[go: up one dir, main page]

KR100495566B1 - Dielectric Materials for Plasma Display Panel and Manufacturing Method thereof - Google Patents

Dielectric Materials for Plasma Display Panel and Manufacturing Method thereof Download PDF

Info

Publication number
KR100495566B1
KR100495566B1 KR10-2002-0046902A KR20020046902A KR100495566B1 KR 100495566 B1 KR100495566 B1 KR 100495566B1 KR 20020046902 A KR20020046902 A KR 20020046902A KR 100495566 B1 KR100495566 B1 KR 100495566B1
Authority
KR
South Korea
Prior art keywords
group
dielectric
display panel
plasma display
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR10-2002-0046902A
Other languages
Korean (ko)
Other versions
KR20040013816A (en
Inventor
배병수
이태호
강은석
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR10-2002-0046902A priority Critical patent/KR100495566B1/en
Publication of KR20040013816A publication Critical patent/KR20040013816A/en
Application granted granted Critical
Publication of KR100495566B1 publication Critical patent/KR100495566B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/08Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
    • H01B3/087Chemical composition of glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/60Glass compositions containing organic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides
    • C03C2203/27Wet processes, e.g. sol-gel process using alkoxides the alkoxides containing other organic groups, e.g. alkyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Silicon Polymers (AREA)

Abstract

본 발명은 플라즈마 디스플레이 패널용 유전체 및 그 제조방법으로서, 졸-겔법에 의해 제조되며, 구조내에 규소에 결합된 산소원자 또는 가교가 가능한 유기단량체로 가교되거나 수식이 가능한 유기단량체를 포함하는 망목구조를 가지는 유기규소화합물을 포함함을 특징으로 하는 플라즈마 디스플레이 패널용 유전체를 개시한다. 본 발명에 의하면 유전체의 조성이 PbO를 함유함이 없이 섭씨 150∼200도의 낮은 온도에서도 소성이 가능하고 액상으로부터 코팅방법을 이용해 유전체 막을 용이하게 형성시킬 수 있다.The present invention relates to a dielectric for plasma display panel and a method for manufacturing the same, comprising a mesh structure prepared by a sol-gel method and comprising an organic monomer capable of being crosslinked or modified with an oxygen atom bonded to silicon or a crosslinkable organic monomer in the structure. The present invention discloses a dielectric for plasma display panel, characterized in that the branch comprises an organosilicon compound. According to the present invention, the dielectric composition can be baked at a low temperature of 150 to 200 degrees Celsius without containing PbO, and the dielectric film can be easily formed from the liquid phase using a coating method.

Description

플라즈마 디스플레이 패널용 유전체 및 그 제조방법{Dielectric Materials for Plasma Display Panel and Manufacturing Method thereof} Dielectric Materials for Plasma Display Panel and Manufacturing Method thereof

본 발명은 플라즈마 표시장치용 유전체 조성물에 관한 것이며, 보다 상세하게는 플라즈마 표시장치용 전극 위에 광투명 유전체층을 형성하는데 사용되는 무기-유기 혼성 조성에 의한 유전체 조성물에 관한 것이다.TECHNICAL FIELD The present invention relates to a dielectric composition for a plasma display device, and more particularly to a dielectric composition with an inorganic-organic hybrid composition used to form a light transparent dielectric layer on an electrode for a plasma display device.

본 발명과 관련된 종래의 기술로서 일본 특허 제 1993-041167호와 제 1994-310036에 따르면 후면기판에 있는 제1 유전체막은 흑색계 안료를 포함한 연화점이 섭씨 560∼600도의 붕규산 연계 유리로 이루어지고, 제2 유전체막은 연화점이 섭씨 460∼510도의 붕규산 연계 유리로 이루어져 있다. 이 때 평균 막두께 보다 최대 입경이 작은 유리분말을 포함한 유리페이스트를 소성하여 형성할 경우 투명성이 매우 높은 유전체막을 형성할 수 있다. 이와 같이 저융점 유리 분말을 주성분으로 하는 유리 페이스트(paste)를 이용한 유전체막의 형성에는 스크린 인쇄법을 이용하여 유리면 전체에 균일하게 20∼40㎛의 두께로 막을 형성한 후 섭씨 500∼600 도의 고온에서 소성하는 방법이 이용된다.As a conventional technique related to the present invention, according to Japanese Patent Nos. 1993-041167 and 1994-310036, the first dielectric film on the back substrate is made of borosilicate linked glass having a softening point of 560 to 600 degrees Celsius including a black pigment. 2 The dielectric film is composed of borosilicate-linked glass with a softening point of 460 to 510 degrees Celsius. In this case, when the glass paste including the glass powder having a smaller maximum particle diameter than the average film thickness is formed by firing, a dielectric film having a very high transparency can be formed. As described above, the dielectric film using the glass paste containing the low melting point glass powder as a main component is uniformly formed in the entire glass surface by the screen printing method and then formed at a thickness of 20 to 40 μm at a high temperature of 500 to 600 degrees Celsius. The method of baking is used.

유리 페이스트(paste)는 PbO가 과량 포함된 PbO-B2O3-SiO2계 조성의 유리분말과 필러, 유기 용제, 고분자 수지가 함께 혼합되어 있다. 유리 분말을 이용하여 고온 소성으로 유전체막을 형성할 경우, 유리분말의 조성, 입경, 제조 조건, 소성 조건에 따라 층 내에 기포를 포함하게 되어 유전막의 투과율을 저하시키는 문제점을 가진다. 또한 PbO가 과량 포함된 유리 조성의 페이스트(paste)를 이용할 경우, 소성온도가 감소되는 장점을 가져 올 수 있지만 환경공해, 소결 후의 많은 기포, PbO의 환원 문제 등의 여러 가지 문제점을 가지며, 소성 후 막내에 남게 되는 금속성 Pb는 유전층의 내전압을 낮추는 역할을 하여 결국에는 제품의 수명을 단축시킨다. 섭씨 550∼580도 온도의 고온 소성으로 유전체막을 형성할 경우 유전막 아래의 유리 기판에 대해서도 이 온도 범위 내에서 반복 열처리가 행해진다. 이러한 고온 열이력 공정은 기판 유리의 치수를 변하게 하고 패턴을 어긋나게 하여 표시 패널의 불량을 초래하고, 또한 패널의 대화면화 시키는데 어려움을 야기하는 등 많은 단점을 가지고 있다.The glass paste is a mixture of a glass powder of PbO-B 2 O 3 -SiO 2 -based composition containing excess PbO, a filler, an organic solvent, and a polymer resin. When the dielectric film is formed by the high temperature firing using the glass powder, bubbles are included in the layer depending on the composition, particle size, manufacturing conditions, and firing conditions of the glass powder, thereby lowering the transmittance of the dielectric film. In addition, when using a glass composition paste containing excessive PbO, the firing temperature may be reduced, but there are various problems such as environmental pollution, many bubbles after sintering, reduction of PbO, and the like. The metallic Pb remaining in the film serves to lower the withstand voltage of the dielectric layer, which in turn shortens the life of the product. When the dielectric film is formed by high temperature firing at a temperature of 550 to 580 degrees Celsius, the repeated heat treatment is also performed within this temperature range on the glass substrate under the dielectric film. Such a high temperature thermal history process has many disadvantages such as changing the dimensions of the substrate glass and displacing the pattern, causing defects in the display panel, and also causing difficulty in making the panel larger.

일본 특허 제 2001-195985에 의하면 PbO 대체 조성으로 Bi2O3를 사용한 예가 개시되어 있으나 Bi2O3는 중금속으로서 환경오염 물질이라는 문제가 있다.Japanese Patent No. 2001-195985 discloses an example in which Bi 2 O 3 is used as a PbO alternative composition, but Bi 2 O 3 is a heavy metal and has a problem of being an environmental pollutant.

현재 Pb가 없는 저온 소성형 투명 유전체를 얻기 위해 PbO의 대체물질로 P2O5, BaO, V2O5, SnO가 주로 연구되고 있으며 물성향상을 위해 B2O3, ZnO, SiO2, 알칼리 산화물, 알칼리토 산화물이 첨가제로 사용되고 있다. 그러나 저융점 유리를 주성분으로 하는 프릿(frit)을 이용한 방법에 의해서는 과량의 Pb를 첨가함이 없이 저온 소성형 투명 유전소재를 얻는데는 어려움이 따르는 실정이다.Currently, P 2 O 5 , BaO, V 2 O 5 and SnO are mainly researched to obtain Pb-free low-temperature fired transparent dielectrics, and B 2 O 3 , ZnO, SiO 2 , and alkali for improved physical properties. Oxides and alkaline earth oxides are used as additives. However, it is difficult to obtain a low-temperature calcined transparent dielectric material without adding excess Pb by the method using a frit mainly containing low melting glass.

본 발명은 상기 종래기술이 가지는 문제를 해결하기 위해 안출된 것으로 본 발명의 목적은 PbO가 없는 조성으로 섭씨 200도 이하의 소성온도에서도 10㎛이상의 두께를 가질 수 있고 기포가 없는 투명한 유전체층을 가지는 플라즈마 표시장치용 유전체 조성물을 제공하는데 있다. The present invention has been made to solve the problems of the prior art, an object of the present invention is a composition having no PbO, plasma having a transparent dielectric layer having a thickness of 10 ㎛ or more even at a firing temperature of less than 200 degrees Celsius and no bubbles A dielectric composition for a display device is provided.

상기 목적을 달성하기 위한 본 발명의 유전체는 졸-겔법에 의해 제조되며, 구조내에 규소에 결합된 산소원자 또는 가교가 가능한 유기단량체로 가교된 망목구조를 가지는 무기-유기 혼성물질(이하 유기규소화합물이라 칭함)을 포함함을 특징으로 하는 플라즈마 디스플레이 패널용 유전체를 포함한다.In order to achieve the above object, the dielectric of the present invention is prepared by the sol-gel method, and has an inorganic-organic hybrid material having a network structure crosslinked with silicon atoms or crosslinkable organic monomers bonded to silicon in the structure (hereinafter referred to as organosilicon compounds). And a dielectric for a plasma display panel.

본 발명의 유전체는 하기 일반식 1∼3으로 나타낼 수 있는 규소 화합물들을 출발 물질로 하여 제조될 수 있다.The dielectric of the present invention can be prepared using silicon compounds represented by the following general formulas 1 to 3 as starting materials.

<일반식 1><Formula 1>

(OR1)nSi-R2 m (n+m=4)(OR 1 ) n Si-R 2 m (n + m = 4)

<일반식 2><Formula 2>

(OR1)nSi-(X-R3)m (n+m=4)(OR 1 ) n Si- (XR 3 ) m (n + m = 4)

<일반식 3><Formula 3>

R4SiCl3 R 4 SiCl 3

상기 일반식 1∼3에서 R1은 탄소수가 1∼10개인 메틸, 에틸, 프로필, 부틸 등의 직쇄 또는 측쇄 알킬기이거나 이들 그룹이 가수분해된 수소원자이며, R2는 탄소수가 1∼4인 직쇄 또는 측쇄 알킬기, 페닐기, 페닐 알콕시기, 아민기를 나타낸다. 또한 n은 1∼4의 자연수, m은 0∼3 사이의 정수를 나타낸다.In General Formulas 1 to 3, R 1 is a straight or branched chain alkyl group of 1 to 10 carbon atoms, such as methyl, ethyl, propyl, and butyl, or a hydrogen atom in which these groups are hydrolyzed, and R 2 is a straight chain having 1 to 4 carbon atoms. Or a branched alkyl group, a phenyl group, a phenyl alkoxy group, or an amine group. In addition, n is a natural number of 1-4, m shows the integer of 0-3.

X는 탄소수가 3∼6인 탄소 사슬이며 R3은 비닐기, 글리시독시기, 메타아크릴기를 포함하거나 탄소수가 4∼8개인 탄소 사슬내에 플로라이드 원자가 치환된 물질을 나타낸다.X is a carbon chain having 3 to 6 carbon atoms, and R 3 represents a substance containing a vinyl group, a glycidoxy group, a methacryl group, or a fluoride atom substituted in a carbon chain having 4 to 8 carbon atoms.

R4는 탄소수가 1∼10개인 직쇄 또는 측쇄 알킬기 또는 수소원자, 페닐기, 페닐 알콕시기, 아민기, 비닐기, 글리시독시기 또는 메타아크릴기를 포함하거나 탄소수가 4∼8개인 탄소 사슬내에 플로라이드 원자가 치환된 물질이다.R 4 is a fluoride valence in a carbon chain having 1 to 10 carbon atoms, or a straight or branched alkyl group or a hydrogen atom, a phenyl group, a phenyl alkoxy group, an amine group, a vinyl group, a glycidoxy group or a methacryl group, or a carbon chain having 4 to 8 carbon atoms. Substituted material.

상기 일반식 1∼3에 속하는 구체적인 화합물의 예로서는 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 테트라부톡시실란, 비닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리프로폭시실란, 비닐트리아세톡시실란, 비닐디메톡시에톡시실란, 아미노프로필트리에톡시실란, 아미노프로필트리메톡시실란, 아미노프로필트리프로폭시실란, N-(3-아크릴옥시-2-하이드록시프로필)-3-아미노프로필트리에톡시실란, N-(3-아크릴옥시-2-하이드록시프로필)-3-아미노프로필트리메톡시실란, 3-아크릴옥시프로필디메톡시실란, 3-아크릴옥시프로필디에톡시실란, 3-아크릴옥시프로필디프로폭시실란, 3-(메트)아크릴옥시프로필트리메톡시실란, 3-(메트)아크릴옥시프로필트리에톡시실란, 3-(메트)아크릴옥시프로필트리프로폭시실란, N-(2-아미노에틸-3-아미노프로필)-트리메톡시실란(DIAMO), N-(2-아미노에틸-3-아미노프로필 )-트리에톡시실란, N-(2-아미노에틸-3-아미노프로필)-트리프로폭시실란, N-(2-아미노에틸-3-아미노프로필)-트리부톡시시실란, 트리메톡시실릴프로필디에틸렌트리아민 (TRIAMO), 트리에톡시실릴프로필디에틸렌트리아민, 트리프로폭시실릴프로필디에틸렌트리아민, 트리부톡시실릴프로필디에틸렌트리아민, 2-글리시독시에틸메톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란,2-글리시독시프로필트리메톡시실란, 2-글리시독시프로필트리에톡시실란, 2-글리시독시에틸메틸디메톡시실란, 2-글리시독시에틸메틸디에톡시실란, 3-글리시독시에틸메틸디메톡시실란, 3-글리시독시프로필에틸디메톡시실란, 3-글리시독시프로필에틸디메톡시실란, 3-글리시독시프로필에틸디에톡시실란, 2-글리시독시프로필에틸디에톡시실란, 2-글리시독시프로필에틸디메톡시실란, 2-(3,4-에톡시사이클로헥실)에틸트리메톡시실란, 2-(3,4-에톡시사이클로헥실)에틸트리에톡시실란, 에틸트리메톡시실란, 메틸트리에톡시실란, 3-클로로프로필트리메톡시실란, 3-클로로프로필트리프로폭시실란, 2-클로로프로필트리부톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 3,3,3,-트리플루오르프로필트리메톡시실란, 디메틸디메톡시실란, 3-클로로프로필메틸디메톡시실란, 메틸트리클로로실란, 에틸트리클로로실란, 페닐트리클로로실란, 비닐트리클로로실란, 헥실트리클로로실란 또는 데실트리클로로실란이 있다.Examples of specific compounds belonging to the general formulas (1) to (3) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltripropoxysilane, Vinyltriacetoxysilane, vinyldimethoxyethoxysilane, aminopropyltriethoxysilane, aminopropyltrimethoxysilane, aminopropyltripropoxysilane, N- (3-acryloxy-2-hydroxypropyl) -3 -Aminopropyltriethoxysilane, N- (3-acryloxy-2-hydroxypropyl) -3-aminopropyltrimethoxysilane, 3-acryloxypropyldimethoxysilane, 3-acryloxypropyldiethoxysilane, 3-acryloxypropyldipropoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloxypropyltripropoxysilane, N -(2-aminoethyl-3-amino Phil) -trimethoxysilane (DIAMO), N- (2-aminoethyl-3-aminopropyl) -triethoxysilane, N- (2-aminoethyl-3-aminopropyl) -tripropoxysilane, N -(2-aminoethyl-3-aminopropyl) -tributoxysisilane, trimethoxysilylpropyldiethylenetriamine (TRIAMO), triethoxysilylpropyldiethylenetriamine, tripropoxysilylpropyldiethylenetri Amine, tributoxysilylpropyldiethylenetriamine, 2-glycidoxyethylmethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2-glycidoxypropyl Trimethoxysilane, 2-glycidoxypropyltriethoxysilane, 2-glycidoxyethylmethyldimethoxysilane, 2-glycidoxyethylmethyldiethoxysilane, 3-glycidoxyethylmethyldimethoxysilane, 3 Glycidoxypropylethyldimethoxysilane, 3-glycidoxypropylethyldimethoxysilane, 3-glycidoxypropylethyldi Methoxysilane, 2-glycidoxypropylethyldiethoxysilane, 2-glycidoxypropylethyldimethoxysilane, 2- (3,4-ethoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Ethoxycyclohexyl) ethyltriethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltripropoxysilane, 2-chloropropyltributoxysilane, Phenyltrimethoxysilane, Phenyltriethoxysilane, 3,3,3, -trifluoropropyltrimethoxysilane, dimethyldimethoxysilane, 3-chloropropylmethyldimethoxysilane, methyltrichlorosilane, ethyltrichlorosilane , Phenyltrichlorosilane, vinyltrichlorosilane, hexyltrichlorosilane or decyltrichlorosilane.

본 발명에 의한 유전체를 제조하는 첫 번째 방법은 상기 일반식 1∼3에 나타낸 물질의 물과 알콜의 혼합 용액을 만들고 바람직하기로는 산 또는 염기 촉매를 첨가하여 가수분해(hydrolysis)와 축합(condensation)반응하는 과정을 포함한다. 상기 일반식 1과 2에 표시한 실란들을 하기 화학식 1에 나타낸 가수 분해 및 축합 반응의 연속적인 반응을 통해 분자량이 큰 산화물을 졸 상태에서 겔 상태로 전이하는 겔화(Gelation)과정을 통해 유전체를 제조한다. The first method of preparing the dielectric according to the present invention is to prepare a mixed solution of water and alcohol of the substances represented by the above general formulas (1) to (3), preferably by adding an acid or a base catalyst to hydrolysis and condensation. The process of reacting. The dielectrics were prepared by gelling the silanes represented by the general formulas 1 and 2 through the continuous reaction of the hydrolysis and condensation reactions represented by the following Chemical Formula 1 to transfer the oxide having a high molecular weight from the sol state to the gel state. do.

상기 일반식 2의 물질 중 분자간 가교를 가능하게 하는 유기단량체로서 비닐기, 글리시독시기, 메타아크릴기가 포함된 경우에는 하기 화학식 3에 나타낸 유기중합반응을 포함한다. 실리콘에 치환된 유기그룹이 비닐기와 메타아크릴기(바람직하기로 메타아크릴록시기) 등일 경우에 바람직하기로 유기중합반응은 자유 라디칼, 양·음 이온 형태의 열·광 유기중합 개시제를 첨가시켜 반응시킨다. 글리시독시기가 포함된 경우에는 바람직하기로 알루미늄 알콕사이드, 티타늄 알콕사이드, 지르코늄 알콕사이드, 아민기 등에 의한 개환(ring opening) 반응을 통해 유기중합반응이 가능하다. As the organic monomer capable of intermolecular crosslinking in the material of Formula 2, when a vinyl group, glycidoxy group, and methacryl group are included, an organic polymerization reaction represented by Chemical Formula 3 is included. It is preferable when the organic group substituted in the silicon is vinyl group or methacryl group (preferably methacryloxy group). Let's do it. When glycidoxy group is included, organic polymerization may be preferably performed through a ring opening reaction using aluminum alkoxide, titanium alkoxide, zirconium alkoxide, amine group or the like.

<화학식 1><Formula 1>

[가수분해][Hydrolysis]

M(OR)x + xH2O ↔M(OH)x + xROHM (OR) x + xH 2 O ↔M (OH) x + xROH

[축합(Condensation)][Condensation]

≡M(OH) + (HO)M≡ ↔ ≡M-O-M≡ + H2O≡M (OH) + (HO) M≡ ↔ ≡MOM≡ + H 2 O

[물축합]              [Water condensation]

≡M(OR) + (HO)M≡↔ ≡M-O-M≡ + ROH≡M (OR) + (HO) M≡↔ ≡M-O-M≡ + ROH

[알콜축합]             [Alcohol condensation]

본 발명에 의한 유전체의 두 번째 제조방법은 상기 일반식 3에 나타낸 실리콘클로라이드, 메틸트리클로로실란, 에틸트리클로로실란, 페닐트리클로로실란 등의 반응물을 실리콘 알콕사이드 또는 알킬에테르와 바람직하기로는 금속클로라이드, 예를 들면 지르코늄 클로라이드, 티타늄 클로라이드, 틴 클로라이드 등의 촉매를 이용하여 하기 화학식 2에 나타낸 반응을 통해 고분자 산화물 구조의 유전체를 제조하는 과정을 포함한다.According to a second method of preparing a dielectric according to the present invention, reactants such as silicon chloride, methyltrichlorosilane, ethyltrichlorosilane, and phenyltrichlorosilane represented by the general formula (3) may be reacted with silicon alkoxide or alkyl ether, preferably metal chloride, For example, using a catalyst such as zirconium chloride, titanium chloride, tin chloride, and the like to prepare a dielectric of a polymer oxide structure through the reaction shown in the formula (2).

<화학식 2><Formula 2>

RSiCl3 + 0.75Si(OR`)4 -> [RSi1.75O3]n + 3R`ClRSiCl 3 + 0.75 Si (OR`) 4- > [RSi 1.75 O 3 ] n + 3R`Cl

0.75SiCl4 + RSi(OR`)3 -> [RSi1.75O3]n + 3R`Cl0.75SiCl 4 + RSi (OR`) 3- > [RSi 1.75 O 3 ] n + 3R`Cl

RSiCl3 + RSi(OR`)3 -> [R2Si2O3]n + 3R`ClRSiCl 3 + RSi (OR`) 3- > [R 2 Si 2 O 3 ] n + 3R`Cl

2RSiCl3 + 3R`2O -> [R2Si2O3]n + 6R`Cl2RSiCl 3 + 3R` 2 O-> [R 2 Si 2 O 3 ] n + 6R`Cl

RSiCl3 + Si(OR`)4 -> [RSi2O3-OR`]n + 3R`ClRSiCl 3 + Si (OR`) 4- > [RSi 2 O 3 -OR`] n + 3R`Cl

SiCl4 + RSi(OR`)3 -> [RSi2O3-Cl]n + 3R`ClSiCl 4 + RSi (OR`) 3- > [RSi 2 O 3 -Cl] n + 3R`Cl

상기 화학식 2에 나타낸 R`는 탄소수가 1∼10인 직쇄 또는 측쇄 알킬기이며 R은 탄소수가 1∼10개인 직쇄 또는 측쇄 알킬기 또는 수소원자, 페닐기, 페닐 알콕시기, 아민기, 비닐기, 글리시독시기 또는 메타아크릴기를 포함하거나 탄소수가 4∼8개인 탄소 사슬내에 플로라이드 원자가 치환된 물질을 나타낸다.R ′ in Formula 2 is a straight or branched alkyl group having 1 to 10 carbon atoms, and R is a straight or branched alkyl group having 1 to 10 carbon atoms or a hydrogen atom, a phenyl group, a phenyl alkoxy group, an amine group, a vinyl group, or a glycidoxy group. Or a substance containing a methacryl group or a fluoride atom substituted in a carbon chain having 4 to 8 carbon atoms.

본 발명에 의한 유전체는 상기 두 가지 방법에 의해 제조가 가능하며 첨가되는 유기물의 종류에 따라 최종 재료의 구조와 특성을 변화시킬 수 있다. 유전체에서 유기물은 크게 산소원자로 가교된 망목구조 내에서 가교제(network former)와 수식제(network modifier) 역할을 수행한다. 예를 들어 페닐기나 아민기와 같이 다른 유기 단량체(organic monomer)나 무기 망목구조(inorganic network)와 결합을 할 수 없는 유기물은 유전체 내에서 수식제 역할을 수행한다. 만약 첨가되어진 유기물이 글리시독시기, 메타아크릴기, 비닐기와 같은 유기물일 경우 다른 유기 단량체(organic monomer)나 무기 망목구조물 내의 다른 유기물과 결합을 통해 새로운 결합을 형성하는 가교제 역할을 수행할 수 있게 된다.The dielectric according to the present invention can be manufactured by the above two methods and can change the structure and properties of the final material according to the type of organic material added. Organics in the dielectric play a role as a network former and a network modifier in the network structure largely crosslinked with oxygen atoms. For example, organic materials that cannot bond with other organic monomers or inorganic networks, such as phenyl or amine groups, act as modifiers in the dielectric. If the added organic substance is an organic substance such as glycidoxy group, methacryl group, or vinyl group, it can act as a crosslinking agent to form a new bond through bonding with other organic monomers or other organic substances in the inorganic network structure. .

<화학식 3><Formula 3>

O3≡Si-R + R`-Si≡O3 -> O3≡Si-R-R`-Si≡O3 O 3 ≡Si-R + R`-Si≡O 3- > O 3 ≡Si-RR`-Si≡O 3

O3≡Si-R + R + R + R`-Si≡O3 -> O3≡Si-R-R-R-R`-Si≡O3 O 3 ≡Si-R + R + R + R`-Si≡O 3- > O 3 ≡Si-RRRR`-Si≡O 3

상기 화학식 3의 R, R`는 가교가 가능한 유기단량체로서 이중결합이나 삼중결합 등의 불포화 탄화수소를 가지거나 불안정한 고리 구조(ring structure)를 갖는다. 이러한 결합 또는 구조의 대표적인 예로는 비닐기, 메타아크릴기, 글리시독시기 등이 있다.R, R` in Formula 3 is an organic monomer capable of crosslinking and has an unsaturated hydrocarbon such as a double bond or a triple bond or an unstable ring structure. Representative examples of such bonds or structures include vinyl groups, methacryl groups, glycidoxy groups, and the like.

상기의 두 가지 방법으로 얻어지는 유전체는 출발물질이 가교제 역할이 가능한 유기물이 치환된 실리콘 알콕사이드를 이용할 경우 균일도와 유연성이 가장 높은 구조를 얻을 수 있다.Dielectrics obtained by the above two methods can be obtained a structure having the highest uniformity and flexibility when using a silicon alkoxide substituted with an organic material, the starting material can act as a crosslinking agent.

본 발명에 의한 유전체는 유기물이 치환되지 않은 금속 알콕사이드로 제조된 순수 무기재료와는 다른 구조를 가진다. 이러한 유전체는 순수 무기재료에 비해 기공(pore) 크기가 적고 기공(pore)의 양이 적은 미세구조를 가진다. 재료 내에 기공이 많이 포함될 경우, 건조 시에 이러한 기공들에 의해 재료의 파괴가 용이해지므로 두꺼운 막을 얻을 수 없다. 또한 이러한 다공성의 물질은 천이 온도에 가까운 매우 높은 온도에서 점성유동에 의해 고밀도화된 구조를 얻을 수 있는 반면에, 유기 그룹이 포함되어 있는 무기-유기 혼성재료는 유기 그룹이 무기 망목구조에 의해 생기는 기공을 채워주는 역할을 함으로서 건조시에 생기는 수축을 제한할 수 있다. 따라서 무기-유기 혼성 재료로 구성되는 유전체 조성물은 고밀도화가 일어나는 금속산화물의 천이온도 보다 훨씬 더 낮은 온도에서 원하는 최종 밀도를 얻을 수 있다.The dielectric according to the present invention has a structure different from that of a pure inorganic material made of a metal alkoxide in which an organic substance is not substituted. The dielectric has a microstructure having a smaller pore size and a smaller pore size than a pure inorganic material. If a large amount of pores are included in the material, a thick film cannot be obtained because these pores facilitate the breakdown of the material upon drying. In addition, the porous material can obtain a densified structure by viscous flow at a very high temperature close to the transition temperature, whereas the inorganic-organic hybrid material containing the organic group is a pore in which the organic group is formed by the inorganic network structure. By acting as a filler to limit the shrinkage that occurs during drying. Thus, dielectric compositions composed of inorganic-organic hybrid materials can achieve the desired final density at temperatures much lower than the transition temperatures of the metal oxides where densification occurs.

또한 본 발명에 의한 유전체는 액상에서 제조되므로 특수한 물성을 가지는 무기물이나 유기물을 쉽고 균일하게 첨가시킬 수 있다. 첨가되는 무기물이나 유기물이 가지는 특성에 의해 기존의 유전체가 가지는 물성 이외에 부가적인 물성을 부여할 수 있는데, 예를 들어 알루미늄 알콕사이드, 게르마늄 알콕사이드, 티타늄 알콕사이드, 지르코늄 알콕사이드를 첨가시킬 경우, 유전체의 유전상수, 강도, 광감성(photosensitivity)등을 증가시킬 수 있다. 또한 불소 원자가 치환된 실란이나 유기 단량체를 첨가할 경우 유전상수와 광손실을 감소시킬 수 있다. 유전체 조성물내에 실리카, 보헤마이트, 알루미나, 지르코니아, 또는 티타니아의 금속산화물 입자를 물이나 알콜 등의 용매에 분산시켜 첨가시킬 경우 무기-유기 혼성 물질의 강도나, 유전상수를 증가시킬 수 있다. 예를 들어 알루미나나 보헤마이트 입자를 첨가시킬 경우 유전체의 내마모성과 강도를 증가시킬 수 있으며, 티타늄 산화물 입자와 지르코늄 산화물 입자의 분산물을 첨가시킬 경우 유전 상수를 증가시킬 수 있다.In addition, since the dielectric according to the present invention is prepared in a liquid phase, it is possible to easily and uniformly add inorganic or organic substances having special physical properties. In addition to the properties of existing dielectrics, additional properties may be imparted by the properties of inorganic or organic materials to be added.For example, when aluminum alkoxide, germanium alkoxide, titanium alkoxide and zirconium alkoxide are added, Intensity, photosensitivity, etc. can be increased. In addition, the addition of a silane or organic monomer substituted with a fluorine atom can reduce the dielectric constant and light loss. When the metal oxide particles of silica, boehmite, alumina, zirconia, or titania are dispersed and added in a solvent such as water or alcohol in the dielectric composition, the strength and dielectric constant of the inorganic-organic hybrid material may be increased. For example, the addition of alumina or boehmite particles can increase the abrasion resistance and strength of the dielectric, and the addition of a dispersion of titanium oxide particles and zirconium oxide particles can increase the dielectric constant.

본 발명에 의한 유전체는 가시광선 영역에서 투명하고, 비교적 낮은 온도의 소성에서도 치밀화가 가능하다. 용액 상태에서 유기규소화합물의 시작 농도는 달리할 수 있으며, 일반적으로 유기규소화합물의 농도가 클수록 또한 분자량이 더 클수록(즉 용액의 점도가 더 클수록) 코팅되는 막의 최종 두께는 두꺼워진다. 이러한 유기규소화합물의 용액의 점도는 증발법을 이용하여 증가시킬 수 있으므로 막의 두께 조절이 용이하다.The dielectric according to the present invention is transparent in the visible light region and can be densified even at a relatively low temperature firing. The starting concentration of organosilicon compounds in solution can vary, and in general, the greater the concentration of organosilicon compounds and the higher the molecular weight (ie, the higher the viscosity of the solution), the thicker the final thickness of the coated film. Since the viscosity of the solution of the organosilicon compound can be increased using the evaporation method, it is easy to control the thickness of the film.

유전체가 섭씨 200도 이하의 온도에서 높은 치밀화를 이루기 위해서는 규소에 치환되어 있는 유기체가 유기중합 반응이 가능하거나 소성이 진행되면서 생기는 기공을 채워주어야 한다. 일반적으로 액체 상태로부터 형성되는 무기재료는 이러한 기공들에 의해 균열이 발생되어 두꺼운 막을 형성시키는데 어려움이 있는데 비해 본 발명의 유기규소화합물은 균열 없이 두꺼운 막을 쉽게 형성시킬 수 있다. In order for the dielectric to achieve high densification at a temperature of 200 degrees Celsius or less, the organisms substituted with silicon must fill the pores generated during the organic polymerization reaction or sintering. In general, the inorganic material formed from the liquid state is difficult to form a thick film due to cracks generated by these pores, while the organosilicon compound of the present invention can easily form a thick film without cracking.

원료가 유기 중합반응이 가능한 유기체를 포함하고 있는 경우 적당한 개시제의 첨가 후에 열이나 자외선 등의 강한 빛의 조사에 의해 유기 그룹들 사이에 중합반응이나 가교반응을 통해 유전체를 제조할 수 있다. 이러한 유기체들의 중합반응이나 가교반응은 섭씨 200도 이하의 낮은 소성온도에서 균열 없는 두꺼운 막을 형성시킬 수 있다.When the raw material includes an organic polymerizable organic compound, a dielectric may be prepared through polymerization or crosslinking reaction between organic groups by irradiation of strong light such as heat or ultraviolet ray after addition of an appropriate initiator. Polymerization or crosslinking of these organisms can form a thick film without cracking at low firing temperatures of 200 degrees Celsius or less.

원료를 증발법(evaporation method)을 이용해 반응시킬 경우 용액 내에 존재하는 알코올이 제거되고 실리카 입자들 사이의 축합반응이 진행됨에 따라 용액의 점도가 증가하게 된다. 증발법을 통한 점도 증가에 의해 막의 두께를 조절할 수 있고 증발시간이 길수록 점도도 높아져 두꺼운 막을 형성할 수 있다. 증발법을 이용하여 얻을 수 있는 용액의 점도는 수∼수만 cp 정도로 매우 큰 범위를 가진다.When the raw materials are reacted using an evaporation method, the alcohol present in the solution is removed and the viscosity of the solution increases as the condensation reaction between the silica particles proceeds. The thickness of the film can be controlled by increasing the viscosity through the evaporation method, and the longer the evaporation time, the higher the viscosity, thereby forming a thick film. The viscosity of the solution obtained by the evaporation method is very large, ranging from tens to tens of thousands of cp.

본 발명에 의한 유전체는 액체 상태로부터 제조되고 점도의 변화가 용이하므로 스핀 코팅법, 딥 코팅법, 바 코팅법과 같은 비교적 쉬운 코팅 공정에 의해 막을 형성할 수 있는 장점을 가진다. 휘발성이 적고 높은 점도를 가지는 원료를 이용 할 경우 낮은 소성온도에서도 두껍고 균일한 코팅 막을 얻을 수 있다.Since the dielectric according to the present invention is manufactured from a liquid state and easy to change in viscosity, it has an advantage of forming a film by a relatively easy coating process such as spin coating, dip coating, and bar coating. When using a raw material having low volatility and high viscosity, a thick and uniform coating film can be obtained even at low firing temperature.

이하 본 발명의 내용을 실시예에 의해 보다 상세하게 설명하기로 한다. 다만 이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예에 한정되어지는 것으로 해석되어져서는 아니된다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples. However, these examples are only presented to understand the content of the present invention, and the scope of the present invention should not be construed as being limited to these embodiments.

<실시예 1><Example 1>

3-글리시독시프로필트리메톡시실란(GPTS)에 0.1N HCl을 1:3 몰비율로 첨가한용액과 테트라메톡시오쏘실리케이트(TMOS)에 0.1N HCl을 1:2 몰비율로 첨가한 용액을 혼합하여 1시간 동안 교반한 후, 하기 표 1의 에폭시 유기중합 개시제를 실리콘 원자의 3 중량%의 양으로 첨가한 후 2시간 동안 교반하였다. 혼합된 용액을 진공 증발기에서 섭씨 60도의 온도를 유지하며 용액 내에 있는 메탄올을 뽑아내었다. 이 경우 증발 시간에 따라 용액의 점도는 5∼30,000 cp 까지 변화시킬 수 있다.A solution containing 0.1N HCl in a 1: 3 molar ratio to 3-glycidoxypropyltrimethoxysilane (GPTS) and a solution containing 0.1N HCl in a 1: 2 molar ratio to tetramethoxy orthosilicate (TMOS) After the mixture was stirred for 1 hour, the epoxy organic polymerization initiator of Table 1 was added in an amount of 3% by weight of silicon atoms, followed by stirring for 2 hours. The mixed solution was extracted in methanol in a solution while maintaining a temperature of 60 degrees Celsius in a vacuum evaporator. In this case, the viscosity of the solution may vary from 5 to 30,000 cp depending on the evaporation time.

최종 용액(약 1000 cp)을 스핀코팅기를 이용하여 ITO가 증착된 유리 위에 코팅한 후, 섭씨 150도에서 2시간 동안 열처리하였다. 점도가 높은 두꺼운 막을 코팅한 경우, 냉각시 코팅 막에 높은 열응력(thermal stress)이 작용하므로 섭씨 120, 80, 40 도의 온도로 단계적으로 서서히 냉각시켜 최종 유전층 막을 제조하였다. The final solution (about 1000 cps) was coated onto the glass on which ITO was deposited using a spin coater and then heat treated at 150 degrees Celsius for 2 hours. In the case of coating a thick film having a high viscosity, a high thermal stress acts on the coated film during cooling, thereby gradually cooling stepwise to a temperature of 120, 80, and 40 degrees Celsius to prepare a final dielectric layer film.

하기 표 1에는 에폭시 중합 개시제에 따른 유전층의 두께와 투과율을 나타내었다. 유전층의 두께는 무기조성과 유기조성의 비율에 따라 차이를 보이며, 막 두께의 분포는 평균 두께에 대하여 ±1㎛ 범위를 가졌다. Table 1 shows the thickness and transmittance of the dielectric layer according to the epoxy polymerization initiator. The thickness of the dielectric layer was different depending on the ratio of the inorganic composition and the organic composition, and the distribution of the film thickness was in the range of ± 1 μm with respect to the average thickness.

<표 1>TABLE 1

개시제Initiator 막 두께(㎛)(증발 전) Film thickness (μm) (before evaporation) 막 두께(㎛)(증발 후)Film thickness (μm) (after evaporation) 투과율(%)(증발 후)Permeability (%) (after evaporation) 알루미늄 2-부톡사이드Aluminum 2-butoxide 4.54.5 1515 90%90% 알루미늄 부톡시에톡사이드Aluminum butoxyethoxide 4.54.5 14.514.5 90%90% 지르코늄 프로폭사이드Zirconium propoxide 33 99 89%89% 티타늄 에톡사이드Titanium ethoxide 3.53.5 99 88%88% 1-메틸 이미다졸1-methyl imidazole 55 1111 87%87% 보론 트리플루오라이드디에틸 이써레이트Boron trifluoride diethyl etherate 44 99 88%88%

<실시예 2><Example 2>

3-메타크릴릭옥시프로필트리메톡시실란(MPTS)에 0.1N HCl을 1:3 몰비율로 첨가한 용액과 테트라메톡시오쏘실리케이트(TMOS)에 0.1N HCl을 1:2 몰비율로 첨가한 용액을 혼합하여 1시간 동안 교반한 후, 하기 표 2에 표시된 아크릴 유기중합 개시제를 실리콘 원자의 3 중량%의 양으로 첨가한 후 2시간 동안 교반하였다. 실시예 1에서의 방법으로 점도를 조절한 최종 용액(약 1000 cp)을 딥(dip) 코팅기를 이용하여 ITO가 증착된 유리 위에 코팅한 후 막의 소성은 상기 실시예 1과 같은 조건으로 수행하여 최종 유전층을 얻었다.0.1N HCl was added to 3-methacryloxypropyltrimethoxysilane (MPTS) in a 1: 3 molar ratio, and 0.1N HCl was added to tetramethoxy orthosilicate (TMOS) in a 1: 2 molar ratio. After the solution was mixed and stirred for 1 hour, the acrylic organic polymerization initiator shown in Table 2 was added in an amount of 3% by weight of silicon atoms, followed by stirring for 2 hours. After coating the final solution (about 1000 cps) of which viscosity was adjusted by the method in Example 1 on the glass on which ITO was deposited using a dip coater, the baking of the film was carried out under the same conditions as in Example 1 above. A dielectric layer was obtained.

<표 2>TABLE 2

개시제Initiator 막 두께(㎛)(증발 전) Film thickness (μm) (before evaporation) 막 두께(㎛)(증발 후)Film thickness (μm) (after evaporation) 투과율(%)(증발 후)Permeability (%) (after evaporation) 벤조일퍼옥사이드Benzoyl peroxide 55 1010 8888 2,2`-아조비스이소부티로니트릴2,2`-azobisisobutyronitrile 55 1010 9090

<실시예 3><Example 3>

3-글리시독시프로필트리메톡시실란(GPTS)에 0.1N HCl을 1:3 몰 비율로 첨가하여 상온에서 1시간 동안 교반한 후, pH 3 정도에서 안정화된 실리카 졸을 첨가한 후 2시간 동안 교반하였다. 이 때 첨가되는 실리카 졸의 양은 전체 유기조성과 무기조성이 중량비가 6:4가 되도록 하였다. 하기 표 3에 표시된 에폭시 유기중합 개시제를 전체 실리콘 원자의 3 wt%의 양으로 첨가한 후 2시간 동안 교반하였다. 이후의 과정은 상기 실시예 1과 동일하게 실시하였다.0.1N HCl was added to 3-glycidoxypropyltrimethoxysilane (GPTS) in a 1: 3 molar ratio, stirred at room temperature for 1 hour, and then silica silica stabilized at pH 3 was added for 2 hours. Stirred. The amount of silica sol added at this time was such that the total organic composition and inorganic composition had a weight ratio of 6: 4. The epoxy organic polymerization initiator shown in Table 3 below was added in an amount of 3 wt% of the total silicon atoms, followed by stirring for 2 hours. The subsequent process was performed in the same manner as in Example 1.

<표 3>TABLE 3

개시제Initiator 막 두께(㎛)(증발 전) Film thickness (μm) (before evaporation) 막 두께(㎛)(증발 후)Film thickness (μm) (after evaporation) 투과율(%)(증발 후)Permeability (%) (after evaporation) 알루미늄 2-부톡사이드Aluminum 2-butoxide 55 1515 90%90% 알루미늄 부톡시에톡사이드Aluminum butoxyethoxide 55 1515 91%91% 지르코늄 프로폭사이드Zirconium propoxide 3.53.5 1010 90%90% 티타늄 에톡사이드Titanium ethoxide 44 1010 90%90% 1-메틸 이미다졸1-methyl imidazole 44 1212 90%90% 보론 트리플루오르디에틸 이써레이트Boron trifluorodiethyl etherate 44 1010 92%92%

<실시예 4><Example 4>

3-메타크릴릭옥시프로필트리메톡시실란(MPTS)과 퍼플루오로알킬실란(PFAS)을 유전체 제조를 위한 전구체로 선택하였고 스핀코팅 방법이외의 모든 과정은 상기 실시예 2와 동일한 방법으로 실시하였다. 유전층의 두께는 증발 전에는 5㎛, 후에는 10㎛로 측정되었고, 투과율은 85%의 값을 가졌다. 3-methacryloxypropyltrimethoxysilane (MPTS) and perfluoroalkylsilane (PFAS) were selected as precursors for the preparation of the dielectric, and all procedures except the spin coating method were performed in the same manner as in Example 2. . The thickness of the dielectric layer was measured to be 5 탆 before evaporation and 10 탆 after, and the transmittance had a value of 85%.

<실시예 5>Example 5

3-글리시독시프로필트리메톡시실란(GPTS)과 페닐트리메톡시실란(PTMS)을 유전체 제조를 위한 전구체로 사용하고 상기 실시예 1과 동일한 방법으로 최종 막을 제조하였다. 유전층의 두께는 증발 전에는 4㎛, 후에는 8㎛로 측정되었고, 투과율은 88%의 값을 가졌다.The final membrane was prepared in the same manner as in Example 1 using 3-glycidoxypropyltrimethoxysilane (GPTS) and phenyltrimethoxysilane (PTMS) as precursors for dielectric preparation. The thickness of the dielectric layer was measured to be 4 탆 before evaporation and 8 탆 after evaporation, and the transmittance had a value of 88%.

<실시예 6><Example 6>

3-메타크릴릭옥시프로필트리메톡시실란(MPTS)과 디페닐실란디올(DPDS)을 2:3 몰 비율로 첨가한 용액을 30분간 교반하였다. 교반된 용액에 반응의 촉매로서 바륨하이드록사이드(Ba(OH)2)를 전체 실리콘 원자의 5 중량%로 천천히 첨가한 후, 진공 증발기를 이용하여 섭씨 60도의 온도에서 3시간 반응시켰다. 최종용액을 바 코팅기를 이용하여 상기 실시예 3과 같이 최종 막을 제조하였다. 유전층의 두께는 증발 전에는 8㎛, 후에는 21㎛로 측정되었다. 투과율은 85%의 값을 보였다.The solution which added 3-methacryloxypropyl trimethoxysilane (MPTS) and diphenylsilanediol (DPDS) in a 2: 3 molar ratio was stirred for 30 minutes. Barium hydroxide (Ba (OH) 2 ) was slowly added to the stirred solution as 5 wt% of the total silicon atoms as a catalyst of the reaction, and then reacted for 3 hours at a temperature of 60 degrees Celsius using a vacuum evaporator. The final solution was prepared in the final membrane as in Example 3 using a bar coater. The thickness of the dielectric layer was measured to be 8 μm before evaporation and 21 μm thereafter. The transmittance was 85%.

<실시예 7><Example 7>

메틸실리콘트리클로라이드(MSTC)와 테트라에틸오쏘실리케이트(TEOS)를 수분이 적은 질소 분위기에서 4:3의 몰 비율로 30분간 교반하였다. 반응의 촉매로서 아이언클로라이드(FeCl3)를 전체 실리콘의 1 중량%로 첨가한 후, 섭씨 35도의 온도에서 24시간 동안 겔화시켜 점도가 매우 높은 용액(약 10000 cp)을 얻어 상기 실시예 3과 동일한 방법으로 최종 막을 제조하였다. 유전층의 두께는 증발 전에는 8㎛, 후에는 20㎛로 측정되었고, 84%의 투과율을 보였다.Methyl silicon trichloride (MSTC) and tetraethyl orthosilicate (TEOS) were stirred for 30 minutes at a molar ratio of 4: 3 in a nitrogen atmosphere with low moisture. Iron chloride (FeCl 3 ) as a catalyst of the reaction was added to 1% by weight of the total silicon, and then gelled at a temperature of 35 degrees Celsius for 24 hours to obtain a very high viscosity solution (about 10000 cp) to the same as in Example 3 The final membrane was prepared by the method. The thickness of the dielectric layer was measured to be 8 μm before evaporation and 20 μm after evaporation, and showed a transmittance of 84%.

하기 표 4에는 상기 실시예 1,3,5에서 명시한 방법으로 제조한 유전층의 내전압, 유전상수를 나타내었다.Table 4 shows the breakdown voltage and dielectric constant of the dielectric layer prepared by the method described in Examples 1, 3 and 5.

<표 4>TABLE 4

내전압Withstand voltage 유전상수Dielectric constant 실시예 1Example 1 >1.5 kV> 1.5 kV 3.0∼4.0(@10 KHz)2.7∼4.0(@1 MHz)3.0 to 4.0 (@ 10 KHz) 2.7 to 4.0 (@ 1 MHz) 실시예 3Example 3 >1.5 kV> 1.5 kV 3.3∼4.0(@10 KHz)2.8∼4.0(@1 MHz)3.3 to 4.0 (@ 10 KHz) 2.8 to 4.0 (@ 1 MHz) 실시예 5Example 5 >1.5 kV> 1.5 kV 3.2∼4.0(@10 KHz)3.0∼4.0(@1 MHz)3.2 to 4.0 (@ 10 KHz) 3.0 to 4.0 (@ 1 MHz)

위 표 4의 결과에 의하면 본 발명에 의해 제조된 유전체의 내전압은 기존의 플라즈마 디스플레이 페널에 사용되는 유리 페이스트로 제조한 유전체의 값과 유사한 값을 가짐을 확인할 수 있다. According to the results of Table 4 above, it can be seen that the withstand voltage of the dielectric prepared by the present invention has a value similar to that of the dielectric prepared from the glass paste used in the conventional plasma display panel.

본 발명에 의한 유전체는 기존의 유리페이스트를 이용한 유전층과 유사한 특성을 가지며, 여러 가지 다양한 코팅방법에 의해 비교적 간단한 공정으로 막을 형성시킬 수 있다. 또한 본 발명에 의하면 유전체의 조성이 PbO를 함유함이 없이 섭씨 150∼200도의 낮은 온도에서도 소성이 가능하고 액상으로부터 코팅방법을 이용해 유전체 막을 용이하게 형성시킬 수 있다. The dielectric according to the present invention has characteristics similar to those of a conventional dielectric layer using glass paste, and a film can be formed in a relatively simple process by various coating methods. In addition, according to the present invention, the dielectric composition can be baked at a low temperature of 150 to 200 degrees Celsius without containing PbO, and the dielectric film can be easily formed from the liquid phase using a coating method.

Claims (14)

삭제delete 삭제delete 플라즈마 디스플레이 패널용 유전체에 있어서,In the dielectric for plasma display panel, 졸-겔법에 의해 제조되며, 구조내에 규소에 결합된 산소원자 또는 가교나 수식이 가능한 유기단량체로 가교된 망목구조를 가지는 하기 일반식 2로 표시되는 화합물을 산 또는 염기 촉매의 존재하에 가수분해 및 축합반응을 거쳐 형성된 유기규소화합물을 포함함을 특징으로 하는 플라즈마 디스플레이 패널용 유전체.The compound represented by the following general formula (2) prepared by the sol-gel method and having an oxygen atom bonded to silicon in the structure or a network structure crosslinked with an organic monomer capable of crosslinking or modification is hydrolyzed in the presence of an acid or base catalyst and A dielectric for plasma display panel comprising an organosilicon compound formed through a condensation reaction. (OR1)nSi-(X-R3)m (n+m=4)(OR 1 ) n Si- (XR 3 ) m (n + m = 4) 상기에서 R1은 탄소수가 1∼10개인 직쇄 또는 측쇄 알킬기 또는 수소원자. X는 탄소수가 3∼6인 탄소 사슬. R3은 비닐기, 글리시독시기, 메타아크릴기를 포함하거나 탄소수가 4∼8개인 탄소 사슬내에 플로라이드 원자가 치환된 물질. n은 1∼4의 자연수, m은 0∼3 사이의 정수.R 1 is a straight or branched chain alkyl group having 1 to 10 carbon atoms or a hydrogen atom. X is a carbon chain having 3 to 6 carbon atoms. R 3 is a substance containing a vinyl group, a glycidoxy group, a methacryl group or a fluoride atom substituted in a carbon chain having 4 to 8 carbon atoms. n is a natural number of 1 to 4, and m is an integer between 0 and 3. 플라즈마 디스플레이 패널용 유전체에 있어서,In the dielectric for plasma display panel, 졸-겔법에 의해 제조되며, 구조내에 규소에 결합된 산소원자 또는 가교나 수식이 가능한 유기단량체로 가교된 망목구조를 가지는 하기 일반식 3으로 표시되는 유기할로겐실란을 실리콘 알콕사이드 또는 알킬에테르와 반응시켜 얻어지는 유기규소화합물을 포함함을 특징으로 하는 플라즈마 디스플레이 패널용 유전체.The organic halogen silane represented by the following general formula (3) prepared by the sol-gel method and having a network structure crosslinked with an oxygen atom bonded to silicon or a crosslinked or modified organic monomer in the structure is reacted with a silicon alkoxide or alkyl ether. A dielectric for plasma display panel comprising an organosilicon compound obtained. R4SiCl3 R 4 SiCl 3 상기에서 R4는 탄소수가 1∼10개인 직쇄 또는 측쇄 알킬기 또는 수소원자, 페닐기, 페닐 알콕시기, 아민기, 비닐기, 글리시독시기, 메타아크릴기를 포함하거나 탄소수가 4∼8개인 탄소 사슬내에 플로라이드 원자가 치환된 물질.R 4 is a linear or branched alkyl group having 1 to 10 carbon atoms or a hydrogen atom, a phenyl group, a phenyl alkoxy group, an amine group, a vinyl group, a glycidoxy group, a methacryl group or a 4 to 8 carbon chain in the carbon chain. Substituted Substituted Substances. 삭제delete 하기 일반식 2으로 표시되는 화합물의 군으로부터 선택된 화합물을 물과 알콜의 혼합용매에 용해하여 산 또는 염기 촉매의 존재하에 가수분해 및 축합반응을 거쳐 플라즈마 디스플레이 패널용 유전체를 제조하는 방법A method for producing a dielectric for plasma display panel by dissolving a compound selected from the group of compounds represented by the following general formula (2) in a mixed solvent of water and alcohol and undergoing hydrolysis and condensation reaction in the presence of an acid or base catalyst. (OR1)nSi-(X-R3)m (n+m=4)(OR 1 ) n Si- (XR 3 ) m (n + m = 4) 상기에서 R1은 탄소수가 1∼10개인 직쇄 또는 측쇄 알킬기 또는 수소원자. X는 탄소수가 3∼6인 탄소 사슬. R3은 비닐기, 글리시독시기, 메타아크릴기를 포함하거나 탄소수가 4∼8개인 탄소 사슬내에 플로라이드 원자가 치환된 물질. n은 1∼4의 자연수, m은 0∼3 사이의 정수.R 1 is a straight or branched chain alkyl group having 1 to 10 carbon atoms or a hydrogen atom. X is a carbon chain having 3 to 6 carbon atoms. R 3 is a substance containing a vinyl group, a glycidoxy group, a methacryl group or a fluoride atom substituted in a carbon chain having 4 to 8 carbon atoms. n is a natural number of 1 to 4, and m is an integer between 0 and 3. 하기 일반식 3으로 표시되는 화합물의 군으로부터 선택된 유기할로겐실란을 실리콘알콕사이드 또는 알킬에테르와 반응시켜 얻어지는 플라즈마 디스플레이 패널용 유전체를 제조하는 방법Method for producing a dielectric for plasma display panel obtained by reacting an organohalogensilane selected from the group of compounds represented by the following general formula (3) with silicon alkoxide or alkyl ether: R4SiCl3 R 4 SiCl 3 상기에서 R4는 탄소수가 1∼10개인 직쇄 또는 측쇄 알킬기 또는 수소원자, 페닐기, 페닐 알콕시기, 아민기, 비닐기, 글리시독시기, 메타아크릴기를 포함하거나 탄소수가 4∼8개인 탄소 사슬내에 플로라이드 원자가 치환된 물질.R 4 is a linear or branched alkyl group having 1 to 10 carbon atoms or a hydrogen atom, a phenyl group, a phenyl alkoxy group, an amine group, a vinyl group, a glycidoxy group, a methacryl group or a 4 to 8 carbon chain in the carbon chain. Substituted Substituted Substances. 제 7항에 있어서,The method of claim 7, wherein 금속 클로라이드를 촉매로 함을 특징으로 하는 플라즈마 디스플레이 패널용 유전체를 제조하는 방법Method for producing a dielectric for plasma display panel characterized in that the metal chloride as a catalyst 하기 일반식 2로 표시되는 화합물 중 실리콘에 치환된 유기그룹으로 가교가 가능한 유기단량체를 포함하는 동종 또는 이종의 화합물을 자유라디칼 및 유기중합개시제를 첨가하여 중합함을 특징으로 하는 플라즈마 디스플레이 패널용 유전체의 제조방법Among the compounds represented by the following general formula (2), a plasma display panel dielectric comprising polymerizing homogeneous or heterogeneous compounds including organic monomers capable of crosslinking with organic groups substituted with silicon by adding free radicals and organic polymerization initiators. Manufacturing Method (OR1)nSi-(X-R3)m (n+m=4)(OR 1 ) n Si- (XR 3 ) m (n + m = 4) 상기에서 R1은 탄소수가 1∼10개인 직쇄 또는 측쇄 알킬기 또는 수소원자. X는 탄소수가 3∼6인 탄소 사슬. R3은 비닐기, 메타아크릴기. n은 1∼3의 자연수, m은 1∼3 사이의 정수R 1 is a straight or branched chain alkyl group having 1 to 10 carbon atoms or a hydrogen atom. X is a carbon chain having 3 to 6 carbon atoms. R <3> is a vinyl group and methacryl group. n is a natural number between 1 and 3, and m is an integer between 1 and 3 제 9항에 있어서,The method of claim 9, 유기중합개시제는 알루미늄알콕사이드, 지르코늄 알콕사이드, 티타늄 알콕사이드, 1-메틸이미다졸, 이미다졸계열, 보론트리플루오라이드 디에틸 이서레이트, 벤조일퍼옥사이드, 2.2'-아조비스이소부티로나이트릴의 군에서 선택됨을 특징으로 하는 플라즈마 디스플레이 패널용 유전체의 제조방법The organopolymerization initiator is selected from the group consisting of aluminum alkoxide, zirconium alkoxide, titanium alkoxide, 1-methylimidazole, imidazole series, borontrifluoride diethyl isate, benzoyl peroxide, 2.2'-azobisisobutyronitrile Method for manufacturing a dielectric for plasma display panel, characterized in that selected 하기 일반식 2로 표시되는 화합물 중 실리콘에 치환된 유기그룹으로 가교가 가능한 유기단량체를 포함하는 동종 또는 이종의 화합물을 금속알콕사이드 또는 아민기를 이용해 개환반응시켜 중합함을 특징으로 하는 플라즈마 디스플레이 패널용 유전체의 제조방법A dielectric for plasma display panel characterized in that the compound represented by the following general formula (2) is polymerized by ring-opening reaction of a homogeneous or heterogeneous compound including an organic monomer capable of crosslinking with an organic group substituted with silicon by using a metal alkoxide or an amine group. Manufacturing Method (OR1)nSi-(X-R3)m (n+m=4)(OR 1 ) n Si- (XR 3 ) m (n + m = 4) 상기에서 R1은 탄소수가 1∼10개인 직쇄 또는 측쇄 알킬기 또는 수소원자. X는 탄소수가 3∼6인 탄소 사슬. R3은 글리시독시기. n은 1∼3의 자연수, m은 1∼3 사이의 정수R 1 is a straight or branched chain alkyl group having 1 to 10 carbon atoms or a hydrogen atom. X is a carbon chain having 3 to 6 carbon atoms. R 3 is glycidoxy. n is a natural number between 1 and 3, and m is an integer between 1 and 3 제9항 또는 제11항에 있어서,The method according to claim 9 or 11, 일반식 2로 표시되는 화합물 중 실리콘에 치환된 유기그룹은 수식제 기능을 수행하는 작용기로 메틸, 페닐, 아민, 페닐알콕시에서 선택된 적어도 하나 이상을 포함함을 특징으로 하는 유전체의 제조방법.Organic group substituted in the silicon of the compound represented by Formula 2 is a method for producing a dielectric, characterized in that it comprises at least one or more selected from methyl, phenyl, amine, phenylalkoxy as a functional group to perform a modifier function. 특허청구범위 제3항 또는 제4항의 유전체를 공지의 코팅법을 이용해 유전체막을 형성하고 여기에 열 또는 자외선으로 소성하여 제조되는 플라즈마 디스플레이 패널.A plasma display panel produced by forming a dielectric film using a known coating method and firing the dielectric film according to claims 3 or 4 with heat or ultraviolet rays. 제6항 내지 제 11항에 중에서 선택된 어느 한 항에 있어서, The method according to any one of claims 6 to 11, 일반식 2,3으로 표시되는 화합물중 적어도 하나의 화합물과 물이나 알콜에 분산된 규소산화물 입자를 첨가하여 반응시키는 단계를 추가로 포함함을 특징으로 하는 유전체의 제조방법.The method of producing a dielectric, characterized in that it further comprises the step of reacting at least one compound represented by the general formula (2) and the silicon oxide particles dispersed in water or alcohol.
KR10-2002-0046902A 2002-08-08 2002-08-08 Dielectric Materials for Plasma Display Panel and Manufacturing Method thereof Expired - Fee Related KR100495566B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0046902A KR100495566B1 (en) 2002-08-08 2002-08-08 Dielectric Materials for Plasma Display Panel and Manufacturing Method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0046902A KR100495566B1 (en) 2002-08-08 2002-08-08 Dielectric Materials for Plasma Display Panel and Manufacturing Method thereof

Publications (2)

Publication Number Publication Date
KR20040013816A KR20040013816A (en) 2004-02-14
KR100495566B1 true KR100495566B1 (en) 2005-06-16

Family

ID=37321092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0046902A Expired - Fee Related KR100495566B1 (en) 2002-08-08 2002-08-08 Dielectric Materials for Plasma Display Panel and Manufacturing Method thereof

Country Status (1)

Country Link
KR (1) KR100495566B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868548B2 (en) 2007-02-28 2011-01-11 Korea Advanced Institute Of Science And Technology Plasma display panel and low temperature fabrication method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200454156Y1 (en) * 2009-07-01 2011-06-17 강태삼 Surveying drain plug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990037968A (en) * 1997-10-09 1999-06-05 구자홍 Dielectric of plasma display panel and manufacturing method thereof
KR20010009999A (en) * 1999-07-15 2001-02-05 빌.씨. 첸(Bill. C. Chen) Sol materials
KR20010012887A (en) * 1997-07-15 2001-02-26 야마모토 카즈모토 Alkoxysilane/organic polymer composition for thin insulating film production and use thereof
JP2001135222A (en) * 1999-11-02 2001-05-18 Fujitsu Ltd Gas discharge panel and method of manufacturing the same
KR20020016092A (en) * 2000-08-24 2002-03-04 정명식 Low dielectric material and process for its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010012887A (en) * 1997-07-15 2001-02-26 야마모토 카즈모토 Alkoxysilane/organic polymer composition for thin insulating film production and use thereof
KR19990037968A (en) * 1997-10-09 1999-06-05 구자홍 Dielectric of plasma display panel and manufacturing method thereof
KR20010009999A (en) * 1999-07-15 2001-02-05 빌.씨. 첸(Bill. C. Chen) Sol materials
JP2001135222A (en) * 1999-11-02 2001-05-18 Fujitsu Ltd Gas discharge panel and method of manufacturing the same
KR20020016092A (en) * 2000-08-24 2002-03-04 정명식 Low dielectric material and process for its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868548B2 (en) 2007-02-28 2011-01-11 Korea Advanced Institute Of Science And Technology Plasma display panel and low temperature fabrication method thereof

Also Published As

Publication number Publication date
KR20040013816A (en) 2004-02-14

Similar Documents

Publication Publication Date Title
CN1145659C (en) Nanomolds and nanofilms and methods for preparing nanomolds and nanofilms using water-soluble precursors
KR100569220B1 (en) Dielectric Composition for Plasma Display Panel
JP2002079616A (en) Transparent film-applied base material, coating solution for forming transparent film and display device
WO1998027021A1 (en) Nonfogging and stainproof glass articles
JP4246589B2 (en) Method for manufacturing plasma display panel
WO2011071269A2 (en) Method for preparing a coating solution for increasing the light transmittance of solar cell module glass, and coating solution composition prepared by the method
CN1481342A (en) Substrates with self-cleaning surface, process for their prodn. and their use
JP4279064B2 (en) Porous silica film and laminate having the same
EP1223192B1 (en) Film forming composition, porous film and their preparation
EP1855313A1 (en) Process for producing modified porous silica film, modified porous silica film obtained by the process, and semiconductor device employing the modified porous silica film
JP5641498B2 (en) Water / oil repellent transparent member, method for producing the same, and article using them
KR100495566B1 (en) Dielectric Materials for Plasma Display Panel and Manufacturing Method thereof
JP5640310B2 (en) Composition, antireflection film substrate, and solar cell system
WO2007023658A1 (en) Glass film, process for production thereof, and optical electronic device
KR20080089930A (en) Metal substrate composition of plasma display panel, plasma display panel using same and method for manufacturing same
KR100682124B1 (en) Manufacturing method of water repellent glass with excellent durability
CN103805057A (en) White coating composition and device comprising coating formed by same
KR100558965B1 (en) Thermo-optic Coefficient Control Method for Inorganic-Organic Hybrid Materials for Thermo-optic Waveguide Devices
CN115380013B (en) Gradient glass-like ceramic structure and bottom-up preparation method thereof
TWI886242B (en) Gradient glass-like ceramic structures and bottom-up fabrication method thereof
Klein et al. Synthesis of Melting Gels Using Mono-Substituted and Di-Substituted Alkoxysiloxanes
SASAKI et al. Control of thermal softening behavior of polyphenylsilsesquioxane particles for transparent thick films by electrophoretic deposition
JP2016138938A (en) Low refractive index film and anti-reflection film
JP2002093796A (en) Semiconductor substrate with low dielectric constant silica-based coating and method for forming low dielectric constant silica-based coating
KR20150126471A (en) Coating composition for preparing undercoating layer and preparing method of the same

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20020808

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20040923

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20050311

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20050607

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20050608

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20080530

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20090529

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20100601

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20101210

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20101210

Start annual number: 7

End annual number: 7

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee