238000001035 drying Methods 0.000 claims abstract description 29
- 230000002787 reinforcement Effects 0.000 claims abstract description 24
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 15
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 15
- 150000004676 glycans Chemical class 0.000 claims abstract description 14
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 14
- 239000005017 polysaccharide Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000000843 powder Substances 0.000 claims description 10
- 238000005266 casting Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 239000002002 slurry Substances 0.000 abstract description 24
- 238000005336 cracking Methods 0.000 abstract description 13
- 239000007864 aqueous solution Substances 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000002156 mixing Methods 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 9
- 230000003014 reinforcing effect Effects 0.000 description 8
- 239000005416 organic matter Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000000499 gel Substances 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 5
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 238000013001 point bending Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000009694 cold isostatic pressing Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007569 slipcasting Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 241000220259 Raphanus Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- -1 display Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63416—Polyvinylalcohols [PVA]; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/636—Polysaccharides or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
본 발명은 습식 성형법으로 제조된 알루미나 세라믹스 성형체의 균열 억제 방법에 관한 것으로서, 보다 상세하게는 세라믹 슬러리와 젤형성 고분자로서 상온응고형 고분자인 폴리사카라이드(polysaccharide)계 고분자 수용액을 혼합하여 원하는 형상의 금형에 주입하여 알루미나 세라믹스를 습식법으로 성형시에 폴리비닐 알코올(polyvinyl alcohol)을 강도 보강용 고분자로 첨가함으로써, 기존의 성형체 제조방법보다 단시간 내 건조시키더라도 균열이 없는 알루미나 세라믹스 성형체가 제조됨과 동시에, 이의 강도가 효과적으로 증가되어 건조, 취급 또는 가공시 발생할 수 있는 미세한 균열 등의 발생을 억제할 수 있게 됨에 따라 기계적 강도 측면에서 신뢰성이 향상된 알루미나 세라믹스 성형체를 보다 간단하게 실형상으로 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for suppressing cracking of alumina ceramic molded bodies manufactured by a wet molding method, and more particularly, to mixing a ceramic slurry and a polysaccharide-based polymer aqueous solution, which is a room temperature solidified polymer, as a gel-forming polymer. By injecting alumina ceramics into the mold by adding polyvinyl alcohol as a polymer for strength reinforcement during wet molding, alumina ceramics molded products are produced without cracking even if dried in a shorter time than the conventional molded product manufacturing method. As the strength thereof is effectively increased, it is possible to suppress the occurrence of fine cracks, which may occur during drying, handling or processing. About All.
폴리사카라이드, 폴리비닐알코올, 알루미나 세라믹스Polysaccharides, polyvinyl alcohol, alumina ceramics
Description
도 1은 본 발명의 전체 공정을 나타내는 흐름도이다.1 is a flow chart showing the overall process of the present invention.
도 2는 본 발명에서 제조한 알루미나 세라믹스 성형체들의 사진이다.Figure 2 is a photograph of the alumina ceramic moldings produced in the present invention.
도 3은 비교예에 따라 젤형성 고분자만을 첨가하여 제조한 알루미나 세라믹스 성형체와 실시예 2, 3, 4에 따라 강도보강용 고분자를 첨가하여 제조한 알루미나 세라믹스 성형체의 건조 수축율 변화를 나타내는 그래프이다.3 is a graph showing the change in the dry shrinkage of the alumina ceramics molded product prepared by adding only the gel-forming polymer according to the comparative example and the alumina ceramics molded product prepared by adding the polymer for strength reinforcement according to Examples 2, 3 and 4.
도 4는 강도보강용 고분자 첨가량에 따른 성형체의 강도변화를 나타내는 그래프이다. 4 is a graph showing the change in strength of the molded body according to the amount of the polymer for strength reinforcement.
본 발명은 습식 성형법으로 제조된 알루미나 세라믹스 성형체의 균열 억제 방법에 관한 것으로서, 보다 상세하게는 세라믹 슬러리와 젤형성 고분자로서 상온 응고형 고분자인 폴리사카라이드(polysaccharide)계 고분자 수용액을 혼합하여 원하는 형상의 금형에 주입하여 알루미나 세라믹스를 습식법으로 성형시에 폴리비닐 알코올(polyvinyl alcohol)을 강도 보강용 고분자로 첨가함으로써, 기존의 성형체 제조방법보다 단시간 내에 알루미나 세라믹스 성형체가 건조됨과 동시에, 이의 강도가 효과적으로 증가되어 건조, 취급 또는 가공시 발생할 수 있는 미세한 균열 등의 발생을 억제할 수 있게 됨에 따라 기계적 강도 측면에서 신뢰성이 향상된 알루미나 세라믹스 성형체를 보다 간단하게 실형상으로 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for suppressing cracking of alumina ceramic molded bodies manufactured by a wet molding method, and more particularly, to mixing a ceramic slurry and a polysaccharide-based polymer aqueous solution, which is a room temperature solidified polymer, as a gel-forming polymer, to a desired shape. By injecting alumina ceramics into the mold by adding a polyvinyl alcohol as a polymer for strength reinforcement during the wet molding process, the alumina ceramics molded body is dried within a shorter time than the conventional molding method, and its strength is effectively increased. The present invention relates to a method of manufacturing alumina ceramics molded body having improved reliability in terms of mechanical strength and thus, in a simpler form, as it becomes possible to suppress occurrence of fine cracks, which may occur during drying, handling or processing.
세라믹스 소재는 내열성, 내마모성, 내식성 등의 특성이 매우 우수하여 반도체, 디스플레이, 철강 산업 등에 광범위하게 응용되고 있으며, 세라믹스 소재를 이용한 부품은 단순형상 뿐만 아니라 복잡형상에 이르기까지 다양한 형상으로의 제형화가 요구된다. 이와 같이 세라믹스 소재의 산업소재로서 중요성이 증대되고 있으나, 소량 다품종인 제품 특성과 복잡형상의 세라믹스 실형상 성형과 관련된 과대한 초기 설비 투자 등의 이유로 국내 연구는 제조방법에 대한 개선 보다는 세라믹스 재질 자체에 대한 연구에 머물고 있는 실정이다.Ceramic materials are widely used in the semiconductor, display, and steel industries because of their excellent heat resistance, abrasion resistance, and corrosion resistance. Parts using ceramic materials require formulation in various shapes ranging from simple shapes to complex shapes. do. As such, the importance of ceramics is increasing as an industrial material. However, due to the large-scale product characteristics and excessive initial investments related to the actual shape of ceramics in complex shapes, domestic research has focused on the ceramic material itself rather than the improvement of the manufacturing method. I'm staying in the study.
따라서 간단하면서 효율적으로 저가격의 실형상 세라믹스를 성형할 수 있는 방법의 개발이 상기와 같은 다양한 분야에서 응용되고 있는 세라믹스 소재의 실용화의 돌파구를 마련하기 위하여 필수적으로 요구되고 있다.Therefore, the development of a method that can easily and inexpensively form a low-cost real-shaped ceramics is indispensable in order to provide a breakthrough for the practical use of ceramic materials that are applied in various fields as described above.
종래의 세라믹스 성형방법으로는 슬립캐스팅(slip casting), 사출성형(injection molding), 냉간등압성형(cold isostatic pressing) 등이 있다.Conventional ceramic molding methods include slip casting, injection molding, cold isostatic pressing, and the like.
여기에서, 슬립캐스팅 기술은 금형 안에서 슬러리의 물을 분리하여 고화시키는 방법으로 성형체의 조성과 밀도가 불균일하기 때문에 건조 및 소결시 균열 및 뒤틀림 현상이 발생하고 성형체의 강도가 낮아서 두꺼운(약 10 mm 이상) 성형체를 제조하는데 문제가 있었다. 사출성형기술은 다량의 유기물(20 ∼ 25 중량%)을 첨가한 슬러리에 압력을 가하여 성형하는 방법인데, 사출성형 후 균열 없이 완전하게 유기물을 제거하는 문제와 이때 발생되는 유해가스 처리의 환경오염 문제가 대두되고 있는 등의 문제점이 있다. 또한, 냉간등압성형은 실형상으로 제조하기 어렵고 성형후 가공량이 많아져서 부품가격이 비싸기 때문에 경제성이 없는 등의 산업화에 있어서의 문제점이 지적되고 있다.Here, the slip casting technique is a method of separating and solidifying the water in the slurry in the mold, so that the composition and density of the molded body are non-uniform, so that cracking and warping occurs during drying and sintering, and that the strength of the molded body is low and thick (about 10 mm or more). ) There was a problem in manufacturing the molded article. Injection molding technology is a method of molding by applying pressure to a slurry to which a large amount of organic material (20 to 25% by weight) is added. The problem of completely removing organic materials without cracking after injection molding and the environmental pollution problem of harmful gas treatment generated at this time There is a problem such as the rise. In addition, since the cold isostatic pressing is difficult to manufacture in a real shape, and the amount of processing after the molding is increased, the parts price is high, and therefore, problems in industrialization, such as lack of economics, have been pointed out.
상기한 바와 같은 종래의 세라믹스 성형기술들의 단점을 극복하기 위하여 1989년 오크 릿즈 국립 연구소(Oak Ridge National Laboratory)에서 젤캐스팅(gelcasting)기술[미국특허 제5,028,362호]을 개발하게 되었다. 상기한 젤캐스팅 기술은 용매에 대하여 10 ∼ 20 중량%의 단량체를 녹인 용액에 세라믹 분말을 분산시켜 슬러리를 만들고 젤화 개시제와 촉매를 첨가한 후 금형에 주입하여 성형하고, 60 ∼ 80 ℃의 온도에서 중합시킴으로써 젤화시키는 방법으로 성형체를 제조하는 방법이다. 이 기술은 비교적 점도가 낮은 슬러리를 이용하기 때문에 주입시 유동성이 좋아 복잡 형상의 성형체를 균질하게 제조할 수 있고, 성형체의 강도는 중합체에 의하여 슬립캐스팅된 성형체보다 높으며, 제조된 성형체내의 유기물 함량은 2.5 ∼ 5 중량% 정도이므로 소성시 사출성형에 비하여 유기물 제거가 상대적으로 용이하다는 장점이 있다. 그러나 상기의 젤캐스팅 기술에 사용되는 아크릴아마이드나 메틸렌비스아크릴아마이드 등의 단량체, 암모늄퍼설페이트 또는 포타슘퍼설페이트 등의 개시제, 테트라디메틸렌디아민 등의 촉매를 사용하기 때문에 독성 및 환경오염 문제가 있으며, 중합반응온도가 60 ∼ 80 ℃로 상대적으로 높고, 성형체의 강도는 높아서 취급하기에는 용이하나 가공시 부러지거나 깨지는 문제가 있을 수 있으며, 소성시 유기물 분해에 의한 유독가스가 발생되는 문제점이 있다.In order to overcome the shortcomings of the conventional ceramic molding techniques as described above, the gel casting technique (US Pat. No. 5,028,362) was developed at Oak Ridge National Laboratory in 1989. The above-mentioned gel casting technique disperses ceramic powder in a solution in which 10 to 20% by weight of monomer is dissolved in a solvent to make a slurry, adds a gelling initiator and a catalyst, and injects it into a mold to be molded, and at a temperature of 60 to 80 ° C. It is a method of manufacturing a molded object by the method of gelatinizing by superposing | polymerizing. Since this technique uses a slurry having a relatively low viscosity, it has good fluidity during injection, which makes it possible to homogeneously manufacture a complex shaped body, and the strength of the molded body is higher than that of the slip casted by the polymer, and the content of organic matter in the manufactured molded body. Since it is about 2.5 to 5% by weight, there is an advantage that the removal of organic matter is relatively easy as compared with injection molding during firing. However, since the monomers such as acrylamide and methylenebisacrylamide used in the gel casting technique, initiators such as ammonium persulfate or potassium persulfate, and catalysts such as tetradimethylenediamine, there are toxicity and environmental pollution problems. The polymerization temperature is relatively high, such as 60 to 80 ℃, the strength of the molded body is easy to handle, but may have a problem that breaks or breaks during processing, there is a problem that toxic gas is generated by decomposition of organic matter during firing.
또 다른 성형법 중 폴리사카라이드계 젤형성 고분자를 이용한 성형법(미국특허 제4,734,237호)은 4 중량% 정도의 유기물을 첨가하여 80 ∼ 100 ℃로 사출성형하는 방법으로, 이는 상기와 같은 아크릴 아마이드를 사용하는 젤캐스팅 방법에 비하여 유기물 분해에 의한 유독가스 발생 문제는 감소하나, 폴리사카라이드계 젤 특성상 성형체의 강도가 낮아서 취급이 어렵고 가공하기 어려워 상업적 응용이 이루어지지 않고 있다.Among other molding methods, a molding method using a polysaccharide-based gel-forming polymer (US Pat. No. 4,734,237) is a method of injection molding at 80 to 100 ° C. by adding about 4% by weight of organic material, which uses acrylamide as described above. Compared to the gel casting method, the problem of generation of toxic gas due to decomposition of organic matter is reduced, but due to the characteristics of the polysaccharide gel, the strength of the molded body is low, making it difficult to handle and difficult to process.
이에 본 발명에서는 상기한 문제점을 해결하기 위하여 연구노력한 결과, 폴리사카라이드계 젤형성 고분자를 이용한 알루미나 세라믹스 성형시 강도보강용 고분자로써 폴리비닐알코올을 첨가할 경우, 젤형성 고분자의 첨가량을 최소화 할 수 있으면서, 건조 균열의 발생을 억제할 수 있어서 알루미나 세라믹스 성형체의 강도를 효과적으로 증가시킬 수 있음을 확인하고 본 발명을 완성하였다.Accordingly, in the present invention, as a result of research efforts to solve the above problems, when polyvinyl alcohol is added as a strength-reinforcing polymer when molding alumina ceramics using a polysaccharide-based gel-forming polymer, the amount of the gel-forming polymer can be minimized. While it was confirmed that the occurrence of dry cracking can be suppressed and the strength of the alumina ceramic molded body can be effectively increased, the present invention was completed.
또한, 본 발명에서는 상기와 같은 강도보강용 고분자가 첨가되어 제조된 성 형체의 건조시 성형체의 함수율에 따라 건조속도를 3단계로 조절하여 수행함으로써 건조시 균열의 형성을 보다 억제할 수 있음을 확인하고 본 발명을 완성하였다.In the present invention, it is confirmed that the formation of cracks during drying can be further suppressed by adjusting the drying rate in three steps according to the moisture content of the molded body when the molded product is added to the above-described strength reinforcing polymer. This invention was completed.
따라서 본 발명은 폴리사카라이드계 젤형성 고분자를 이용한 알루미나 세라믹스 성형시, 강도보강용 고분자를 첨가함으로써 건조균열을 억제하고 건조시 건조속도의 조절에 의하여 취급성 및 가공성이 양호하도록 성형체의 강도를 향상시키는 방법을 제공하는데 그 목적이 있다.
Therefore, in the present invention, when molding alumina ceramics using a polysaccharide-based gel-forming polymer, the strength of the molded product is improved to suppress dry cracking by adding a strength reinforcing polymer and to improve handling and workability by controlling the drying speed during drying. Its purpose is to provide a way to make it work.
본 발명은 폴리사카라이드계 젤형성 고분자를 사용한 알루미나 세라믹 성형체의 습식 성형법에 있어서, 강도 보강용 고분자로서 폴리비닐알코올을 사용하여 젤 캐스팅 법으로 알루미나 세라믹 성형체를 성형한 후, 성형체의 함수율이 0.18 이상에서는 20 × 10-3 g/hr·㎠의 건조속도로 수행되는 제1단계, 함수율이 0.17 ∼ 0.07 범위에서는 10 × 10-3 g/hr·㎠의 건조속도로 수행되는 제2단계, 및 함수율 0.07 미만에서는 1 × 10-3 g/hr·㎠의 건조속도로 수행되는 제3단계로 건조시키는 알루미나 세라믹스 성형체의 균열 억제 방법을 특징으로 한다.According to the present invention, in the wet molding method of an alumina ceramic molded body using a polysaccharide-based gel-forming polymer, after molding the alumina ceramic molded body by a gel casting method using polyvinyl alcohol as a polymer for strength reinforcement, the water content of the molded body is 0.18 or more. In the first step is carried out at a drying rate of 20 × 10 -3 g / hr ·
이와 같은 본 발명을 상세하게 설명하면 다음과 같다.The present invention will be described in detail as follows.
본 발명은 세라믹 슬러리와 젤형성 고분자로서 상온응고형 고분자인 폴리사카라이드(polysaccharide)계 고분자 수용액을 혼합하여 원하는 형상의 금형에 주입하여 알루미나 세라믹스를 습식법으로 성형시에 폴리비닐 알코올(polyvinyl alcohol)을 강도 보강용 고분자로 첨가하는 것을 특징으로 하며, 그 상세한 공정을 첨부도면 도 1에 나타내었다.The present invention mixes a polysaccharide-based polymer aqueous solution of a room temperature solidification polymer as a ceramic slurry and a gel-forming polymer and injects it into a mold of a desired shape to form polyvinyl alcohol when the alumina ceramics are formed by a wet method. It is characterized in that it is added as a polymer for strength reinforcement, the detailed process is shown in the accompanying drawings.
먼저, 수계 알루미나 세라믹 슬러리 용액을 제조하는데, 용매인 물에 분산제와 소포제를 혼합하고 세라믹 분말을 첨가한 후 볼밀을 이용하여 안정한 세라믹 슬러리를 제조하는데, 이때 상기 세라믹 슬러리용액의 고형분 함량 40 ∼ 55 부피%가 되도록 하여 사용하는데, 이때 고형분 함량이 40 부피% 미만이면 성형후 건조하는 과정에서 건조수축이 크게 일어나기 때문에 균열이 발생하기 쉽고, 고형분 함량이 55 부피%를 초과하면 슬러리의 점도가 높아져서 금형에의 주입이 어려워진다. 분산제로는 암모늄 폴리메타크릴레이크 수용액과 같은 수계 분산제를 사용할 수 있는데, 사용량은 세라믹 분말 사용량에 대하여 1 ∼ 2 중량% 일 경우 바람직하다.First, an aqueous alumina ceramic slurry solution is prepared. A dispersant and an antifoaming agent are mixed with water as a solvent, a ceramic powder is added, and then a stable ceramic slurry is prepared by using a ball mill, wherein the solid content of the ceramic slurry solution is 40 to 55 vol. If the solid content is less than 40% by volume, cracking is liable to occur due to large drying shrinkage during drying after molding, and if the solid content exceeds 55% by volume, the viscosity of the slurry becomes high Injection becomes difficult. As a dispersant, an aqueous dispersant such as an aqueous solution of ammonium polymethacrylate may be used. The amount of the dispersant is preferably 1 to 2% by weight based on the amount of ceramic powder used.
젤형성 고분자 수용액은 젤형성 고분자를 물에 넣고 60 ∼ 80 ℃의 온도로 승온시켜 용해시켜서 제조한다. 사용되는 젤형성 고분자는 60 ∼ 80 ℃의 온도에서 용매인 물에 잘 녹고, 이를 5 ∼ 25 ℃로 냉각시키면 응고되는 폴리사카라이드계 고분자를 사용하는데, 이때 상기 폴리사카라이드계 고분자로서, 구체적으로 예를 들면 한천 및 그 유도체 등 중에서 선택된 것을 사용할 수 있다. 젤형성 고분자의 사용량은 세라믹 분말에 대하여 0.2 ∼ 0.7 중량% 인데, 젤형성 고분자의 사용량이 0.2 중량% 미만이면 습식 성형 후 성형체의 응고가 일어나는 유기물의 양이 적어서 성형체의 모양을 유지하기 어렵고, 0.7 중량%를 초과하면 습식성형용 슬러리의 점도가 높아져서 유동성이 증가하기 때문에 복잡성형 금형에 주입하기가 어렵고 성형 후 유기물제거도 어려워진다.Gel-forming polymer aqueous solution is prepared by placing the gel-forming polymer in water and heating it to a temperature of 60 ~ 80 ℃ dissolved. The gel-forming polymer to be used is a polysaccharide-based polymer that melts well in water, which is a solvent at a temperature of 60 to 80 ° C, and solidifies when cooled to 5 to 25 ° C. In this case, as the polysaccharide-based polymer, For example, those selected from agar and derivatives thereof can be used. The amount of the gel-forming polymer is 0.2 to 0.7% by weight relative to the ceramic powder. When the amount of the gel-forming polymer is less than 0.2% by weight, the amount of organic matter that hardens the molded body after wet molding is difficult to maintain the shape of the molded body. When the weight% is exceeded, the viscosity of the wet molding slurry is increased, so that the fluidity is increased, so that it is difficult to inject into the complex mold and it is difficult to remove the organic matter after molding.
강도보강용 고분자 수용액은 폴리비닐알코올을 세라믹 분말 사용량에 대하여 0.2 ∼ 0.7 중량%가 되도록 물에 용해시켜서 제조한다. 이때, 강도보강용 고분자의 사용량이 0.2 중량% 미만이면 성형체의 강도 보강효과가 나타나지 않고, 0.7 중량%를 초과하면 세라믹 슬러리의 점도가 지나치게 높아져서 금형에 주입하기가 어려워지고, 유기물 제거시 발생되는 유해가스의 양도 증가하여 바람직하지 않다.The polymer solution for strength reinforcement is prepared by dissolving polyvinyl alcohol in water so as to be 0.2 to 0.7% by weight based on the amount of ceramic powder used. At this time, when the amount of the polymer for strength reinforcement is less than 0.2% by weight, the strength reinforcing effect of the molded body does not appear, and when it exceeds 0.7% by weight, the viscosity of the ceramic slurry becomes too high, making it difficult to inject into the mold, and harmful substances generated during organic matter removal. The amount of gas also increases, which is undesirable.
상기와 같이 제조된 수계 알루미나 세라믹 슬러리, 젤형성 고분자 수용액 및 강도보강용 고분자 수용액을 고점도용 교반기에 넣고 균일하게 혼합한 후 200 ∼ 700 mmHg의 진공에서 탈포한다. 이때 혼합용기의 온도는 젤형성 고분자가 응고되지 않도록 60 ∼ 80 ℃를 유지하도록 하면서 습식 성형용 슬러리의 최종 고체함량이 40 ∼ 55 부피%가 되도록 조절한다.The aqueous alumina ceramic slurry, the gel-forming polymer aqueous solution and the strength-reinforcing polymer aqueous solution prepared as described above are placed in a high viscosity stirrer and mixed uniformly, and then degassed in a vacuum of 200 to 700 mmHg. At this time, the temperature of the mixing vessel is controlled to maintain the 60 ~ 80 ℃ to prevent the gel-forming polymer to coagulate so that the final solid content of the slurry for wet molding is 40 to 55% by volume.
균일하게 혼합된 습식성형용 슬러리를 40 ∼ 60 ℃로 유지되고 있는 금형에 주입하여 원하는 형상을 성형하는데, 이때 주입 압력은 1 ∼ 5 kgf/cm2 가 되도록 하고, 금형 안에서 고립기공이 발생하지 않도록 금형을 설계하거나 금형 내부를 진공분위기로 한다.A uniformly mixed wet molding slurry is injected into a mold maintained at 40 to 60 ° C. to form a desired shape. At this time, the injection pressure is 1 to 5 kgf / cm 2 and the isolation pores are not generated in the mold. Design the mold or vacuum the inside of the mold.
금형에의 주입이 완료되고 나면 금형의 온도를 5 ∼ 25 ℃ 범위로 충분히 냉각시켜 주입된 슬러리를 응고시킨 다음 금형을 제거하여 탈형한다.After the injection into the mold is completed, the temperature of the mold is sufficiently cooled in the range of 5 to 25 ° C. to solidify the injected slurry, and then the mold is removed and demolded.
상기 탈형된 성형체를 온도와 습도를 제어하여 건조시켜서 균열이 없는 실형상의 세라믹스 성형체를 제조하는데, 탈형시 온도는 20 ∼ 80 ℃ 범위가 되도록 조절하고, 상대습도는 60 ∼ 90 %가 되도록하는 것이 바람직하다.Drying the demolded molded body by controlling temperature and humidity to produce a ceramic-shaped ceramic molded body without cracks, and when demolding, the temperature is controlled to be in the range of 20 to 80 ° C., and the relative humidity is 60 to 90%. Do.
본 발명에서는 건조조건을 성형체의 함수율에 따라 3단계로 구분하여 수행함에 다른 특징이 있다.In the present invention, there are other characteristics in that the drying conditions are carried out in three steps according to the water content of the molded body.
즉, 최적의 건조 조건으로는 성형체의 함수율이 0.18 이상에서는 20 ×10-3 g/hr·㎠의 건조속도로 비교적 빠르게 건조시키는 제1단계와, 함수율 0.17 ∼ 0.07 범위에서는 10 ×10-3 g/hr·㎠의 중간속도로 건조시키는 제2단계, 및 함수율 0.07 미만부터는 1 ×10-3 g/hr·㎠ 이하의 느린 속도로 건조시키는 제3단계로 건조시켜켜 균열이 없는 성형체를 제조할 수 있도록 한다.That is, the optimum drying conditions, the first step to dry relatively quickly at a drying rate of 20 × 10 -3 g / hr ·
상기와 같이 건조된 성형체를 1550 ∼ 1750 ℃ 온도에서 1 ∼ 3 시간동안 소결하여 본 발명이 목적하는 균열이 억제되고, 강도가 우수한 알루미나 세라믹스 성형체를 제조할 수 있다.The molded article dried as described above is sintered at a temperature of 1550 to 1750 ° C. for 1 to 3 hours to prevent cracking desired in the present invention and to produce an alumina ceramic molded article having excellent strength.
상기와 같이 제조된 소결체를 4 점 곡강도 시험을 통하여 소결체의 웨이블 계수, 파괴인성 및 강도를 측정 비교하였다. 본 발명에서 제조된 소결체의 웨이블 계수는 8 ∼ 15, 파괴인성은 4.3 ∼ 5.4 MPa·m1/2, 파괴강도는 390 ∼ 420 MPa의 값을 나타냈다.The sintered body prepared as described above was measured and compared by the four-point bending strength test of the wavelet coefficient, fracture toughness and strength of the sintered body. The wavelet coefficient of the sintered compact manufactured by this invention showed the value of 8-15, fracture toughness of 4.3-5.4 MPa * m 1/2 , and fracture strength of 390-420 MPa.
이상에서 설명한 바와 같은 본 발명은 다음의 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.The present invention as described above will be described in more detail based on the following examples, but the present invention is not limited thereto.
실시예 1Example 1
물에 분산제로 Darvan C (R.T. Vanderbilt Co. Inc, USA, 주요성분명 암모늄 폴리메타크릴레이트)를 알루미나 분말에 대하여 2 중량% 용해시킨 용액에 알루미나 분말(AES11, Sumitomo Co. Ltd, Japan)을 넣고 알루미나 볼을 써서 4시간동안 볼밀하여 수계 알루미나 세라믹스 슬러리를 제조하였다. 젤형성 고분자로 폴리사카라이드계 고분자인 한천을 사용하였으며 알루미나 분말에 대하여 0.7 중량%가 되도록 칭량한 후 80 ℃의 물에 녹여 수용액을 제조하였다. 이때 젤형성 고분자 수용액의 농도는 10 중량%가 되도록 하였다. 강도 보강용 고분자로 폴리비닐 알코올을 사용하였으며 알루미나 분말에 대하여 0.2 중량%가 되도록 칭량한 후 물에 녹여 강도 보강용 고분자 수용액을 제조하였으며, 그 농도는 10 ∼ 30 중량% 이었다. Alumina powder (AES11, Sumitomo Co. Ltd, Japan) was added to a solution in which 2% by weight of Darvan C (RT Vanderbilt Co. Inc, USA, main ingredient name ammonium polymethacrylate) was dissolved in alumina powder as a dispersant in water. Ball milling for 4 hours using a ball to prepare a water-based alumina ceramic slurry. Agar, which is a polysaccharide-based polymer, was used as a gel-forming polymer, and weighed to 0.7 wt% with respect to alumina powder, and then dissolved in water at 80 ° C. to prepare an aqueous solution. At this time, the concentration of the gel-forming polymer aqueous solution was 10% by weight. Polyvinyl alcohol was used as a polymer for strength reinforcement, and weighed to 0.2% by weight with respect to alumina powder, and dissolved in water to prepare an aqueous polymer solution for strength reinforcement, and its concentration was 10 to 30% by weight.
수계 알루미나 세라믹스 슬러리를 교반용기에 넣고 슬러리의 온도를 60 ∼ 80 ℃로 유지시키면서, 0.7 중량%의 젤형성 고분자 수용액을 첨가한다. 여기에 강도 보강용 고분자인 폴리비닐 알코올 수용액 0.2 중량%를 첨가하여 습식성형용 알루미나 세라믹스 슬러리를 제조하였다. 이 때 최종 슬러리의 고형분 함량은 47 부피%로 맞추었다. An aqueous alumina ceramic slurry is placed in a stirring vessel, and 0.7 wt% of an aqueous gelling polymer solution is added while maintaining the temperature of the slurry at 60 to 80 ° C. 0.2 wt% of polyvinyl alcohol aqueous solution, which is a polymer for strength reinforcement, was added thereto to prepare a wet alumina ceramic slurry. At this time, the solid content of the final slurry was adjusted to 47% by volume.
균질한 혼합을 위하여 교반시간은 2 시간동안 하였으며 600 torr의 진공에서 탈포시켜 기공이 포함되지 않은 균일한 캐스팅용 슬러리를 제조하였다. 사각판, 튜브, 돔 등의 형태의 금형을 50 ℃의 온도로 유지시킨 후 슬러리를 2 kgf/ ㎠의 압력으로 주입하여 성형하였다. For the homogeneous mixing, the stirring time was 2 hours, and degassed in a vacuum of 600 torr to prepare a uniform casting slurry containing no pores. A mold in the form of a square plate, a tube, a dome, or the like was maintained at a temperature of 50 ° C., and then the slurry was injected by injection at a pressure of 2 kgf /
성형이 끝난 후 5 ℃의 온도로 내부의 성형체까지 충분히 냉각시킨 후 탈형하여 성형체를 제조한 후, 성형체의 함수율이 0.18 이상에서는 20 ×10-3 g/hr·㎠의 속도로 건조되도록 40℃의 온도 90 %의 상대습도에서 비교적 빠르게 건조시키고, 함수율 0.17 ∼ 0.07 범위에서는 10 ×10-3 g/hr·㎠의 속도로 건조가 되도록 20 ℃의 온도, 90 %의 상대습도에서 중간속도로 건조시키고, 함수율 0.07 미만부터는 1 × 10-3 g/hr·㎠ 이하의 속도로 건조되도록 20 ℃의 온도에서 상대습도 100 %의 느 린 속도로 건조시켜 알루미나 성형체를 제조하였다.After molding, after cooling sufficiently to the internal molded body at a temperature of 5 ° C. and demolding to prepare a molded product, when the water content of the molded product is 0.18 or more, it is dried at a rate of 20 × 10 −3 g / hr ·
실시예 2 ~ 4Examples 2-4
강도 보강용 고분자로 첨가되는 폴리비닐 알코올의 양이 0.3 중량%, 0.4 중량%, 0.5 중량%인 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 알루미나 세라믹스 성형체를 제조하였다.An alumina ceramics molded body was manufactured in the same manner as in Example 1 except that the amount of polyvinyl alcohol added as a polymer for strength reinforcement was 0.3 wt%, 0.4 wt%, and 0.5 wt%.
비교예 1Comparative Example 1
강도 보강용 고분자인 폴리비닐 알코올을 사용하지 않았다는 점을 제외하고, 상기 실시예 1과 동일한 방법을 통하여 알루미나 세라믹스 성형체를 제조하였다.Alumina ceramics molded body was prepared through the same method as Example 1, except that polyvinyl alcohol, which is a polymer for strength reinforcement, was not used.
실험예 : 알루미나 성형체의 특성 평가Experimental Example: Evaluation of Properties of Alumina Molded Body
상기 실시예 1 ∼ 4 및 비교예 1을 참고하여 젤형성 고분자를 이용하여 습식성형된 알루미나 성형체에 첨가되는 강도보강용 고분자의 첨가량에 따른 성형체의 건조 수축율, 건조성형체강도, 성형체를 소성한 소결체의 기계적 특성을 측정하였다.Dry shrinkage rate, dry molded body strength, and sintered body of the molded body according to the addition amount of the strength-reinforcing polymer added to the wet-molded alumina molded body using the gel-forming polymer with reference to Examples 1 to 4 and Comparative Example 1 Mechanical properties were measured.
건조시 성형체의 길이변화를 관찰하여 수축율을 계산하였으며 중량변화를 관찰하여 다음 수학식 1로부터 함수율의 변화를 계산하여 최적의 건조조건을 선정하였다.Shrinkage was calculated by observing the length change of the molded body during drying, and the optimum drying condition was selected by calculating the change of moisture content from the following equation 1 by observing the weight change.
상기 수학식 1에서, Wd는 함수율, Ww는 성형체 중의 물의 무게, Ws는 성형체 중의 고체성분의 무게를 나타낸다. In Equation 1, W d is the moisture content, W w is the weight of water in the molded body, W s is the weight of the solid component in the molded body.
다음 표 1에는 강도보강용 고분자를 사용한 경우와 사용하지 않은 경우에 건조성형체의 균열 유무를 나타내었다. 또한, 첨부도면 도 2는 본 발명에서 제조한 알루미나 세라믹스 성형체의 사진을 나타내었는데, 본 발명의 강도 보강용 고분자를 첨가하여 실형상의 세라믹스 성형체를 균열이 없이 제조할 수 있음을 알 수 있다.Table 1 below shows the presence or absence of cracks in the dried moldings when the polymer for strength reinforcement was used or not. In addition, Figure 2 shows a picture of the alumina ceramic molded body produced in the present invention, it can be seen that the real ceramic molded body can be produced without cracking by adding the polymer for strength reinforcement of the present invention.
함수율 0.18 이 될 때 까지는 20 ×10-3 g/hr·㎠의 건조속도로 빠르게 건조시킨 후 함수율 0.17 ∼ 0.07 의 범위에서는 10 ×10-3 g/hr·㎠의 중간 속도로 건조시키고 함수율 0.07 미만에서는 1 ×10-3 g/hr·㎠의 느린 속도로 건조시킬 경우 강도 보강용 고분자인 폴리비닐 알코올을 0.3 ∼ 0.5 중량% 첨가한 성형체에 건조 균열이 발생하지 않았다.Dries quickly at a drying rate of 20 × 10 -3 g / hr ·
이에 비하여 젤형성 고분자만을 첨가한 비교예의 경우는 동일한 조건으로 건 조하였을 때 건조균열이 발생하였다. 이와 같은 이유는 젤형성 고분자만으로는 성형체의 건조 수축시 발생하는 응력을 막을 수 없으나 강도 보강용 고분자를 첨가해서 성형체의 강도를 높여주면 건조 수축시 발생하는 응력에 견딜 수 있게 되기 때문이다.On the contrary, in the case of the comparative example in which only the gel-forming polymer was added, dry cracks occurred when dried under the same conditions. The reason for this is that the gel-forming polymer alone can not prevent the stress generated during the dry shrinkage of the molded article, but if the strength of the molded article is increased by adding the strength reinforcing polymer, it can withstand the stress generated during the dry shrinkage.
건조수축율은 성형체의 형상에 따라서 조금씩 다르지만 본 발명의 방법에 따라 제조된 알루미나 성형체의 건조수출율은 대략 1.3 ∼ 7.0 % 정도의 범위를 나타냈다. 첨부도면 도 3에는 젤형성 고분자만을 첨가한 성형체와 강도 보강용 고분자를 첨가한 성형체의 건조 수축율 변화를 나타내었다. 강도 보강용 고분자를 첨가한 경우에 첨가량에 관계없이 수축율의 큰 변화를 나타내지는 않았고, 성형체의 건조수축율은 450 ×400 ×30mm의 사각판의 경우 길이방향은 약 3 %이고 두께 방향은 약 5%를 나타냈다. 건조가 끝난 성형체의 강도는 직경이 10mm 두께가 5mm인 시편에 대하여 압축강도 시험을 실시하여 수학식 2로부터 구하였으며 이때 크로스 헤드 스피드는 0.5 mm/min으로 하였다.The dry shrinkage rate varies slightly depending on the shape of the molded article, but the dry export rate of the alumina molded article produced according to the method of the present invention was about 1.3 to 7.0%. Figure 3 shows the change in the dry shrinkage of the molded article added only the gel-forming polymer and the molded article added the strength reinforcing polymer. When the polymer for strength reinforcement was added, there was no significant change in the shrinkage regardless of the added amount, and the dry shrinkage rate of the molded product was about 3% in the longitudinal direction and about 5% in the thickness direction for the square plate of 450 × 400 × 30mm. Indicated. The strength of the dried molded body was obtained from
상기 수학식 2에서, σf는 강도, P는 파괴시 하중, D는 시편의 직경, t는 시편의 두께를 나타낸다. In
일반적으로 젤형성 고분자만을 첨가한 성형체는 1 ∼ 5 MPa의 강도를 나타내지만, 본 발명의 방법으로 제조된 성형체는 그 강도가 기존 성형체의 4 ∼ 7배 정 도 증가함을 첨부도면 도 4에 나타낸 강도보강용 고분자 첨가량에 따른 성형체의 강도변화를 통하여 알 수 있었다. 즉, 강도 보강용 고분자 첨가량에 따라 수축율은 큰 변화를 보이지 않는 반면 성형체의 강도는 강도 보강용 고분자의 참가량이 증가함에 따라 크게 증가하였으며, 강도보강용 고분자를 첨가하지 않고 젤형성 고분자만을 첨가한 성형체의 2 MPa에 비하여 4 ∼ 7배 증가한 8 ∼ 14 MPa의 강도를 나타내었다.In general, the molded article containing only the gel-forming polymer shows the strength of 1 to 5 MPa, but the molded article prepared by the method of the present invention has an increased strength of about 4 to 7 times that of the existing molded article. It was found through the change in strength of the molded body according to the amount of the polymer for strength reinforcement. That is, the shrinkage did not show a significant change according to the amount of strength reinforcing polymer added, while the strength of the molded article increased significantly as the amount of the polymer for reinforcing reinforcement increased. The strength of 8 to 14 MPa increased by 4 to 7 times compared to 2 MPa of.
상기 본 발명의 실시예와 비교예의 성형체를 동일한 조건으로 소결한 시편에 대하여 기계적 물성을 측정한 결과를 다음 표 2에 요약하였다. The results of measuring the mechanical properties of the specimens sintered under the same conditions of the examples of the present invention and the comparative examples are summarized in Table 2 below.
상기 표 2에 나타낸 바와 같이, 4점 곡강도 결과는 410 ∼ 420 MPa 정도로 비교예의 강도보강용 고분자를 넣지 않은 경우에 비하여 큰 차이를 보이지 않았다. 파괴인성의 경우도 4.3 ∼ 5.4 MPa·m1/2의 값을 가지며 비교예와 실시예 모두 큰 차이를 보이지 않았다. As shown in Table 2, the four-point bending strength results did not show a significant difference as compared with the case where the strength-reinforcing polymer of the comparative example was not added at about 410 to 420 MPa. Fracture toughness also had a value of 4.3 to 5.4 MPa · m 1/2 , and there was no significant difference between the comparative examples and the examples.
반면 재료의 파괴에 대한 신뢰도를 나타내는 척도인 웨이블 계수는 실시예의 경우와 같이 강도 보강용 고분자를 0.3 중량% 이상 첨가한 경우가 더 높게 나타났 다. 웨이블 계수가 크면 재료의 파괴강도가 좁은 산포를 가지고 있다는 것을 의미하며 이는 재료의 강도가 신뢰할 만한 구간에 분포한다는 것을 나타내주는 것으로 세라믹스의 엔지니어링 응용 측면에서 가장 중요한 물성중의 하나이다. 이와 같은 이유는 강도 보강용 고분자를 첨가해서 성형체의 강도를 향상시킴으로써 취급이나 건조과정에서 발생할 수 있는 미세균열 등의 결함의 발생을 효과적으로 억제해주기 때문이다.On the other hand, the wavelet coefficient, which is a measure of reliability of material destruction, was higher when 0.3 wt% or more of the polymer for strength reinforcement was added as in the case of the example. A large wavelet coefficient means that the fracture strength of the material has a narrow dispersion, which indicates that the strength of the material is distributed in a reliable section, which is one of the most important properties in the engineering application of ceramics. The reason for this is that by adding a strength reinforcing polymer to improve the strength of the molded body, it effectively suppresses the occurrence of defects such as microcracks that may occur during handling or drying.
따라서 본 발명에 의하면, 폴리사카라이드계 젤형성 고분자를 이용하여 습식성형할 경우 강도보강용 고분자로 폴리비닐 알코올을 첨가하면 성형체의 강도가 증가하여 건조시 균열의 발생을 억제할 수 있으므로 젤형성 고분자만을 첨가하는 경우와 비교하여 건조시간을 상대적으로 짧게 할 수 있다. 또한 강도 보강용 고분자 첨가에 의한 건조균열 억제효과는 결과적으로 소결체의 기계적 강도 측면에서 신뢰성을 향상시키는 효과가 있다.Therefore, according to the present invention, in the case of wet molding using a polysaccharide-based gel-forming polymer, the addition of polyvinyl alcohol as a strength-reinforcing polymer increases the strength of the molded body, thereby inhibiting the occurrence of cracks during drying. The drying time can be made relatively short compared to the case where only the bay is added. In addition, the effect of suppressing dry cracking by the addition of a polymer for strength reinforcement has the effect of improving reliability in terms of mechanical strength of the sintered body.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and changed within the scope of the invention without departing from the spirit and scope of the invention described in the claims below I can understand that you can.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030067932A KR100547256B1 (en) | 2003-09-30 | 2003-09-30 | Crack Inhibition Method for Alumina Ceramics Molded by Wet Molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030067932A KR100547256B1 (en) | 2003-09-30 | 2003-09-30 | Crack Inhibition Method for Alumina Ceramics Molded by Wet Molding |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050031693A KR20050031693A (en) | 2005-04-06 |
KR100547256B1 true KR100547256B1 (en) | 2006-01-26 |
Family
ID=37236513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030067932A KR100547256B1 (en) | 2003-09-30 | 2003-09-30 | Crack Inhibition Method for Alumina Ceramics Molded by Wet Molding |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100547256B1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0450157A (en) * | 1990-06-19 | 1992-02-19 | Takeda Chem Ind Ltd | Ceramic material for extrusion molding and its extrusion molding method |
JPH0597504A (en) * | 1990-12-21 | 1993-04-20 | Takeda Chem Ind Ltd | Binder for forming ceramic sheet and its use |
EP0611736A1 (en) * | 1993-02-17 | 1994-08-24 | GLATT INGENIEURTECHNIK GmbH | Process for the production of fine, ceramic pressing granulate by fluidised-bed drying |
JPH10338510A (en) * | 1997-06-02 | 1998-12-22 | Asahi Optical Co Ltd | Production of ceramic spherical granule |
EP1086711A1 (en) * | 1999-09-24 | 2001-03-28 | IsoTis N.V. | Ceramic-polymer composites |
KR20020025520A (en) * | 2000-09-29 | 2002-04-04 | 김충섭 | A process for preparing ceramic gelbody |
KR100392863B1 (en) * | 1999-11-04 | 2003-07-28 | 티디케이가부시기가이샤 | Granule for ceramic green body, ceramic green body, and sintered body thereof |
-
2003
- 2003-09-30 KR KR1020030067932A patent/KR100547256B1/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0450157A (en) * | 1990-06-19 | 1992-02-19 | Takeda Chem Ind Ltd | Ceramic material for extrusion molding and its extrusion molding method |
JPH0597504A (en) * | 1990-12-21 | 1993-04-20 | Takeda Chem Ind Ltd | Binder for forming ceramic sheet and its use |
EP0611736A1 (en) * | 1993-02-17 | 1994-08-24 | GLATT INGENIEURTECHNIK GmbH | Process for the production of fine, ceramic pressing granulate by fluidised-bed drying |
JPH10338510A (en) * | 1997-06-02 | 1998-12-22 | Asahi Optical Co Ltd | Production of ceramic spherical granule |
EP1086711A1 (en) * | 1999-09-24 | 2001-03-28 | IsoTis N.V. | Ceramic-polymer composites |
KR100392863B1 (en) * | 1999-11-04 | 2003-07-28 | 티디케이가부시기가이샤 | Granule for ceramic green body, ceramic green body, and sintered body thereof |
KR20020025520A (en) * | 2000-09-29 | 2002-04-04 | 김충섭 | A process for preparing ceramic gelbody |
Also Published As
Publication number | Publication date |
---|---|
KR20050031693A (en) | 2005-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fanelli et al. | New aqueous injection molding process for ceramic powders | |
CA2279966C (en) | Gel strength enhancing additives for agaroid-based injection molding compositions | |
Ha | Effect of atmosphere type on gelcasting behavior of Al2O3 and evaluation of green strength | |
US7666349B2 (en) | Method of gel-casting a cemented carbide body slurry and gelled body | |
EP0246438B1 (en) | Aqueous compositions for injection moulding comprising a gel-forming material and ceramic and/or metal powder | |
US6787074B2 (en) | Method for removing volatile components from a gel-cast ceramic article | |
JPH11165309A (en) | Manufacture of ceramics using binder solidification | |
CN107021785A (en) | A kind of ultra-toughness layered polymer ceramic composite and preparation method thereof | |
Abajo et al. | New processing route for ZrSiO4 by powder injection moulding using an eco-friendly binder system | |
Wen et al. | Effects of the binder compositions on the homogeneity of ceramic injection molded compacts | |
CN101348376B (en) | Two-component monomer system and method of use for gel casting of ceramic materials | |
KR100547256B1 (en) | Crack Inhibition Method for Alumina Ceramics Molded by Wet Molding | |
Hong et al. | Fabrication of ZrB2-SiC ceramic composites by optimized gel-casting method | |
CN106554206A (en) | A kind of gel-casting method of yttrium stable zirconium oxide porous ceramicss | |
JP2000264755A (en) | Method for manufacturing porous ceramic body | |
Bakan | Injection moulding of alumina with partially water soluble binder system and solvent debinding kinetics | |
CN104926357A (en) | Method for preparing Ca-ZrO2 foam ceramics with new injection molding system and Ca-ZrO2 foam ceramics | |
CN1317234C (en) | Ceramic part gel injection moulding forming method realized by cellulose ether heat gel reaction | |
CN1291603A (en) | Non-oxygen polymerization-inhibiting gel injection process for preparing ceramic parts | |
CN1252399C (en) | Production method of nano ceramic spring | |
KR100411175B1 (en) | A process for preparing ceramic gelbody | |
CN101293375A (en) | Zirconium diboride and its composite phase ultra-high temperature ceramic material gel injection molding method | |
CN107352781B (en) | Preparation method for silicon nitride porous ceramic material through rapid curing molding | |
KR100349499B1 (en) | Molding slurry composition containing coupling agent and molding method using the same | |
Pietrzak et al. | Dense alumina ceramics obtained by gelcasting and cold isostatic pressing with the use of 2-carboxyethyl acrylate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20030930 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20050901 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20060117 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20060120 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20060123 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20081229 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20100104 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20101228 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20111214 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20111214 Start annual number: 7 End annual number: 7 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |