KR100523545B1 - Method for forming quantum dot - Google Patents
Method for forming quantum dot Download PDFInfo
- Publication number
- KR100523545B1 KR100523545B1 KR10-2003-0073451A KR20030073451A KR100523545B1 KR 100523545 B1 KR100523545 B1 KR 100523545B1 KR 20030073451 A KR20030073451 A KR 20030073451A KR 100523545 B1 KR100523545 B1 KR 100523545B1
- Authority
- KR
- South Korea
- Prior art keywords
- quantum dot
- quasi
- layer
- stable
- well layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 14
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims abstract description 9
- 239000010410 layer Substances 0.000 claims description 71
- 229910052738 indium Inorganic materials 0.000 claims description 15
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 15
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 6
- 230000005684 electric field Effects 0.000 claims description 5
- 230000035882 stress Effects 0.000 claims description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 4
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 4
- 239000000523 sample Substances 0.000 claims description 4
- 229910000673 Indium arsenide Inorganic materials 0.000 claims description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- 238000000609 electron-beam lithography Methods 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 239000002356 single layer Substances 0.000 claims description 2
- 230000008646 thermal stress Effects 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims 2
- 238000001093 holography Methods 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 125000006850 spacer group Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/146—Superlattices; Multiple quantum well structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02392—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02395—Arsenides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/143—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies comprising quantum structures
- H10F77/1433—Quantum dots
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/962—Quantum dots and lines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
본 발명에 의한 양자점 형성방법은 반도체 기판 위에 기판 물질과 격자 불일치를 이루는 층으로서의 유사안정 양자우물층을 자발 형성 양자점이 형성되는 임계 두께 이하로 성장시킨 후 국소적으로 외부 에너지를 인가함으로써 양자점을 형성한다. 따라서, 본 발명은 기판에 젖은 층이 형성되지 않고, 공간적으로 대칭 구조의 양자점을 형성할 수 있으며, 양자점의 위치를 정확하게 제어할 수 있는 효과가 있다.In the method of forming a quantum dot according to the present invention, a quasi-stable quantum well layer as a layer having a lattice mismatch with a substrate material is grown on a semiconductor substrate below a threshold thickness at which spontaneous quantum dots are formed, and then locally external energy is applied to form a quantum dot. do. Therefore, in the present invention, a wet layer is not formed on the substrate, and spatially symmetrical quantum dots can be formed, and the position of the quantum dots can be accurately controlled.
Description
본 발명은 양자점 형성방법에 관한 것으로서, 특히 임계 두께 이하의 유사안정 양자우물층(Quasi-stable quantum well layer)에 외부 에너지를 국소적으로 인가하여 양자점(quantum dot)을 형성하는 양자점 형성방법에 관한 것이다. The present invention relates to a method for forming a quantum dot, and more particularly, to a method for forming a quantum dot by locally applying external energy to a quasi-stable quantum well layer below a critical thickness. will be.
양자점은 갈륨비소(GaAs) 기판 또는 인듐인(InP) 기판 위에 기판 물질과 격자 불일치를 이루는 인듐갈륨비소(InGaAs) 또는 인듐비소(InAs) 등의 물질을 분자선 에피택시(molecular beam epitaxy), 화학선 에피택시(chemical beam epitaxy), 유기금속 화학기상 증착법(metal organic chemical vapor deposition) 등을 이용하여 임계 두께 이상으로 성장시키면 자발적으로 형성된다.The quantum dots may be formed of a molecular beam epitaxy or a chemical ray on a gallium arsenide (GaAs) substrate or an indium phosphorus (InP) substrate, which may form a lattice mismatch with a substrate material. It grows spontaneously when grown above a critical thickness using epitaxy, metal organic chemical vapor deposition, or the like.
이러한 자발 형성 양자점은 3차원 구속효과를 가지고 있기 때문에 여러 광전자소자를 제작하는데 있어서 많은 장점을 가지고 있다.Since the spontaneous quantum dot has a three-dimensional restraint effect, it has many advantages in manufacturing several optoelectronic devices.
그러나, 자발 형성 양자점은 그 형성 위치의 제어가 어렵고 크기 및 모양이 불균일하고 임의적이라는 문제점이 있다. 또한, 자발 형성 양자점은 기판 물질과 박막층 물질간의 격자 불일치 및 표면 에너지 차이로 인한 구동력에 의해 양자점이 형성되는 원리, 즉 스트란스키-크라스타노프 성장모드(Stranski-Krastanov growth mode: S-K growth mode)를 기반으로 하기 때문에 기판에 젖은 층(wetting layer)이 형성될 뿐만 아니라 양자점이 성장 방향에 대해 비대칭 구조로 형성되는 문제점이 있다. However, the spontaneous quantum dot has a problem that it is difficult to control the formation position, the size and shape is uneven and arbitrary. In addition, the spontaneous quantum dot is formed by the driving force due to the lattice mismatch and the surface energy difference between the substrate material and the thin film material, that is, the Straki-Krastanov growth mode (SK growth mode) Since the wet layer is formed on the substrate, the quantum dot has an asymmetrical structure with respect to the growth direction.
이러한 문제점들은 양자점을 이용한 단전자 소자와 같은 양자소자 제조에 있어서 걸림돌이 되는데, 특히 양자점의 위치가 제어되지 않으므로 전극형성과 같은 소자 공정시 소자의 제조수율이 현저히 낮아지고, 젖은 층으로의 전하 이탈 현상이 발생하게 된다. These problems are obstacles in the manufacture of quantum devices such as single-electron devices using quantum dots. In particular, since the position of the quantum dots is not controlled, the manufacturing yield of the device is significantly lowered during device processing such as electrode formation, and the charge escapes to the wet layer. The phenomenon occurs.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 본 발명의 목적은 기판에 젖은 층이 형성되지 않으며 각각의 양자점의 위치를 정확히 제어할 뿐만 아니라 대칭 구조에 가까운 양자점을 형성할 수 있는 양자점 형성방법을 제공하는 것이다. The present invention was devised to solve the above problems, and an object of the present invention is not to form a wet layer on the substrate and to precisely control the position of each quantum dot, as well as to form a quantum dot close to a symmetrical structure. It is to provide a formation method.
이를 위해, 본 발명에 의한 양자점 형성방법은 반도체 기판 위에 기판 물질과 격자 불일치를 이루는 층으로서의 유사안정 양자우물층을 자발 형성 양자점이 형성되는 임계 두께 이하로 성장시킨 후 국소적으로 외부 에너지를 인가함으로써 양자점을 형성하는 것을 특징으로 한다.To this end, the method for forming quantum dots according to the present invention grows a quasi-stable quantum well layer as a layer having a lattice mismatch with a substrate material on a semiconductor substrate to grow below a threshold thickness at which spontaneous quantum dots are formed, and then applies external energy locally. It is characterized by forming a quantum dot.
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 의한 양자점 형성방법에서 반도체 기판에 성장되는 박막의 구조도를 나타낸다.1 is a structural diagram of a thin film grown on a semiconductor substrate in the method of forming a quantum dot according to the present invention.
우선, 반도체 기판(1) 위에 일반적인 공정으로서 버퍼층(2)을 형성한다. 버퍼층(2)은 반도체 기판(1)에 있는 불순물 및 결함전이를 차단하기 위한 것이다. 기판 물질로는 갈륨비소(GaAs) 또는 인듐인(InP)이 사용될 수 있는데, 본 발명의 실시예에서는 갈륨비소를 반도체 기판(1)으로 사용하고, 이에 따라 버퍼층(2)도 갈륨비소로 이루어져 있다.First, the buffer layer 2 is formed on the semiconductor substrate 1 as a general process. The buffer layer 2 is for blocking impurities and defect transitions in the semiconductor substrate 1. As the substrate material, gallium arsenide (GaAs) or indium phosphorus (InP) may be used. In the embodiment of the present invention, gallium arsenide is used as the semiconductor substrate 1, and thus the buffer layer 2 is also made of gallium arsenide. .
다음, 버퍼층(2) 위에 유사안정 양자우물층(3)을 형성한다. 유사안정 양자우물층(3)은 기판 물질과 격자 불일치(lattice mismatch)를 이루는 층으로서 양자점이 형성되는 부분이다. 유사안정 양자우물층(3)의 물질로서 인듐갈륨비소(InGaAs) 또는 인듐비소(InAs)가 사용될 수 있는데, 본 발명의 실시예에서는 인듐갈륨비소를 사용하고 있다. Next, a quasi-stable quantum well layer 3 is formed on the buffer layer 2. The quasi-stable quantum well layer 3 is a layer that forms a lattice mismatch with the substrate material and is a portion where quantum dots are formed. Indium gallium arsenide (InGaAs) or indium arsenide (InAs) may be used as the material of the quasi-stable quantum well layer 3, and indium gallium arsenide is used in the embodiment of the present invention.
종래에는 유사안정 양자우물층(3)을 임계 두께(critical thickness) 이상으로 성장시켜서 자발형성 양자점을 형성하였으나, 본 발명에서는 유사안정 양자우물층(3)을 임계 두께 이하로 성장시켜서 자발적으로 양자점이 형성되지 않도록 한다. 유사안정 양자우물층(3)은 임계 두께의 60%∼95%로 성장시키는데, 그 두께는 대략 1nm∼50nm 정도가 된다.Conventionally, spontaneous quantum dot layer was formed by growing the pseudo-stable quantum well layer 3 above a critical thickness, but in the present invention, the quantum dot spontaneously by growing the pseudo-stable quantum well layer 3 below a critical thickness. Do not form. The quasi-stable quantum well layer 3 grows to 60% to 95% of the critical thickness, which is about 1 nm to 50 nm.
유사안정 양자우물층(3)은 단일층 구조 또는 복수의 유사안정 양자우물층(3)을 포함하는 다층 구조로 이루어질 수 있으며, 다층 구조인 경우에는 유사안정 양자우물층(3)들 사이에 간격층(4)이 존재하게 된다. 이 간격층(4)은 기판 물질과 동일한 물질로 이루어져 있으며, 그 두께는 100nm 이하로 한다. The quasi-stable quantum well layer 3 may be composed of a single layer structure or a multilayer structure including a plurality of quasi-stable quantum well layers 3. In the case of the multilayer structure, the space between the quasi-stable quantum well layers 3 may be provided. Layer 4 is present. This spacer layer 4 is made of the same material as the substrate material, and its thickness is 100 nm or less.
다음, 유사안정 양자우물층(3)에서 발생하는 양자점의 상전이가 안정적으로 이루어질 수 있도록 유사안정 양자우물층(3) 위에 덮개층(cap layer)(5)을 형성한다. 본 발명의 실시예에서는 덮개층(5)으로서 갈륨비소를 사용하고, 그 두께는 5μm 이하로 한다.Next, a cap layer 5 is formed on the quasi-stable quantum well layer 3 so that the phase transition of the quantum dots generated in the quasi-stable quantum well layer 3 can be stably performed. In the embodiment of the present invention, gallium arsenide is used as the cover layer 5, and the thickness thereof is 5 μm or less.
도 2는 성장 방향에 따른 유사안정 양자우물층에서의 인듐 몰분율(mole-fraction)의 변화 그래프를 나타낸다. FIG. 2 shows a graph of change of indium mole fraction in the quasi-stable quantum well layer according to the growth direction.
도 2에 도시된 그래프의 x축은 인듐 몰분율을 나타내고, y축은 유사안정 양자우물층(3)의 성장방향 또는 두께를 나타낸다. 인듐 몰분율을 성장 방향에 따라 일정하게 하거나 변화를 주어 양자점의 공간적 위치를 조절할 수 있다.The x axis of the graph shown in FIG. 2 represents an indium mole fraction, and the y axis represents a growth direction or thickness of the quasi-stable quantum well layer 3. The indium mole fraction may be constant or changed according to the growth direction to adjust the spatial position of the quantum dots.
도 2(a)는 인듐 몰분율을 단일 피크형의 곡선(single peak Gaussian)으로 변화시킨 것을 나타내고, 도 2(b)는 인듐 몰분율을 다중 피크형의 곡선(multi-peak Gaussian)으로 변화시킨 것을 나타내고, 도 2(c)는 인듐 몰분율을 직선형으로 변화시킨 것을 나타내고, 도 2(d)는 인듐 몰분율이 일정한 것을 나타낸다. FIG. 2 (a) shows the change of the indium mole fraction into a single peak Gaussian, and FIG. 2 (b) shows the change of the indium mole fraction into a multi-peak Gaussian. 2 (c) shows that the indium mole fraction is changed linearly, and FIG. 2 (d) shows that the indium mole fraction is constant.
인듐 몰분율의 변화 곡선은 유사안정 양자우물층(3)의 성장 시 인듐과 갈륨의 비율을 계단형으로 조절하거나 인듐비소/갈륨비소 초격자의 두께의 비율을 조절하여 만들어 낼 수 있다.The change curve of the indium mole fraction may be generated by controlling the ratio of indium and gallium in the stepwise growth of the quasi-stable quantum well layer 3 or by adjusting the thickness ratio of the indium arsenide / gallium arsenide superlattice.
인듐 몰분율의 변화 곡선을 완만하게 하는 경우 체적이 큰 양자점이 형성되는 반면 변화 곡선을 공간적으로 좁은 영역에서 급하게 변화시키면 체적이 작은 양자점이 형성된다. 또한, 변화 곡선의 최대값을 유사안정 양자우물층(3)의 어느 곳에 위치시키느냐에 따라서 양자점의 공간적 위치를 조절할 수 있다. 변화 곡선의 최대값이 한 개가 아니라 도 2(b)와 같이 여러 개인 경우 유사안정 양자우물층(3) 내에 다층 구조의 양자점을 형성할 수 있다.When the change curve of the indium mole fraction is gentle, a large volume quantum dot is formed, whereas a rapid change in the spatially narrow region forms a small volume quantum dot. In addition, it is possible to adjust the spatial position of the quantum dot according to where the maximum value of the change curve is located in the quasi-stable quantum well layer (3). When the maximum value of the change curve is not one but multiple as shown in FIG. 2 (b), a quantum dot having a multilayer structure may be formed in the quasi-stable quantum well layer 3.
도 3은 격자 불일치층의 두께에 따른 내부 응력 에너지의 변화 그래프를 나타낸다. 여기서, 격자 불일치층은 유사안정 양자우물층(3)에 해당한다.Figure 3 shows a graph of the change of the internal stress energy with the thickness of the lattice mismatched layer. Here, the lattice mismatched layer corresponds to the quasi-stable quantum well layer 3.
도 3에서, A영역은 격자 불일치층의 임계 두께(tc) 이전에 격자 불일치 물질에 의해 2차원 박막이 성장되는 영역으로서, 이 영역에서 격자 불일치에 따른 내부 응력 에너지(탄성변형에너지)의 증가가 발생된다. 계속해서 격자 불일치층의 두께를 증가시켜서 임계 두께를 넘게 되면 2차원 박막 성장이 이루어지던 격자 불일치 물질이 표면 상에서 탄성변형을 일으켜 3차원 섬(island) 모양으로 상전이되면서 자발형성 양자점이 형성된다. 2차원 박막이 3차원 섬 모양으로 전이되는 구조를 자발형성 양자점이라고 하고, 이러한 전이가 일어나는 부분이 B영역에 속한다.In FIG. 3, the region A is a region in which the two-dimensional thin film is grown by the lattice mismatched material before the critical thickness t c of the lattice mismatched layer, and the internal stress energy (elastic strain energy) increases due to the lattice mismatch in this region. Is generated. Subsequently, when the thickness of the lattice mismatched layer is increased to exceed the critical thickness, the lattice mismatched material in which the two-dimensional thin film growth has been formed causes elastic deformation on the surface, and thus, a spontaneous quantum dot is formed. The structure in which the two-dimensional thin film is transferred to the three-dimensional island shape is called a spontaneous quantum dot, and the portion where this transition occurs belongs to the B region.
그러나, 도 3에서 도시된 바와 같이 본 발명은 격자 불일치층의 두께를 임계 두께를 넘지 않게 0.6tc 내지 0.95tc로 하여 자발형성 양자점을 형성하지 않고, 조절된 외부 에너지(Eex)를 격자 불일치층에 국소적으로 인가하여 3차원으로의 상전이가 일어나도록 한다. 외부 인가 에너지에 의해 3차원의 상전이가 일어나면 기판에 젖은 층이 발생하지 않고, 양자점은 종래 성장 방향으로 비대칭 구조를 갖는 피라미드, 돔(dome) 또는 렌즈 모양과 달리 구형 또는 럭비공 모양으로 형성된다.However, as shown in FIG. 3, the present invention does not form a spontaneous quantum dot by setting the thickness of the lattice mismatched layer to be 0.6t c to 0.95t c so as not to exceed the critical thickness, and adjusts the regulated external energy E ex . It is applied locally to the inconsistent layer so that phase transition in three dimensions occurs. When a three-dimensional phase transition occurs due to external applied energy, no wet layer is generated on the substrate, and the quantum dots are formed in a spherical or rugby ball shape unlike a pyramidal, dome or lenticular shape having an asymmetric structure in a conventional growth direction.
도 4는 유사안정 양자우물층에 외부 에너지를 인가하여 양자점을 형성하는 모식도를 나타낸다.Figure 4 shows a schematic diagram of forming a quantum dot by applying external energy to the quasi-stable quantum well layer.
도 4에서 도시된 바와 같이, 외부로부터의 다양한 에너지원을 통해 박막구조에 국소적으로 에너지를 인가하여 양자점(6)을 형성하고 있다. 외부 에너지에는 예를 들어 기계적 응력, 열 응력, 초음파, 광자 또는 전계가 있다. 여기서, 외부 에너지로서 전계를 사용할 경우 주사탐침 현미경(scanning probe microscope: SPM)의 탐침을 이용하여 국부적인 영역에 전계를 인가할 수 있다. As shown in FIG. 4, the quantum dots 6 are formed by locally applying energy to the thin film structure through various energy sources from the outside. External energy includes, for example, mechanical stress, thermal stress, ultrasonic waves, photons or electric fields. Here, when an electric field is used as external energy, an electric field may be applied to a local region by using a probe of a scanning probe microscope (SPM).
주기적인 배열을 갖는 양자점(6)을 형성하기 위해서는 미세 전극(7)을 균일하게 배열하거나, 레이저 홀로리소그래피(laser hololithography) 또는 전자빔 리소그래피(e-beam lithography) 기술을 이용한 주기적인 미세 패턴의 광원을 박막구조에 조사한다. In order to form the quantum dots 6 having a periodic arrangement, the fine electrodes 7 may be uniformly arranged or a light source having a periodic fine pattern using laser hololithography or e-beam lithography technology may be used. Investigate the thin film structure.
미세 전극(7)을 이용하는 경우, 하부 층에 형성된 양자점(6)을 단일 전자소자로 사용하고 미세 전극(7)은 접합용 패드로 사용하여 전자소자들을 전기적으로 연결함으로써 회로 구성을 용이하게 할 수 있다. 즉, 전극형성 공정과 동시에 양자점이 형성되므로 단전자 소자의 제조시 제조수율을 증가시킬 수 있게 된다. In the case of using the fine electrode 7, the circuit structure can be facilitated by using the quantum dot 6 formed on the lower layer as a single electronic device and using the fine electrode 7 as a bonding pad to electrically connect the electronic devices. have. That is, since the quantum dots are formed at the same time as the electrode forming process, it is possible to increase the manufacturing yield in manufacturing the single electronic device.
상기와 같이 본 발명은 유사안정 양자우물층을 성장시키고 여기에 외부 에너지를 인가하여 국소적으로 양자점을 형성하기 때문에, 기판에 젖은 층이 없고, 공간적으로 대칭 구조의 양자점을 형성할 수 있으며, 양자점의 위치를 정확하게 제어할 수 있는 효과가 있다. 이에 따라, 전기적으로 효율이 좋은 전자소자를 제조할 수 있으며, 단전자 소자 제조시 소자의 제조수율을 높일 수 있는 효과가 있다. As described above, since the present invention grows a quasi-stable quantum well layer and applies external energy thereto to form quantum dots locally, there is no wet layer on the substrate and a quantum dot having a spatially symmetric structure can be formed. There is an effect that can accurately control the position of. Accordingly, it is possible to manufacture an electronic device with good electrical efficiency, there is an effect that can increase the manufacturing yield of the device when manufacturing a single electronic device.
도 1은 반도체 기판에 성장되는 박막의 구조도.1 is a structural diagram of a thin film grown on a semiconductor substrate.
도 2는 성장 방향에 따른 유사안정 양자우물층에서의 인듐 몰분율의 변화 그래프.Figure 2 is a graph of the change of the indium mole fraction in the quasi-stable quantum well layer according to the growth direction.
도 3은 격자 불일치층의 두께에 따른 내부 응력 에너지의 변화 그래프.3 is a graph showing the change of the internal stress energy according to the thickness of the lattice mismatched layer.
도 4는 유사안정 양자우물층에 외부 에너지를 인가하여 양자점을 형성하는 모식도.4 is a schematic diagram of forming a quantum dot by applying external energy to the quasi-stable quantum well layer.
** 도면의 주요부분에 대한 부호설명 **** Explanation of Signs of Major Parts of Drawings **
1 : 반도체 기판 2 : 버퍼층 1 semiconductor substrate 2 buffer layer
3 : 유사안정 양자우물층 4 : 간격층3: quasi-stable quantum well layer 4: gap layer
5 : 덮개층 6 : 양자점5: cover layer 6: quantum dot
7 : 미세전극7: microelectrode
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0073451A KR100523545B1 (en) | 2003-10-21 | 2003-10-21 | Method for forming quantum dot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0073451A KR100523545B1 (en) | 2003-10-21 | 2003-10-21 | Method for forming quantum dot |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050038215A KR20050038215A (en) | 2005-04-27 |
KR100523545B1 true KR100523545B1 (en) | 2005-10-25 |
Family
ID=37240681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0073451A Expired - Fee Related KR100523545B1 (en) | 2003-10-21 | 2003-10-21 | Method for forming quantum dot |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100523545B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8551868B2 (en) * | 2010-03-24 | 2013-10-08 | The Board of Trustees of the Leland Stanford Junior Universit | Irradiation assisted nucleation of quantum confinements by atomic layer deposition |
-
2003
- 2003-10-21 KR KR10-2003-0073451A patent/KR100523545B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR20050038215A (en) | 2005-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7608530B2 (en) | Hetero-crystalline structure and method of making same | |
CN115259075B (en) | Method for preparing periodic array quantum dots by adopting liquid drop etching epitaxial growth technology | |
JP4651759B2 (en) | Device with quantum dots | |
JP2000196193A (en) | Semiconductor device and manufacturing method thereof | |
KR100523545B1 (en) | Method for forming quantum dot | |
JP2001007315A (en) | Method of forming quantum dots | |
US7217948B2 (en) | Semiconductor substrate | |
JP3768790B2 (en) | Quantum dot structure and semiconductor device apparatus having the same | |
Elarde et al. | High performance laser with nanopatterned active layer by selective area epitaxy | |
JP4814562B2 (en) | Nanostructure fabrication method | |
JP2000022130A (en) | Fabrication method of semiconductor quantum dot device | |
JP4086465B2 (en) | Quantum dot structure and method for forming the same, and semiconductor device device having the quantum dot structure | |
JP2002246695A (en) | Method for manufacturing semiconductor device using porous substrate, and semiconductor device | |
JP2009016562A (en) | Semiconductor quantum dot element, method of forming semiconductor quantum dot element, and semiconductor laser using semiconductor quantum dot element | |
JP3987922B2 (en) | Method for selectively forming nanostructures | |
US20040216660A1 (en) | Method of forming high-quality quantum dots by using a strained layer | |
KR101431820B1 (en) | Fabrication method for nanowire device | |
JP2004281954A (en) | How to make quantum dots | |
US8502197B2 (en) | Layer assembly | |
JP4448324B2 (en) | Semiconductor optical device | |
JP2000183327A (en) | Formation of quantum dots, quantum dot structure formed thereby and semiconductor quantum dot laser | |
JP4041887B2 (en) | Method for forming antimony quantum dots | |
JP2004281953A (en) | Fabrication method of microstructure | |
JP2890030B2 (en) | Quantum beat device | |
JP2000124441A (en) | Fabrication method of semiconductor quantum dot device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20031021 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20050930 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20051017 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20051018 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20080930 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20090930 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20090930 Start annual number: 5 End annual number: 5 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |