KR100542821B1 - Ion-exchange thin film containing ferromagnetic metal nanoparticles and its manufacturing method - Google Patents
Ion-exchange thin film containing ferromagnetic metal nanoparticles and its manufacturing method Download PDFInfo
- Publication number
- KR100542821B1 KR100542821B1 KR1020030024093A KR20030024093A KR100542821B1 KR 100542821 B1 KR100542821 B1 KR 100542821B1 KR 1020030024093 A KR1020030024093 A KR 1020030024093A KR 20030024093 A KR20030024093 A KR 20030024093A KR 100542821 B1 KR100542821 B1 KR 100542821B1
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- metal
- film containing
- ion exchange
- metal nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 51
- 239000002082 metal nanoparticle Substances 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 230000005294 ferromagnetic effect Effects 0.000 title claims abstract description 14
- 238000005342 ion exchange Methods 0.000 title abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 150000001768 cations Chemical class 0.000 claims abstract description 22
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 19
- 239000002923 metal particle Substances 0.000 claims abstract description 19
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 18
- -1 hydrogen ions Chemical class 0.000 claims abstract description 13
- 229920003303 ion-exchange polymer Polymers 0.000 claims abstract description 12
- 150000003624 transition metals Chemical class 0.000 claims abstract description 12
- 239000003456 ion exchange resin Substances 0.000 claims abstract description 11
- 150000003839 salts Chemical class 0.000 claims abstract description 10
- 125000000542 sulfonic acid group Chemical group 0.000 claims abstract description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 6
- 239000001257 hydrogen Substances 0.000 claims abstract description 6
- 239000011347 resin Substances 0.000 claims description 19
- 229920005989 resin Polymers 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 239000002105 nanoparticle Substances 0.000 claims description 18
- 238000005341 cation exchange Methods 0.000 claims description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 1
- 230000005291 magnetic effect Effects 0.000 abstract description 9
- 238000006722 reduction reaction Methods 0.000 abstract description 4
- 230000005307 ferromagnetism Effects 0.000 abstract description 2
- 229920006254 polymer film Polymers 0.000 abstract description 2
- 229910001429 cobalt ion Inorganic materials 0.000 description 11
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 11
- 230000005415 magnetization Effects 0.000 description 9
- 229910017052 cobalt Inorganic materials 0.000 description 7
- 239000010941 cobalt Substances 0.000 description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical class [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 239000002091 nanocage Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/022—Metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2341/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur; Derivatives of such polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
본 발명은 고분자 필름, 초고밀도의 자기 기록 매체 등으로 사용되는 강자성(ferromagnetism) 금속 나노 입자가 함유된 박막 및 그 제조 방법에 관한 것으로서, 보다 구체적으로는 양이온 교환기를 가지는 박막 형태의 이온 교환 수지와 금속염을 반응시켜 양이온 교환기의 수소이온을 금속 이온으로 치환시키는 제 1 단계 ; 및 상기 금속 이온을 금속 입자로 환원시키는 제 2 단계를 통하여 제조되는 강자성의 금속 나노 입자가 함유된 박막에 관한 것이다.The present invention relates to a thin film containing ferromagnetism metal nanoparticles used as a polymer film, an ultra-high density magnetic recording medium, and the like, and more particularly, to a thin film type ion exchange resin having a cation exchanger. A first step of reacting a metal salt to replace hydrogen ions of the cation exchanger with metal ions; And a thin film containing ferromagnetic metal nanoparticles prepared through a second step of reducing the metal ions into metal particles.
본 발명은 이온 교환 반응과 환원반응을 통한 금속 나노 입자를 함유하는 박막의 간략화된 제조 방법이며, 수지 1그램 당 분산된 강자성 전이금속 농도가 0.27 mmole 이상인 경우 상온에서 강자성을 나타내기 때문에 고밀도 기억 소자의 매체로 활용될 수 있다. The present invention is a simplified manufacturing method of a thin film containing metal nanoparticles through ion exchange and reduction reactions. It can be used as a medium.
전이 금속, 술폰산기, 퍼플루오리네이티드, 초상자성, 강자성, 이온 교환 수지 Transition metals, sulfonic acid groups, perfluorinated, superparamagnetic, ferromagnetic, ion exchange resins
Description
본 발명은 강자성(ferromagnetism) 금속 나노 입자가 함유된 박막 및 그 제조 방법에 관한 것으로서, 보다 구체적으로는 양이온 교환기를 가지는 박막 형태의 수지와 금속염을 반응시켜, 금속 이온을 양이온 교환기의 수소이온과 치환시키고, 상기 금속 이온을 금속으로 환원시켜 얻어지는 금속 나노 입자를 함유하는 박막 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film containing ferromagnetism metal nanoparticles and a method of manufacturing the same, and more particularly, to reacting a metal salt with a thin film-type resin having a cation exchanger to substitute metal ions with hydrogen ions of the cation exchanger. The present invention relates to a thin film containing metal nanoparticles obtained by reducing the metal ions to metal, and a method for producing the same.
일반적으로, 자성을 가진 미세 금속 입자는 "유한 크기(finite size)" 효과로 인하여 덩어리 상태와는 다른 특성을 가진다. 입자의 크기를 마이크로 미터에서 나노 미터 크기로 축소시킴으로써 보자력(coercive force), 기억 밀도가 향상되는 효과가 있기 때문에 이와 관련한 연구가 활발히 진행되고 있으며, 나노 크기의 금속 입자의 응용 범위는 고분자 복합소재에서 고분자 필름, 초고밀도의 자기 기록 매체, 판독 기록 헤드와 같은 나노 스케일의 전자 산업 뿐만 아니라 생체 분자 표 시제, 촉매, 약제 담체 등과 같은 잠재적인 범위까지 미치게 되었다.In general, magnetic fine metal particles have different properties from the agglomerate state due to the "finite size" effect. As the size of the particles is reduced from micrometers to nanometers, coercive force and memory density are improved, and research on this is being actively conducted. The application range of nano-sized metal particles is found in polymer composite materials. The nanoscale electronics industry, such as polymer films, ultra-high density magnetic recording media, read-write heads, as well as the potential range of biomolecular markers, catalysts, pharmaceutical carriers, and the like.
금속 입자가 나노 미터 이하의 크기로 단상(single domain)을 이룰 경우, 특정 온도 이상에서는 오히려 자화가 감소하는데 이를 초상자성(superparamagnetism)의 한계라고 한다. When metal particles form a single domain with a size of less than nanometers, magnetization decreases above a certain temperature, which is called the limit of superparamagnetism.
예를 들어, 자화(magnetization)를 측정하는 초전도 양자 간섭기 (SQUID: super conducting quantum interference device)에 자기장을 가해주지 않고 온도를 5 K 정도로 낮추고 자화를 측정하였을 때 (ZFC: zero field cooling) 온도가 증가함에 따라 자화가 증가하다가 특정 온도에서 자화가 감소하는 현상이 일어나는데, 이 경우 초상자성 현상이 일어난 것이다.For example, when the temperature is reduced to about 5 K without applying a magnetic field to a super conducting quantum interference device (SQUID) measuring magnetization, the temperature increases when the magnetization is measured (ZFC: zero field cooling). As the magnetization increases, the magnetization decreases at a specific temperature. In this case, superparamagnetism occurs.
초상자성 현상이 일어나는 지점 즉, 자화가 증가하다가 감소하는 지점의 온도를 블록킹 온도 (Tb, blocking temperature)라고 하며, Tb 이하에서는 자기 이력 현상을 보이는 강자성을 나타내, Tb 이상에서는 자화가 감소하여 기억 저장 소자로서 사용하기가 어렵게 된다.The temperature at which the superparamagnetism occurs, that is, the point where the magnetization increases and decreases, is called blocking temperature (T b , blocking temperature), and below T b shows the ferromagnetic property showing the hysteresis, and the magnetization decreases above T b. This makes it difficult to use it as a memory storage element.
강자성 금속들이 초상자성을 나타내는 입자의 크기는 입자 반지름이 수 나노미터에서 수십 나노미터에 이를 정도로 임계 크기가 금속의 종류마다 다양하다는 것과 금속 나노 입자를 제조하는 방법은 이미 알려진 바 있다. 강자성 금속을 나노 크기의 단상으로 존재하는 상태로 만들기 위한 방법으로는, 카본 나노튜브 혹은 나노 케이지를 이용하여 강자성 금속을 증착 (deposition) 이나 증발(evaporation) 시키는 방법 등이 있다.The size of particles in which ferromagnetic metals exhibit superparamagnetism varies from one nanometer to several tens of nanometers in size, with critical sizes varying between metals, and methods for producing metal nanoparticles have been known. As a method for bringing the ferromagnetic metal into a single phase having a nano size, there is a method of depositing or evaporating the ferromagnetic metal using carbon nanotubes or nano cages.
하지만, 상기 방법은 고진공 하에서만 나노 입자의 제조가 가능하기 때문에, 이를 위한 특별한 장치가 필요할 뿐만 아니라 이러한 방법으로 제조된 나노 입자들이 상온에서 강자성을 나타내지 않으므로 기억 소자로 사용하기 어렵다는 문제가 있었다. 또한, 종래 방법으로 제조된 나노 입자들을 고분자 재료에 사용하려면 고분자와 나노 입자들의 접착을 위한 별도의 장치 또는 에너지가가 필요하다는 문제가 있었다.However, since the method is capable of producing nanoparticles only under high vacuum, a special device for this purpose is required, and nanoparticles produced by such a method are difficult to use as memory devices because the nanoparticles are not ferromagnetic at room temperature. In addition, in order to use the nanoparticles prepared by the conventional method in the polymer material, there is a problem that a separate device or energy is required for adhesion of the polymer and the nanoparticles.
상기 문제점들을 고려하여, 본 발명은 이온 교환 반응과 환원 반응이라는 간략화된 공정을 통하여 제조되는 나노 크기의 금속 입자가 균일하게 분산된 박막을 제공하는 것을 그 목적으로 한다.
In view of the above problems, an object of the present invention is to provide a thin film in which nano-sized metal particles are uniformly dispersed through a simplified process of ion exchange reaction and reduction reaction.
본 발명의 금속 나노 입자가 함유된 박막의 제조 방법은Method for producing a thin film containing a metal nanoparticle of the present invention
양이온 교환기를 가지는 박막 형태의 수지와 금속염을 반응시켜 양이온 교환기의 수소 이온을 금속 이온으로 치환시키는 제 1 단계 ; 및A first step of reacting a metal salt with a thin film-type resin having a cation exchanger to replace hydrogen ions of the cation exchanger with metal ions; And
상기 금속 이온을 금속 입자로 환원시키는 제 2 단계 ;A second step of reducing the metal ions to metal particles;
를 포함한다.It includes.
또한, 본 발명은 양이온 교환기를 가지는 박막형태의 수지 상에 분산체로 존재하는 나노 크기의 금속 입자가 분산된 박막을 제공한다.The present invention also provides a thin film in which nano-sized metal particles present as a dispersion are dispersed on a thin film resin having a cation exchanger.
이하, 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.
우선, 금속 나노 입자가 함유된 박막 제조의 첫 번째 단계는 양이온 교환기를 가지는 박막 형태의 수지('이온 교환 수지')와 금속염을 반응시켜 양이온 교환기의 수소 이온을 금속 이온으로 치환시키는 단계이다.First, a first step in manufacturing a thin film containing metal nanoparticles is a step of replacing a hydrogen ion of a cation exchanger with metal ions by reacting a metal salt with a thin film-type resin ('ion exchange resin') having a cation exchanger.
본 발명에서 상기 양이온 교환기는 자신의 양이온(H+)을 방출하고, 금속 이온을 취하는 것으로서, 양이온 교환기로는 술폰산기(-SO3H), 카르복시기(-COOH)가 바람직하다. In the present invention, the cation exchanger emits its own cation (H + ) and takes metal ions. As the cation exchanger, sulfonic acid group (-SO 3 H) and carboxyl group (-COOH) are preferable.
상기 수지는 상기 양이온 교환기를 포함하는 것으로서, 박막 형태로 성형하여 사용하는 것이 바람직하다. 수지의 재료는 양이온 교환기를 갖고 있는 한 최종 제품의 용도에 맞게 적절히 선택 가능하다. 특히, 가지 사슬 말단에 술폰산기를 가지며 하기 화학식 1로 표현되는 퍼플루오리네이티드 이온 교환 박막(perfluorinated ion exchange polymer membrane)이 바람직하며, 중량 평균 분자량은 1000 ±200 이 바람직하다.The resin includes the cation exchanger, and is preferably molded into a thin film. The material of the resin can be appropriately selected according to the use of the final product as long as it has a cation exchanger. In particular, a perfluorinated ion exchange polymer membrane having a sulfonic acid group at the branch chain end and represented by the following Chemical Formula 1 is preferable, and a weight average molecular weight is preferably 1000 ± 200.
[화학식 1][Formula 1]
여기에서, n 과 m 은 서로 독립적으로 5 또는 6 이다.Here, n and m are 5 or 6 independently of each other.
상기 양이온 교환기를 갖는 수지의 재료는 양이온 교환기를 갖고 있는 한 최종 제품의 용도에 맞게 적절히 선택가능하다.The material of the resin having the cation exchanger can be appropriately selected according to the use of the final product as long as it has a cation exchanger.
상기 금속염으로는 전이 금속염이 바람직하며, 특히 Co, Fe, Ni 등의 전이 금속을 포함하는 것이 바람직하다. 상기 전이 금속 염의 함량은 상기 이온 교환 수지 1g 당 전이 금속염 0.27 ~ 0.50mmol을 반응시키는 것이 바람직하다. 이온 교환 수지 1g 에 대하여 전이 금속염이 0.27mmol 미만인 경우에는 상온에서 초상자성을 나타내는 문제가 있으며 0.50mmol을 초과하는 경우에는 이온 교환 수지의 이온 교환 반응이 가능한 개수를 초과하기 때문에 더 이상의 함량은 넣어도 박막에 치환되지 않고 미반응물로 잔존하는 문제가 있기 때문이다.The metal salt is preferably a transition metal salt, and particularly preferably a transition metal such as Co, Fe, or Ni. The content of the transition metal salt is preferably reacted with 0.27 to 0.50 mmol of the transition metal salt per 1 g of the ion exchange resin. If the transition metal salt is less than 0.27 mmol in relation to 1 g of the ion exchange resin, there is a problem of superparamagnetism at room temperature. If the transition metal salt is more than 0.50 mmol, the ion exchange reaction of the ion exchange resin exceeds the number of possible ion exchange reactions. This is because there is a problem of remaining as an unreacted substance without being substituted for.
바람직하게는 본 단계의 이온 교환 박막과 금속염의 반응 이전에 금속염을 용매에 녹인 후, 상기 금속염 용액에 이온 교환 박막을 넣고 하루 내지 수일 정도 상온에서 반응시킬 수 있다. 금속염을 녹이는 용매로는 물 특히 초순수가 바람직하며, 상기 금속 양이온들은 박막에 확산되면서 흡수되어 음전하를 띤 양이온 교환기에 고정되기 때문에 전이 금속염 입자의 크기는 박막 기공의 크기 보다 작은 것이 바람직하다. Preferably, after the metal salt is dissolved in a solvent before the reaction of the ion exchange thin film and the metal salt of the present step, the ion exchange thin film may be added to the metal salt solution and reacted at room temperature for one to several days. As a solvent for dissolving the metal salt, water, particularly ultrapure water, is preferable, and the size of the transition metal salt particles is preferably smaller than that of the thin film pores because the metal cations are absorbed while being diffused into the thin film and fixed to the negatively charged cation exchanger.
다음 단계는 상기 금속이온으로 치환된 이온 교환 박막에 환원제를 첨가하여, 상기 금속 이온을 금속 입자로 환원시키는 단계이다. 본 단계의 환원제는 상기 금속 이온에 전자를 주어 금속 이온을 환원시키며, 금속이온이 있던 위치에는 환원제의 양이온이 고정될 수 있다. 본 단계에서 얻어지는 금속은 나노 크기 정도로 입자 합일을 이루며, 구형의 형상으로 박막상에 분산되어 존재한다.The next step is to reduce the metal ions to metal particles by adding a reducing agent to the ion exchange thin film substituted with the metal ions. In this step, the reducing agent gives electrons to the metal ions to reduce the metal ions, and the cation of the reducing agent may be fixed at the position where the metal ions were. The metal obtained in this step forms a particle unit on the order of nano size, and exists in a spherical shape dispersed on the thin film.
환원제로는 소디움보로하이드라이드(NaBH4)가 녹아있는 수용액으로서 농도가 1 N 인 것이 바람직하며, 환원 반응은 상기 환원 수용액에 금속 이온이 치환된 박 막을 담그고 30분간 교반시켜 환원 반응시키면, 전이 금속 이온이 소디움 양이온 소디움 양이온 (Na+)으로 치환되고, 전이 금속 이온은 금속으로 환원된다.The reducing agent is an aqueous solution in which sodium borohydride (NaBH 4 ) is dissolved, and preferably has a concentration of 1 N. The reduction reaction is performed by dipping a thin film substituted with metal ions in the reducing solution and stirring for 30 minutes to reduce the reaction. Metal ions are substituted with sodium cation sodium cations (Na +) and transition metal ions are reduced to metal.
상기 방법에 의하여 제조되는 상기 박막은 양이온 교환기를 가지는 이온 교환 박막 상에 분산체로 존재하는 나노 크기의 금속 입자를 함유한다. 이온 교환기를 가진 수지로는 가지 사슬 말단에 술폰산기를 가지는 퍼플루오리네이티드 이온 교환 박막(perfluorinated ion exchange membrane)인 것이 바람직하며, 상기 금속은 Co, Fe 및 Ni 로 이루어지는 군에서 선택되는 하나의 전이 금속이 바람직하다. 본 발명의 박막은 금속 나노 입자의 함유로 인하여 강자성을 띠게되는데, 특히 수지 1g 당 전이 금속의 함량이 0.27 mmol 이상인 경우, 보다 바람직하게는 전이 금속의 함량이 0.27 ~ 0.50 mmol인 경우 상온에서 자기 이력 현상(hysteresis loop)이 나타내기 때문에 기억 소자 매체 등으로 활용 가능하다.The thin film produced by the method contains nano-sized metal particles present as a dispersion on an ion exchange thin film having a cation exchange group. The resin having an ion exchange group is preferably a perfluorinated ion exchange membrane having a sulfonic acid group at the branch chain end, and the metal is one transition metal selected from the group consisting of Co, Fe, and Ni. This is preferred. The thin film of the present invention becomes ferromagnetic due to the inclusion of metal nanoparticles, especially when the content of the transition metal per 1 g of the resin is 0.27 mmol or more, more preferably when the content of the transition metal is 0.27 to 0.50 mmol, the hysteresis at room temperature Since a hysteresis loop is shown, it can be utilized as a storage element medium or the like.
본 발명은 양이온 교환기를 가진 수지에 금속 나노 입자가 분산된 수지를 제조하는 것에 관한 것으로서, 수지의 형태가 박막 형태만 한정되는 것은 아니며 양이온 교환기를 포함하는 수지라면 본 발명의 범위 내에 속한다. The present invention relates to the production of a resin in which metal nanoparticles are dispersed in a resin having a cation exchange group, and the resin is not limited to a thin film form and is within the scope of the present invention as long as the resin includes a cation exchange group.
이하, 실시예를 들어 본 발명을 보다 상세히 설명한다. 그러나, 본 발명의 범위가 하기 실시예의 범위로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to the scope of the following examples.
[실시예 1]Example 1
유수코발트다이클로라이드염 (CoCl2·6H2O)으로부터 얻어진 코발트 수용액에 박막 형태의 퍼플루오리네이티드 이온 교환 수지(화학식 2, MF-4SK 러시아산, 두께 0.190 mm)를 담지 시켰다. 반응 용매는 초순수를 사용하였으며, 상기 이온 교환 수지 1 그램에 대하여 0.017 mmole 의 코발트 이온을 반응시켜, 술폰산기 (SO3H)의 수소이온을 코발트 이온으로 치환시켜, 금속 이온을 수소 이온 자리에 고정시켰다. 코발트 이온은 2가 이온이고 수소는 1가 이온이므로 술폰산기 2개에 한 개의 코발트 이온이 치환되었다.A thin film of perfluorinated ion exchange resin (Formula 2, MF-4SK Russia, thickness 0.190 mm) was supported in an aqueous cobalt solution obtained from cobalt dichloride salt (CoCl 2 · 6H 2 O). Ultrapure water was used as the reaction solvent, and 0.017 mmole of cobalt ions were reacted with 1 gram of the ion exchange resin to replace hydrogen ions of the sulfonic acid group (SO 3 H) with cobalt ions, thereby fixing metal ions in the hydrogen ion site. I was. Since cobalt ions are divalent ions and hydrogen is monovalent ions, one cobalt ion is substituted for two sulfonic acid groups.
다음, 이온 교환 수지의 술폰산기 말단에 고정된 코발트 이온에 소디윰보로하이드라이드 (NaBH4)를 환원제로 첨가하여, 코발트 이온을 환원시킴으로써, 최종적으로 나노 크기의 코발트 금속 입자가 분산된 박막을 제조하였다.Next, sodium dehydroborohydride (NaBH 4 ) is added to the cobalt ions fixed at the sulfonic acid group end of the ion exchange resin as a reducing agent, thereby reducing cobalt ions, thereby finally preparing a thin film in which nano-sized cobalt metal particles are dispersed. It was.
[화학식 2] [Formula 2]
[실시예 2]Example 2
박막 형태의 퍼플루오리네이티드 이온 교환 수지 1그램에 대하여 0.033 mmole 의 코발트 이온을 치환시킨 것을 제외하고는 실시예 1과 동일한 방법으로 나노 크기의 코발트 금속 입자가 분산된 박막을 제조하였다.A thin film in which nano-sized cobalt metal particles were dispersed was prepared in the same manner as in Example 1 except that 0.033 mmole of cobalt ions were substituted for 1 gram of a perfluorinated ion exchange resin in the form of a thin film.
[실시예 3]Example 3
박막 형태의 퍼플루오리네이티드 이온 교환 수지 1그램에 대하여 0.051 mmole 의 코발트 이온을 치환시킨 것을 제외하고는 실시예 1과 동일한 방법으로 나 노 크기의 코발트 금속 입자가 분산된 박막을 제조하였다.A thin film in which nano-sized cobalt metal particles were dispersed was prepared in the same manner as in Example 1 except that 0.051 mmole of cobalt ions were substituted for 1 gram of a perfluorinated ion exchange resin in the form of a thin film.
[실시예 4] Example 4
박막 형태의 퍼플루오리네이티드 이온 교환 수지 1그램에 대하여 0.083 mmole 의 코발트 이온을 치환시킨 것을 제외하고는 실시예 1과 동일한 방법으로 나노 크기의 코발트 금속 입자가 분산된 박막을 제조하였다.A thin film in which nano-sized cobalt metal particles were dispersed was prepared in the same manner as in Example 1 except for replacing 0.083 mmole of cobalt ions with respect to 1 gram of a thin perfluorinated ion exchange resin.
[실시예 5]Example 5
박막 형태의 퍼플루오리네이티드 이온 교환 수지 1그램에 대하여 0.133 mmole 의 코발트 이온을 치환시킨 것을 제외하고는 실시예 1과 동일한 방법으로 나노 크기의 코발트 금속 입자가 분산된 박막을 제조하였다.A thin film in which nano-sized cobalt metal particles were dispersed was prepared in the same manner as in Example 1, except that 0.133 mmole of cobalt ions were substituted for 1 gram of a perfluorinated ion exchange resin in the form of a thin film.
[실시예 6]Example 6
박막 형태의 퍼플루오리네이티드 이온 교환 수지 1그램에 대하여 0.270 mmole 수의 코발트 이온을 치환시킨 것을 제외하고 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except for replacing 0.270 mmole of cobalt ions with respect to 1 gram of perfluorinated ion exchange resin in the form of a thin film.
상기의 실시예를 통하여 제조된 박막이 초전도 양자간섭기를 통한 온도에 따른 자화 측정결과로부터 전이금속 농도에 따라 Tb가 5K에서 350K에 이르는 온도 범위에서 전이금속 농도가 증가함에 따라 증가하는 것을 확인하였다. 또한, 특정 온도에서의 자기이력 (磁氣履歷, hysteresis loop) 현상을 측정함으로써 이 수지들이 Tb 이하에서 강자성을 가짐을 확인하였다. It was confirmed that the obtained thin film through the embodiment of the increase as a superconducting quantum depending from the magnetic measurements of the temperature through the interferer to the transition metal concentration of T b is the transition metal concentration is increased in the temperature range from 350K at 5K . In addition, by measuring the hysteresis loop phenomenon at a specific temperature it was confirmed that these resins are ferromagnetic below T b .
자기적 성질의 측정은 초전도 양자간섭기를 이용하여 초기에는 자기장을 가 해주지 않고 온도를 5 K로 낮추고 5 K부터 350 K까지 100 Oe 자기장 하에서 단위질량에 대한 자화를 측정하였고, 초기에 100 Oe의 자기장을 가해주고 온도를 5 K로 낮추고 5 K부터 350 K까지 100 Oe 자기장 하에서 단위질량에 대한 자화를 측정하였으며 10 K와 300 K에서 자화 곡선 (M-H curve)을 측정하였다. The magnetic properties were measured using a superconducting quantum interferometer, and the magnetization of the unit mass was measured under a 100 Oe magnetic field from 5 K to 350 K and the temperature was lowered to 5 K without initially applying a magnetic field. And the temperature was lowered to 5 K, and the magnetization of the unit mass was measured under the 100 Oe magnetic field from 5 K to 350 K, and the MH curve was measured at 10 K and 300 K.
하기 표 1 에서 보는 바와 같이 퍼플루오리네이티드 이온 교환 수지 1그램에 대하여 코발트가 0.270 mmole 이상 흡착되어 있는 박막의 Tb가 상온 이상이었으며, 300K에서 자기이력 현상을 보이는 것을 확인하였다. To purple, as shown in Table 1 it was Luo rineyi suited cobalt is more than the 0.270 mmole than T b of the thin film which is adsorbed at room temperature with respect to the ion exchange resin 1 gram, was confirmed to exhibit hysteresis at 300K.
[표 1] TABLE 1
본 발명은 양이온 교환기를 가지는 수지의 양이온 교환기와 금속 이온의 이온 교환 반응과 환원 반응을 이용하여 나노 크기의 금속 입자가 균일하게 분산된 박막의 간략화된 제조 방법으로서, 상기 방법으로 제조된 박막의 Tb가 존재하는 것으로부터 초상자성을 가지고 있으며, 박막 내에 금속 입자가 나노 크기로 분포하고 있음을 확인 할 수 있다. The present invention provides a simplified method for producing a thin film in which nano-sized metal particles are uniformly dispersed using ion exchange reactions and reduction reactions of a cation exchange group and a metal ion of a resin having a cation exchange group, and the T of the thin film manufactured by the above method. From the presence of b has superparamagnetism, it can be seen that the metal particles in the thin film is distributed in nano size.
또한, 본 발명은 고진공하에서 진공 증착 또는 증발시키는 공정이 필요하지 않으며, 나노 크기의 금속입자를 별도의 공정을 통하여 고분자 재료에 접착시키기 위한 별도의 장치 또는 에너지가 필요하지 않는 박막의 간략화된 제조 방법이다.In addition, the present invention does not require a process of vacuum deposition or evaporation under high vacuum, and a simplified manufacturing method of a thin film that does not require a separate device or energy for bonding nano-sized metal particles to a polymer material through a separate process. to be.
또한, 본 발명의 방법으로 제조된 박막은, 이온 교환 수지 1그램에 분산된 강자성 전이 금속 농도가 0.27mmole 이상인 경우에 Tb가 상온보다 높은 것으로 나타나 상온에서도 강자성을 가질 수 있기 때문에, 기억 소자의 매체로 활용될 수 있는 우수한 효과가 있다.
In addition, since the thin film manufactured by the method of the present invention has a ferromagnetic transition metal concentration dispersed in 1 gram of ion exchange resin of 0.27 mmol or more, T b is higher than room temperature and thus may have ferromagnetic properties at room temperature. There is an excellent effect that can be used as a medium.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030024093A KR100542821B1 (en) | 2003-04-16 | 2003-04-16 | Ion-exchange thin film containing ferromagnetic metal nanoparticles and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030024093A KR100542821B1 (en) | 2003-04-16 | 2003-04-16 | Ion-exchange thin film containing ferromagnetic metal nanoparticles and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040090157A KR20040090157A (en) | 2004-10-22 |
KR100542821B1 true KR100542821B1 (en) | 2006-01-11 |
Family
ID=37371320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030024093A Expired - Fee Related KR100542821B1 (en) | 2003-04-16 | 2003-04-16 | Ion-exchange thin film containing ferromagnetic metal nanoparticles and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100542821B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101937067B1 (en) | 2015-07-03 | 2019-01-09 | 화이안 딩크레 멤브레인 매터리얼스 컴퍼니 리미티드 | Casting machine for perfluorinated ionized membrane |
KR20200042142A (en) * | 2018-10-15 | 2020-04-23 | 이동희 | Recycling method of deodorant using waste cation exchange resin. |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101037030B1 (en) * | 2004-11-23 | 2011-05-25 | 삼성전자주식회사 | Metal pattern formation method using metal nanocrystals |
CN103357280A (en) * | 2012-03-31 | 2013-10-23 | 氢神(天津)燃料电池有限公司 | Preparation method of perfluor ion exchange membrane and ion exchange membrane acquired by using same |
-
2003
- 2003-04-16 KR KR1020030024093A patent/KR100542821B1/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101937067B1 (en) | 2015-07-03 | 2019-01-09 | 화이안 딩크레 멤브레인 매터리얼스 컴퍼니 리미티드 | Casting machine for perfluorinated ionized membrane |
KR20200042142A (en) * | 2018-10-15 | 2020-04-23 | 이동희 | Recycling method of deodorant using waste cation exchange resin. |
KR102178391B1 (en) | 2018-10-15 | 2020-11-12 | 이동희 | Recycling method of deodorant using waste cation exchange resin. |
Also Published As
Publication number | Publication date |
---|---|
KR20040090157A (en) | 2004-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shamim et al. | Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: preparation and characterization | |
Machala et al. | Amorphous iron (III) oxide a review | |
Baykal et al. | Acid functionalized multiwall carbon nanotube/magnetite (MWCNT)-COOH/Fe3O4 hybrid: synthesis, characterization and conductivity evaluation | |
Xie et al. | A Hydrothermal Reduction Route to Single‐Crystalline Hexagonal Cobalt Nanowires | |
Soumare et al. | Oriented magnetic nanowires with high coercivity | |
Zhang et al. | Engineering magnetic properties of Ni nanoparticles by non-magnetic cores | |
JPH10208236A (en) | High density magnetic recording composition and high density magnetic recording method | |
Wang et al. | Precursor-directed synthesis of porous cobalt assemblies with tunable close-packed hexagonal and face-centered cubic phases for the effective enhancement in microwave absorption | |
Song et al. | Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies | |
García-Cerda et al. | Preparation of hcp and fcc Ni and Ni/NiO Nanoparticles Using a Citric Acid Assisted Pechini‐Type Method | |
Salgueiriño-Maceira et al. | Synthesis and characterization of large colloidal cobalt particles | |
Qi et al. | Study of self-assembly of octahedral magnetite under an external magnetic field | |
CN100383279C (en) | A kind of preparation method of carbon nanotube/nickel-zinc ferrite composite material | |
Huang et al. | BN nanotubes coated with uniformly distributed Fe 3 O 4 nanoparticles: novel magneto-operable nanocomposites | |
Sun et al. | β-Cyclodextrin-assisted synthesis of superparamagnetic magnetite nanoparticles from a single Fe (III) precursor | |
Lee et al. | Understanding high anisotropic magnetism by ultrathin shell layer formation for magnetically hard–soft core–shell nanostructures | |
KR100542821B1 (en) | Ion-exchange thin film containing ferromagnetic metal nanoparticles and its manufacturing method | |
Antarnusa et al. | The effect of additional polyethylene glycol (PEG) as coating Fe3O4 for magnetic nanofluid applications | |
Wang et al. | Large-scale fabrication and application of magnetite coated Ag NW-core water-dispersible hybrid nanomaterials | |
KR20090033940A (en) | Preparation of Magnetic Nanoparticle / Polymer Core-Cell Nanocomposites for Heavy Metal Adsorbents | |
Moghim et al. | Fabrication and structural characterization of multi-walled carbon nanotube/Fe3O4 nanocomposite | |
JP2003073705A (en) | Nanoparticle and magnetic storage media | |
Veena Gopalan et al. | Template-assisted synthesis and characterization of passivated nickel nanoparticles | |
Wang et al. | Nanocomposites of iron− cobalt alloy and magnetite: controllable Solvothermal synthesis and their magnetic properties | |
KR100931823B1 (en) | Magnetic nanoparticles having polydiacetylene coating layer and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20030416 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20040609 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20030416 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20050930 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20060105 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20060106 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20090106 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20091204 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20091204 Start annual number: 5 End annual number: 5 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |