KR100504804B1 - De-channelization method of wcdma system - Google Patents
De-channelization method of wcdma system Download PDFInfo
- Publication number
- KR100504804B1 KR100504804B1 KR10-2002-0059103A KR20020059103A KR100504804B1 KR 100504804 B1 KR100504804 B1 KR 100504804B1 KR 20020059103 A KR20020059103 A KR 20020059103A KR 100504804 B1 KR100504804 B1 KR 100504804B1
- Authority
- KR
- South Korea
- Prior art keywords
- code
- wcdma system
- ovsf
- channelization
- ovsf code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/16—Code allocation
- H04J13/18—Allocation of orthogonal codes
- H04J13/20—Allocation of orthogonal codes having an orthogonal variable spreading factor [OVSF]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/0007—Code type
- H04J13/004—Orthogonal
- H04J13/0044—OVSF [orthogonal variable spreading factor]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/70703—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation using multiple or variable rates
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명은 WCDMA 시스템의 역채널화방법에 관한 것으로, FHT(Fast Hadamard Transform) 알고리즘을 이용하여, WCDMA 시스템에서 OVSF 부호를 사용하여 코드 분할 다중화된 데이터를 복원함으로써, 연산의 복잡도를 현저하게 감소시키도록 한 것이다. 이를 위하여 본 발명은 WCDMA 시스템에 있어서, 채널화 부호에 사용되는 OVSF부호를 검출하는 제1 과정과; 상기 검출된 OVSF부호를 Hadamard 행렬의 열로 이루어진 수열로 일치시키는 제2 과정과; OVSF 부호로 다중화된 신호를 FHT(Fast Hadamard Transform) 알고리즘을 이용하여 복호화하는 제3 과정과; 상기 복호화된 신호를, 기정해진 일정한 순서로 맵핑하여 역채널화신호를 구하는 제4 과정으로 이루어진다.The present invention relates to a method for inverse channelization of a WCDMA system, and significantly reduces the complexity of operations by restoring code division multiplexed data using an OVSF code in a WCDMA system using a Fast Hadamard Transform (FHT) algorithm. It is to be. To this end, the present invention provides a WCDMA system, comprising: a first process of detecting an OVSF code used for a channelization code; A second step of matching the detected OVSF codes with a sequence of columns of a Hadamard matrix; A third step of decoding a signal multiplexed with an OVSF code using a Fast Hadamard Transform (FHT) algorithm; The decoded signal is mapped in a predetermined order to obtain a de-channelized signal.
Description
본 발명은 WCDMA 시스템의 역채널화방법에 관한 것으로, 특히 FHT(Fast Hadamard Transform) 알고리즘을 이용하여, WCDMA 시스템에서 OVSF 부호를 사용하여 코드 분할 다중화된 데이터를 복원함으로써, 연산의 복잡도를 현저하게 감소시키도록 한 WCDMA 시스템의 역채널화방법에 관한 것이다.The present invention relates to a method for inverse channelization of a WCDMA system, and in particular, by using a fast Hadamard Transform (FHT) algorithm to recover code division multiplexed data using an OVSF code in a WCDMA system, thereby significantly reducing the complexity of the operation. The present invention relates to a method for dechannelization of a WCDMA system.
실제, WCDMA 시스템에서 사용되는 채널화 부호는 기본적으로 코드 트리(Code Tree)라는 생성방법을 사용하여 생성된 OVSF코드를 사용한다.In fact, the channelization code used in the WCDMA system basically uses an OVSF code generated using a generation method called a code tree.
상기 WCDMA시스템에서는 SF(Spread Factor)를 1에서 512까지의 멱수형태를 사용하고, FDD에서의 채널화부호는 모두 실수형태의 수열이며, TDD에서는 실제 복소수이지만 일종의 복소수 j의 형태가 곱해진 +1,-1의 수열이라 할 수 있다.In the WCDMA system, a spread factor (SF) of 1 to 512 is used, and all channelization codes in the FDD are real numbers, and in TDD, +1 is multiplied by a complex j number. It can be called a sequence of, -1.
따라서, 채널화 부호는 기본적으로, 도1과 같이, 코드 트리(Code Tree)에 의해 발생하는 +1,-1값들을 지니는 OVSF부호로 구성된다. Accordingly, the channelization code is basically composed of an OVSF code having +1 and -1 values generated by a code tree as shown in FIG.
만약, 일련의 데이터를 전송하는데 있어서, 정해진 SF와 여러개의 채널화 부호를 사용하여 다중화될 경우에 원래의 데이터를 복원하기 위해서는 각각의 데이터에 사용된 채널화 부호를 각각 곱함으로써 복원해야 한다.When transmitting a series of data, when multiplexing using a predetermined SF and several channelization codes, in order to recover the original data, the original data must be restored by multiplying the channelization codes used for each data.
따라서, 동일한 SF를 지닌 다수개의 채널화 부호를 사용하여 데이터를 전송하는 경우, 원래의 데이터를 복원하기 위해서는 상당한 연산이 요구되고, 또한 SF가 커질수록 복잡도가 커지게 되는 문제점이 있다. Therefore, when data is transmitted using a plurality of channelization codes having the same SF, a significant operation is required to restore the original data, and the complexity increases as the SF becomes larger.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, FHT(Fast Hadamard Transform) 알고리즘을 이용하여, WCDMA 시스템에서 OVSF 부호를 사용하여 코드 분할 다중화된 데이터를 복원함으로써, 연산의 복잡도를 현저하게 감소시키도록 한 WCDMA 시스템의 역채널화방법을 제공함에 그 목적이 있다.The present invention has been made to solve the above problems, by using the Fast Hadamard Transform (FHT) algorithm, by reconstructing the code division multiplexed data using the OVSF code in the WCDMA system, significantly reducing the complexity of the operation It is an object of the present invention to provide a dechannelization method for a WCDMA system.
상기와 같은 목적을 달성하기 위한 본 발명은, WCDMA 시스템에 있어서,채널화 부호에 사용되는 OVSF부호를 검출하는 제1 과정과;상기 검출된 OVSF부호를 Hadamard 행렬의 열로 이루어진 수열로 일치시키는 제2 과정과;OVSF 부호로 다중화된 신호를 FHT(Fast Hadamard Transform) 알고리즘을 이용하여 복호화하는 제3 과정과;상기 복호화된 신호를, 기정해진 일정한 순서로 맵핑하여 역채널화신호를 구하는 제4 과정으로 수행함을 특징으로 한다.According to an aspect of the present invention, there is provided a WCDMA system, comprising: a first process of detecting an OVSF code used for a channelization code; and a second step of matching the detected OVSF code with a sequence of columns of a Hadamard matrix; And a third step of decoding a signal multiplexed with an OVSF code using a fast Hadamard transform (FHT) algorithm; and a fourth step of obtaining an inverse channelized signal by mapping the decoded signal in a predetermined order. Characterized by performing.
삭제delete
이하, 본 발명에 의한 WCDMA 시스템의 역채널화방법에 대한 작용 및 효과를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, the operation and effect of the de-channelization method of the WCDMA system according to the present invention will be described in detail with reference to the accompanying drawings.
본 발명은, 역채널화 과정이 OVSF부호로 다중화된 신호를 복원하는 것과 일치하고, 상기 OVSF코드는 도2와 같이 생성되는 Hadamard 메트릭스의 행이나 열로 이루어진 수열과 일치하므로, OVSF부호로 다중화된 신호를 복원하는 것은 Hadamard 변환을 사용하는 것과 동일하다는 점에 착안하였음을 밝혀 두는 바이다. According to the present invention, the de-channelization process corresponds to restoring the signal multiplexed with the OVSF code, and the OVSF code matches the sequence of rows or columns of the Hadamard matrix generated as shown in FIG. Note that restoring is equivalent to using the Hadamard transform.
도3은 본 발명 WCDMA 시스템의 역채널화방법에 대한 동작흐름도로서, 이에 도시한 바와같이 채널화 부호에 사용되는 OVSF부호를 검출하는 제1 과정(SP1)과; 상기 검출된 OVSF부호를 Hadamard 행렬의 열로 이루어진 수열로 일치시키는 제2 과정(SP2)과; OVSF 부호로 다중화된 신호를 FHT(Fast Hadamard Transform) 알고리즘을 이용하여 복호화하는 제3 과정(SP3)과; 상기 복호화된 신호를,OVSF코드와 Hadamard 행렬의 순서를 일치시키기 위해 맵핑하여 역채널화신호를 구하는 제4 과정(SP4)으로 이루어지며,이와같은 본 발명의 동작을 설명한다.FIG. 3 is a flowchart illustrating a dechannelization method of the WCDMA system of the present invention, and a first step (SP1) of detecting an OVSF code used for a channelization code as shown therein; A second step (SP2) of matching the detected OVSF codes with a sequence of columns of a Hadamard matrix; A third step (SP3) of decoding the signal multiplexed with the OVSF code by using a Fast Hadamard Transform (FHT) algorithm; The decoded signal is mapped to match the order of the OVSF code and the Hadamard matrix to obtain a de-channelized signal (SP4). The operation of the present invention will be described.
먼저, 채널화 부호에 사용되는 OVSF부호를 검출한후(SP1), 그 검출된 OVSF부호를 Hadamard 행렬의 열로 이루어진 수열로 일치시킨다(SP2).First, the OVSF code used for the channelization code is detected (SP1), and the detected OVSF code is matched with a sequence consisting of columns of the Hadamard matrix (SP2).
그 다음, OVSF부호로 다중화된 신호를 복원하기 위하여,Hadamard 변환을 이용하는데(SP3), 즉 Hadamard 변환은, 입력벡터와 Hadamard행렬의 열로 이루어진 벡터를 내적하는 것으로, 이는 Hadamard행렬의 열로 이루어진 수열로 코드 분할 다중화된 신호를 복원하는 것이고, 또한 Hadamard 행렬의 열로 이루어진 수열은 채널화 부호에 사용되는 OVSF부호와 일치하기 때문에 OVSF부호로 다중화된 신호를 복원하는데 Hadamard 변환을 사용한다. Then, to recover the signal multiplexed with the OVSF code, we use the Hadamard transform (SP3), that is, the Hadamard transform, which internalizes a vector of columns of the input vector and the Hadamard matrix, which is a sequence of columns of the Hadamard matrix. The Hadamard transform is used to recover the signal multiplexed by the OVSF code because the sequence of the code division multiplexed signal and the sequence of the Hadamard matrix matches the OVSF code used for the channelization code.
이때, 상기 Hadamard 변환은, 그 연산의 복잡도를 줄이기 위하여, FHT(Fast Hadamard Transform)라고 하는 알고리즘을 이용하는데, 이 알고리즘은 길이 n인 벡터를 Hadamard 변환하는데 필요한 연산량을 에서 으로 줄일 수있다.At this time, the Hadamard transform uses an algorithm called Fast Hadamard Transform (FHT) in order to reduce the complexity of the operation, and this algorithm calculates the amount of computation required to Hadamard transform a vector of length n. in Can be reduced to
도4는 상기 FHT알고리즘을 이용하여, 길이가 4이 벡터를 변환하는 모습을 보인 예시도로서, FHT(Fast Hadamard Transform)을 이용하는 경우 상당량의 연산량을 줄일 수 있으며, 그 정도는 길이가 클수록 커짐을 알 수 있다.Figure 4 is an exemplary view showing a four-length vector transform using the FHT algorithm, a significant amount of computation can be reduced when using the Fast Hadamard Transform (FHT), the greater the length is larger Able to know.
그 다음, 상기 복호화된 신호를 OVSF코드와 Hadamard 행렬의 순서를 일치시키기 위해 맵핑하여 역채널화신호를 구한다(SP4).Next, the decoded signal is mapped in order to match the order of the OVSF code and the Hadamard matrix to obtain a dechannelization signal (SP4).
즉, 상기 OVSF부호는, 도1과 도2에서 보듯이, Hadamard 행렬의 열로 이루어진 수열과 일치하지만 그 순서는 틀린것을 알 수 있다. That is, the OVSF code, as shown in Figures 1 and 2, can be seen that the sequence of the column of the Hadamard matrix, but the order is incorrect.
따라서, 상기 OVSF부호로 다중화된 데이터를 복원하기 위하여 FHT를 사용한다면 순서를 표현할 수 있는 일종의 맵핑이 필요하게 되는데,이러한 맵핑은 도5에 도시된 바와같다.Therefore, if FHT is used to recover the data multiplexed by the OVSF code, a kind of mapping capable of expressing an order is required. Such mapping is illustrated in FIG. 5.
상기 도5는 컴퓨터의 모의실험으로 찾은 맵핑으로서, 이 맵핑을 사용함으로써 OVSF부호로 다중화된 데이터를 FHT를 통해 복원할 수 있다,FIG. 5 is a mapping found by simulation of a computer. By using this mapping, data multiplexed with an OVSF code can be restored through FHT.
즉, OVSF 부호로 다중화된 신호를 FHT를 이용하여 복원한후, 그 복원된 신호를 다시 맵핑에 나타난 순서대로 배열하면, OVSF부호의 순서대로 역채널화신호를 생성하게 된다. That is, if the signal multiplexed with the OVSF code is recovered using FHT and then the restored signal is arranged in the order shown in the mapping again, the reverse channelized signals are generated in the order of the OVSF code.
상기 본 발명의 상세한 설명에서 행해진 구체적인 실시 양태 또는 실시예는 어디까지나 본 발명의 기술 내용을 명확하게 하기 위한 것으로 이러한 구체적 실시예에 한정해서 협의로 해석해서는 안되며, 본 발명의 정신과 다음에 기재된 특허 청구의 범위내에서 여러가지 변경 실시가 가능한 것이다.The specific embodiments or examples made in the detailed description of the present invention are intended to clarify the technical contents of the present invention to the extent that they should not be construed as limited to these specific embodiments and should not be construed in consultation. Various changes can be made within the scope of.
이상에서 상세히 설명한 바와같이 본 발명은, FHT(Fast Hadamard Transform) 알고리즘을 이용하여, WCDMA 시스템에서 OVSF 부호를 사용하여 코드 분할 다중화된 데이터를 복원함으로써, 연산의 복잡도를 현저하게 감소시켜 신속하게 데이터를 복원하는 효과가 있다.As described in detail above, the present invention uses a fast Hadamard Transform (FHT) algorithm to recover code division multiplexed data using an OVSF code in a WCDMA system, thereby significantly reducing the complexity of the operation and rapidly recovering the data. It has the effect of restoring.
도1은 OVSF코드를 생성하는 코드 트리(Code Tree)를 보인도.1 shows a code tree for generating OVSF codes.
도2는 Hadamard 행렬을 생성하는 모습을 보인도.Figure 2 shows how to create a Hadamard matrix.
도3은 본 발명 WCDMA시스템의 역채널화방법에 대한 동작흐름도.3 is a flowchart illustrating a method for inverse channelization of a WCDMA system of the present invention.
도4는 도3에 있어서, 길이가 4인 경우의 Hadamard 회로도.FIG. 4 is a Hadamard circuit diagram when the length is 4 in FIG.
도5는 도3에 있어서, 실험에 구한 맵핑의 순서를 보인도.FIG. 5 is a diagram showing a mapping sequence obtained in an experiment in FIG. 3. FIG.
Claims (2)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0059103A KR100504804B1 (en) | 2002-09-28 | 2002-09-28 | De-channelization method of wcdma system |
CNA031603696A CN1497887A (en) | 2002-09-28 | 2003-09-25 | Dechannelizing method of W-CDMA system |
US10/670,464 US20040081126A1 (en) | 2002-09-28 | 2003-09-26 | De-channelization method of W-CDMA system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0059103A KR100504804B1 (en) | 2002-09-28 | 2002-09-28 | De-channelization method of wcdma system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040028026A KR20040028026A (en) | 2004-04-03 |
KR100504804B1 true KR100504804B1 (en) | 2005-08-01 |
Family
ID=32105570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0059103A Expired - Fee Related KR100504804B1 (en) | 2002-09-28 | 2002-09-28 | De-channelization method of wcdma system |
Country Status (3)
Country | Link |
---|---|
US (1) | US20040081126A1 (en) |
KR (1) | KR100504804B1 (en) |
CN (1) | CN1497887A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010047242A (en) * | 1999-11-18 | 2001-06-15 | 서평원 | optimal method for encoding TFCI |
JP2001244912A (en) * | 2000-01-17 | 2001-09-07 | Matsushita Electric Ind Co Ltd | Cdma cellular radio transmission system |
KR20020025468A (en) * | 2000-09-29 | 2002-04-04 | 오길록 | STTD Decoding Demodulator Applicable To Spread Spectrum Communication |
US20020110099A1 (en) * | 2000-02-04 | 2002-08-15 | Interdigital Technology Corporation | Method of multiuser detection with user equipment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501788B1 (en) * | 1999-01-22 | 2002-12-31 | Ericsson Inc. | Apparatus and methods for intereference cancellation in spread spectrum communications systems |
DE10195203B3 (en) * | 2000-01-28 | 2014-01-02 | Infineon Technologies Ag | A method of creating a configuration for a configurable communication device and electronic device and computer readable medium |
AU772717C (en) * | 2000-10-04 | 2004-11-25 | Samsung Electronics Co., Ltd. | Apparatus and method for power control of downlink shared channel in mobile communication system |
JP2003198504A (en) * | 2001-12-27 | 2003-07-11 | Mitsubishi Electric Corp | Despreading processing method, despread code assignment method, terminal for moving object and base station |
-
2002
- 2002-09-28 KR KR10-2002-0059103A patent/KR100504804B1/en not_active Expired - Fee Related
-
2003
- 2003-09-25 CN CNA031603696A patent/CN1497887A/en active Pending
- 2003-09-26 US US10/670,464 patent/US20040081126A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010047242A (en) * | 1999-11-18 | 2001-06-15 | 서평원 | optimal method for encoding TFCI |
JP2001244912A (en) * | 2000-01-17 | 2001-09-07 | Matsushita Electric Ind Co Ltd | Cdma cellular radio transmission system |
US20020110099A1 (en) * | 2000-02-04 | 2002-08-15 | Interdigital Technology Corporation | Method of multiuser detection with user equipment |
KR20020025468A (en) * | 2000-09-29 | 2002-04-04 | 오길록 | STTD Decoding Demodulator Applicable To Spread Spectrum Communication |
Also Published As
Publication number | Publication date |
---|---|
KR20040028026A (en) | 2004-04-03 |
CN1497887A (en) | 2004-05-19 |
US20040081126A1 (en) | 2004-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7406494B2 (en) | Method of generating a cycle-efficient bit-reverse index array for a wireless communication system | |
KR100374623B1 (en) | Code division multiple communication method and code division multiple communication apparatus | |
KR100953884B1 (en) | How to handle multiplication of RAID device and galloche | |
Guido | Practical and useful tips on discrete wavelet transforms [sp tips & tricks] | |
US4567464A (en) | Fixed rate constrained channel code generating and recovery method and means having spectral nulls for pilot signal insertion | |
WO2015065064A1 (en) | Method and device for transmitting preamble sequence | |
KR100504804B1 (en) | De-channelization method of wcdma system | |
JPH11296347A (en) | Galois field multiplier and galois field multiplying method | |
JP5193358B2 (en) | Polynomial data processing operations | |
US8909510B2 (en) | LFSR emulation | |
Pan | Nearly optimal solution of rational linear systems of equations with symbolic lifting and numerical initialization | |
RU2318238C1 (en) | Neuron network for transformation of residual code to binary positional code | |
KR102429200B1 (en) | DNA code generation method based on Reversible Self-Dual code | |
García et al. | Efficient filter for the generation/correlation of Golay binary sequence pairs | |
Komo et al. | Primitive polynomials and m-sequences over GF (q/sup m/) | |
EP1416352B1 (en) | Method and apparatus for efficient matrix multiplication in a direct sequence CDMA system | |
KR20050036451A (en) | Method and apparatus for multiplication operation in finite field | |
EP2434650A1 (en) | Reed-Solomon encoder with simplified Galois field multipliers | |
US7173900B1 (en) | Method and apparatus for chip generation of a chip sequence | |
KR20150026745A (en) | A method and apparatus for generating orthogonal codes with wide range of spreading factor | |
CN100525273C (en) | Method and apparatus of cross-correlation | |
RU2630386C1 (en) | Multiplier by module | |
KR100307702B1 (en) | Digital match filter for acquisition code | |
Oodaira | The log log law for certain dependent random sequences | |
KR0155515B1 (en) | Fast hardmard transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20020928 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20040923 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20050627 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20050721 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20050722 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20080618 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20090630 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20100630 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20110620 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20120619 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20130624 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20130624 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140624 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20140624 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20150624 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20150624 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160624 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20160624 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20170623 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20170623 Start annual number: 13 End annual number: 13 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20190501 |