[go: up one dir, main page]

KR100482816B1 - Non-aqueous-electrolyte and lithium secondary battery using the same - Google Patents

Non-aqueous-electrolyte and lithium secondary battery using the same Download PDF

Info

Publication number
KR100482816B1
KR100482816B1 KR10-2002-0055309A KR20020055309A KR100482816B1 KR 100482816 B1 KR100482816 B1 KR 100482816B1 KR 20020055309 A KR20020055309 A KR 20020055309A KR 100482816 B1 KR100482816 B1 KR 100482816B1
Authority
KR
South Korea
Prior art keywords
secondary battery
polymer monomer
electrolyte
lithium secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR10-2002-0055309A
Other languages
Korean (ko)
Other versions
KR20040023870A (en
Inventor
이재헌
손미영
조정주
이호춘
김형진
이한호
안순호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR10-2002-0055309A priority Critical patent/KR100482816B1/en
Publication of KR20040023870A publication Critical patent/KR20040023870A/en
Application granted granted Critical
Publication of KR100482816B1 publication Critical patent/KR100482816B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 새로운 첨가제를 포함하는 비수전해액 및 이를 이용한 리튬 이차 전지에 관한 것으로, 특히 리튬염 및 전해액 화합물을 포함하는 리튬 이차 전지용 비수전해액에 있어서, 비전도성 고분자 단량체 0.5∼5 중량%와 전도성 고분자 단량체 0.1∼2 중량%를 함께 포함하는 비수전해액 및 이를 이용한 리튬 이차 전지에 관한 것이다.The present invention relates to a non-aqueous electrolyte containing a novel additive and a lithium secondary battery using the same, in particular, a non-aqueous electrolyte for lithium secondary batteries containing a lithium salt and an electrolyte compound, 0.5 to 5% by weight of the non-conductive polymer monomer and the conductive polymer monomer It relates to a non-aqueous electrolyte containing 0.1 to 2% by weight and a lithium secondary battery using the same.

본 발명은 과충전이 일어날 때 산화 반응에 의해 분해되어 중합 반응이 일어나서 과충전 전류를 차단시켜 안전성을 향상시키는 첨가제를 전해액에 사용하여 안전성이 우수하고 전지 성능이 우수한 리튬 이차 전지를 제공한다.The present invention provides a lithium secondary battery having excellent safety and excellent battery performance by using an additive in an electrolyte that is decomposed by an oxidation reaction when an overcharge occurs and a polymerization reaction occurs to block an overcharge current to improve safety.

Description

비수전해액을 이용한 리튬 이차 전지{NON-AQUEOUS-ELECTROLYTE AND LITHIUM SECONDARY BATTERY USING THE SAME}Lithium secondary battery using nonaqueous electrolyte {NON-AQUEOUS-ELECTROLYTE AND LITHIUM SECONDARY BATTERY USING THE SAME}

본 발명은 비수전해액 첨가제 및 이를 이용한 리튬 이차 전지에 관한 것으로, 더욱 상세하게는 과충전시 전지의 안전성과 전지 성능을 향상시킬 수 있는 비수전해액 첨가제 및 이를 이용한 리튬 이차 전지에 관한 것이다.The present invention relates to a nonaqueous electrolyte additive and a lithium secondary battery using the same, and more particularly, to a nonaqueous electrolyte additive and a lithium secondary battery using the same that can improve the safety and battery performance of the battery during overcharging.

리튬 이온 이차전지용 전해액은 일반적으로 환형 카보네이트와 직쇄형 카보네이트의 조합에 의해 이루어진다. 이에 사용되는 환형 카보네이트는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 감마부티로락톤(GBL) 등이 있으며, 직쇄형 카보네이트로는 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 에틸메틸카보네이트 (EMC) 등이 대표적으로 사용되고 있다.The electrolyte solution for a lithium ion secondary battery is generally formed by a combination of a cyclic carbonate and a linear carbonate. The cyclic carbonates used therein are ethylene carbonate (EC), propylene carbonate (PC), gamma butyrolactone (GBL), and the like, and linear carbonates include diethyl carbonate (DEC), dimethyl carbonate (DMC) and ethylmethyl carbonate. (EMC) etc. are used typically.

전지의 안전성을 향상시키기 위하여, 여러 가지 첨가제가 개발 시도되고 있는데, 이러한 첨가제들은 가스 발생, 산화-환원 셔틀 반응, 중합 반응 등의 방법으로 과충전시 안전성을 향상시키고 있다.In order to improve the safety of the battery, various additives have been developed, and these additives improve the safety during overcharging by a method such as gas generation, an oxidation-reduction shuttle reaction, a polymerization reaction, and the like.

현재, 과충전시 안전성을 향상시키는 첨가제는 클로로아니솔 등의 산화-환원 셔틀 반응을 이용하는 경우가 있지만, 이 경우에는 충전 전류가 클 때는 효과적이지 않다. 과충전시 안전성을 향상시키는 다른 방법은 과충전시 중합반응에 의해 전류의 흐름을 차단시켜 주는 첨가제를 사용하는 것인데 바이페닐과 같은 전도성 고분자의 단량체를 사용할 경우 전지의 저항이 커지고 성능이 나빠지며 많은 양을 사용하여야 하는 문제가 있다. 과충전시 안전성을 효과적으로 향상시키기 위하여서는 비전도성 막이 형성되어 전류의 흐름을 차단시켜야만 한다. 시클로헥실벤젠 등의 알킬벤젠 유도체의 경우에는 비전도성 막을 형성하지만 첨가제의 양이 많아야 하고, 이 경우 전지의 성능이 나빠져서 바람직하지 않다.At present, an additive which improves safety during overcharging may use an oxidation-reduction shuttle reaction such as chloroanisole, but in this case, it is not effective when the charging current is large. Another way to improve the safety during overcharging is to use additives that block the flow of current by polymerization during overcharging. When using monomers of conductive polymers such as biphenyl, the resistance of the battery increases and the performance deteriorates. There is a problem that must be used. In order to effectively improve safety during overcharging, a non-conductive film must be formed to block the flow of current. In the case of alkylbenzene derivatives such as cyclohexylbenzene, a nonconductive film is formed, but the amount of the additive must be large, in which case the performance of the battery becomes poor, which is not preferable.

본 발명은 종래 기술의 문제점을 고려하여, 전도성 고분자 단량체, 예컨대 바이페닐이나 비전도성 고분자 단량체, 예컨대 시클로헥실벤젠을 단독으로 사용할 경우의 문제점을 보완하여 두 첨가제를 함께 사용함으로써 시너지 효과에 의해 전지의 성능을 떨어뜨리지 않고, 과충전시 안전성을 향상시킬 수 있는 비수전해액 첨가제를 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION In view of the problems of the prior art, the present invention solves the problem of using a conductive polymer monomer such as biphenyl or a non-conductive polymer monomer such as cyclohexylbenzene alone, and uses the two additives together to produce a battery by synergistic effects. It is an object of the present invention to provide a nonaqueous electrolyte additive capable of improving safety during overcharging without degrading performance.

본 발명의 다른 목적은 상기 비수전해액 첨가제를 포함하는 리튬 이차 전지를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a lithium secondary battery comprising the nonaqueous electrolyte additive.

상기 목적을 달성하기 위하여, 본 발명은 리튬염 및 전해액 화합물을 포함하는 리튬 이차 전지용 비수전해액에 있어서, 전도성 고분자 단량체 0.5∼5 중량%와 비전도성 고분자 단량체 0.1∼2 중량%를 함께 포함하는 비수전해액을 제공한다.In order to achieve the above object, the present invention is a non-aqueous electrolyte for a lithium secondary battery comprising a lithium salt and an electrolyte compound, a non-aqueous electrolyte containing 0.5 to 5% by weight of the conductive polymer monomer and 0.1 to 2% by weight of the nonconductive polymer monomer To provide.

또한, 본 발명은 리튬 이차 전지에 있어서,In addition, the present invention is a lithium secondary battery,

a) 리튬 이온을 흡장 방출할 수 있는 양극;a) a positive electrode capable of storing and releasing lithium ions;

b) 리튬 이온을 흡장 방출할 수 있는 음극;b) a negative electrode capable of storing and releasing lithium ions;

c) 다공성 분리막; 및c) a porous separator; And

d)ⅰ) 리튬 염;d) iii) lithium salts;

ⅱ) 전해액 화합물;  Ii) electrolyte compounds;

ⅲ) 비전도성 고분자의 단량체; 및  Iii) monomers of non-conductive polymers; And

iv) 전도성 고분자의 단량체를 포함하는 비수전해액  iv) non-aqueous electrolyte containing monomer of conductive polymer

을 포함하는 리튬 이차 전지를 제공한다.It provides a lithium secondary battery comprising a.

이하에서 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 전지의 수명을 향상시킬 수 있는 첨가제를 포함하는 리튬 이차 전지용 비수전해액 및 이를 포함하는 리튬 이차 전지를 제공하는 것이다.The present invention is to provide a non-aqueous electrolyte for a lithium secondary battery comprising an additive capable of improving the life of the battery and a lithium secondary battery comprising the same.

본 발명의 리튬 이차 전지는 리튬 이온을 흡장 방출할 수 있는 양극, 리튬 이온을 흡장 방출할 수 있는 음극, 다공성 분리막 및 전해액을 포함한다.The lithium secondary battery of the present invention includes a positive electrode capable of occluding and releasing lithium ions, a negative electrode capable of occluding and releasing lithium ions, a porous separator, and an electrolyte solution.

특히, 본 발명은 비수전해액에 첨가제로 전도성 고분자의 단량체와 비전도성 고분자의 단량체를 함께 사용하며, 바람직하게는 바이페닐과 알킬벤젠 유도체 화합물, 예컨대 시클로헥실벤젠을 함께 사용하여 과충전시 안전성의 향상을 도모하였다.In particular, the present invention uses the monomer of the conductive polymer and the monomer of the non-conductive polymer together as an additive to the nonaqueous electrolyte, and preferably improves the safety during overcharging by using a biphenyl and an alkylbenzene derivative compound such as cyclohexylbenzene together. It was planned.

상기 바이페닐과 시클로헥실벤젠은 과충전시 전해액의 용매보다 먼저 산화 반응이 일어나 분해되고 중합물을 생성하며 이 중합물은 과충전 전류를 차단하는 저항으로 작용하여 과충전이 더 이상 진행되지 않게 하고 전해액의 용매가 산화 분해 되는 것을 방지한다. 따라서 급격한 발열이 억제되고 효과적으로 과충전에 대해 안전성을 향상시킨다.The biphenyl and cyclohexylbenzene are oxidized before the solvent of the electrolyte when overcharged to decompose and form a polymer, and this polymer acts as a resistance to block the overcharge current so that the overcharge does not proceed any more and the solvent of the electrolyte is oxidized. Prevent decomposition. Therefore, rapid heat generation is suppressed and effectively improves safety against overcharging.

전도성 막을 형성하는 전도성 고분자의 단량체의 예로는 바이페닐 이외에, 1-페닐-1-시클로헥산, 벤조푸란 등이 있다. 비전도성 막을 형성하는 비전도성 고분자의 단량체의 예로는 시클로헥실벤젠 이외에, 이소프로필벤젠, t-부틸벤젠 등이 있다.Examples of the monomer of the conductive polymer forming the conductive film include 1-phenyl-1-cyclohexane, benzofuran, etc. in addition to biphenyl. Examples of the monomer of the nonconductive polymer forming the nonconductive film include isopropylbenzene, t-butylbenzene, etc. in addition to cyclohexylbenzene.

상기한 전도성 고분자 단량체와 비전도성 고분자 단량체를 함께 사용할 경우, 적은 함량으로도 효과적인 과충전시 안전성 향상 작용을 하게 되는 시너지 효과를 보이게 되는 이유는 다음과 같다.When the conductive polymer monomer and the non-conductive polymer monomer are used together, the reason for showing the synergistic effect of improving safety during effective overcharge even with a small amount is as follows.

바이페닐 단독으로 사용할 경우와 시클로헥실벤젠을 단독으로 사용할 경우, 그리고 바이페닐과 시클로헥실벤젠을 함께 사용할 경우의 충전 전압에 따른 반응 전류를 도 1에 도시하였다. 도 1에서 보면 시클로헥실벤젠을 단독으로 사용할 경우(1)와 바이페닐을 단독으로 사용할 경우(2) 각각의 합보다 함께 사용할 경우(3)의 전류가 더 크다는 것을 알 수 있다. 이는 소량의 바이페닐의 산화물이 시클로헥실벤젠의 산화 반응을 촉진시키기 때문이다.The reaction current according to the charging voltage when using biphenyl alone, when using cyclohexylbenzene alone, and when using biphenyl and cyclohexylbenzene together is shown in FIG. 1. Referring to Figure 1 it can be seen that the current in the case of using the cyclohexyl benzene alone (1) and biphenyl alone (2) when used together than the sum of each (3) is greater. This is because a small amount of biphenyl oxide promotes the oxidation reaction of cyclohexylbenzene.

이와 같은 결과를 나타내는 이유는 다음과 같다. 바이페닐과 같은 전도성 고분자 단량체는 시클로헥실벤젠과 같은 비전도성 고분자 단량체보다 더 낮은 전위에서 분해되어 전도성 고분자 막을 먼저 형성한다. 이 경우, 비전도성 고분자 단량체보다 먼저 산화되어 생성된 산화물인 전도성 고분자막이 비전도성 고분자 단량체의 산화 반응을 촉진시키게 된다. 도 2에서 보면, 이를 확인할 수 있다. 시클로헥실벤젠 없이 바이페닐만 첨가된 전해액을 사용하여 먼저 산화 반응을 시킨 후, 다시 전해액 단독으로 산화 반응시킬 경우(4) 약한 산화 반응만이 관찰되지만, 바이페닐만 첨가된 전해액을 사용하여 먼저 산화 반응을 시킨 후, 다시 시클로헥실벤젠 3 중량%가 첨가된 전해액을 사용하여 산화 반응의 경우(5) 매우 큰 산화 반응이 생기는 것을 알 수 있다.The reason for such a result is as follows. Conductive polymer monomers such as biphenyl decompose at lower potentials than nonconductive polymer monomers such as cyclohexylbenzene to form a conductive polymer film first. In this case, the conductive polymer film, which is an oxide produced by oxidizing before the nonconductive polymer monomer, promotes the oxidation reaction of the nonconductive polymer monomer. Looking at Figure 2, this can be confirmed. When the oxidation reaction is first performed using an electrolyte containing only biphenyl without cyclohexylbenzene, and then oxidized with electrolyte alone (4), only a weak oxidation reaction is observed, but the oxidation is first performed using an electrolyte containing only biphenyl. After the reaction, it can be seen that a very large oxidation reaction occurs in the case of oxidation reaction (5) using an electrolyte solution to which 3 wt% of cyclohexylbenzene is added again.

이와 같은 이유로 바이페닐과 시클로헥실벤젠이 소량 첨가되더라도 과충전시 매우 효과적인 안전성 향상 효과가 나타난다. For this reason, even when a small amount of biphenyl and cyclohexylbenzene is added, a very effective safety improvement effect is obtained during overcharging.

상기 비전도성 고분자 단량체의 함량은 0.5∼5 중량%로 사용하는 것이 바람직하고, 상기 전도성 고분자 단량체의 함량은 0.1∼2 중량%로 사용하는 것이 바람직하다. 상기 비전도성 고분자 단량체의 함량이 0.5 중량% 미만이면, 첨가제의 효과가 미미한 문제가 있고, 5 중량%를 초과하면 전지의 저항을 증가시켜 전지의 성능을 저하시키는 문제가 있다. 또한 상기 전도성 고분자 단량체의 함량이 0.1 중량% 미만이면, 첨가제의 효과가 미미한 문제가 있고, 2 중량%를 초과하면 전지의 저항을 증가시켜 전지의 성능을 저하시키는 문제가 있다.The content of the nonconductive polymer monomer is preferably used in 0.5 to 5% by weight, and the content of the conductive polymer monomer is preferably used in 0.1 to 2% by weight. If the content of the non-conductive polymer monomer is less than 0.5% by weight, there is a problem that the effect of the additive is insignificant, if it exceeds 5% by weight there is a problem to decrease the performance of the battery by increasing the resistance of the battery. In addition, when the content of the conductive polymer monomer is less than 0.1% by weight, there is a problem that the effect of the additive is insignificant, and when the content of the conductive polymer monomer exceeds 2% by weight increases the resistance of the battery to reduce the performance of the battery.

또한, 본 발명의 비수전해액은 환형 카보네이트와 직쇄형 카보네이트를 포함한다. 상기 환형 카보네이트의 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 감마부티로락톤(GBL) 등이 있다. 상기 직쇄형 카보네이트의 예로는 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 에틸메틸카보네이트 (EMC) 및 메틸 프로필 카보네이트(MPC)로 이루어진 군으로부터 1 종 이상 선택되는 것이 바람직하다.The nonaqueous electrolyte of the present invention also includes a cyclic carbonate and a linear carbonate. Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), gamma butyrolactone (GBL), and the like. Examples of the linear carbonates are preferably selected from the group consisting of diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC) and methyl propyl carbonate (MPC).

본 발명의 비수전해액에는 리튬염을 포함하며, 구체적인 예를 들면 LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6 및 LiN(CF3 SO2)2로 이루어진 군으로부터 선택되는 것이 바람직하다.The nonaqueous electrolyte of the present invention includes a lithium salt, and specific examples thereof are preferably selected from the group consisting of LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 and LiN (CF 3 SO 2 ) 2 . .

또한, 본 발명의 리튬 이차 전지에 있어서, 음극의 활물질로는 탄소, 리튬 금속 또는 합금을 사용하는 것이 바람직하다. 기타 리튬을 흡장 방출할 수 있고, 리튬에 대한 전위가 2 V 미만인 TiO2, SnO2와 같은 금속 산화물도 가능하다.Moreover, in the lithium secondary battery of this invention, it is preferable to use carbon, lithium metal, or an alloy as an active material of a negative electrode. Other metals such as TiO 2 and SnO 2 capable of occluding and releasing lithium and having a potential for lithium of less than 2 V are also possible.

본 발명에서는 양극 활물질로 리튬 함유 전이 금속 산화물을 사용하며, 예를 들면 LiCoO2, LiNiO2, LiMn2O4, LiMnO2 및 LiNi1-XCoXO 2 (여기에서, 0<X<1)로 이루어진 군으로부터 1종 이상 선택되는 것이 바람직하다. MnO2와 같은 금속 산화물 또는 이들의 조합으로 이루어진 양극도 무방하다.In the present invention, a lithium-containing transition metal oxide is used as the cathode active material, for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 and LiNi1-XCoXO 2 (here, 0 <X <1) It is preferable that 1 or more types are selected. An anode made of a metal oxide such as MnO 2 or a combination thereof may be used.

또한, 본 발명은 리튬 이차 전지의 제조에 사용되는 다공성 분리막을 사용하며, 예를 들면 폴리올레핀계 다공성 분리막을 사용할 수 있다.In addition, the present invention uses a porous separator used in the production of a lithium secondary battery, for example, a polyolefin-based porous separator can be used.

본 발명의 리튬 이온 2차 전지는 통상적인 방법으로 음극과 양극 사이에 다공성의 분리막을 넣고, 상기 LiPF6 등의 리튬염과 첨가제를 포함하는 비수전해액을 투입하여 제조하게 된다.The lithium ion secondary battery of the present invention is prepared by inserting a porous separator between a negative electrode and a positive electrode in a conventional manner, and a non-aqueous electrolyte containing a lithium salt and an additive such as LiPF 6 .

본 발명에 따른 리튬 이차 전지의 외형은 캔으로 된 원통형 또는 각형인 것이 바람직하다. 또한, 상기 전지는 파우치형 전지를 포함할 수 있다.It is preferable that the external shape of the lithium secondary battery according to the present invention is cylindrical or rectangular in shape of a can. In addition, the battery may include a pouch-type battery.

이하의 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단 실시예는 본 발명을 예시하기 위한 것이지 본 발명을 한정하는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, the examples are only for illustrating the present invention and not for limiting the present invention.

실시예Example

실시예 1∼4Examples 1-4

전해액으로 EC:PC:DEC = 3:2:5의 조성을 갖는 1 M LiPF6 용액을 사용하였고, 상기 전해액에 각각 0.2, 0.5, 1 및 2 중량% (실시예 1, 2, 3, 4)의 바이페닐을 첨가하고 시클로헥실벤젠 3 중량%를 첨가하여 사용하였다. 사용된 음극은 합성 흑연을 사용하였고, 양극은 LiCoO2를 사용하였다. 이후, 통상적인 방법으로 383562형 폴리머 전지를 제조하여 과충전 시험을 수행하였다.As an electrolyte solution, a 1 M LiPF 6 solution having a composition of EC: PC: DEC = 3: 2: 5 was used, and 0.2, 0.5, 1 and 2 wt% (Examples 1, 2, 3, 4) of the electrolyte were respectively used. Biphenyl was added and 3% by weight of cyclohexylbenzene was used. The negative electrode used was synthetic graphite, and the positive electrode was LiCoO 2 . Thereafter, a 383562 type polymer battery was manufactured by a conventional method, and an overcharge test was performed.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 방법으로 제조하되, 바이페닐과 시클로헥실벤젠을 첨가하지 않은 전해액을 사용하였다.Prepared in the same manner as in Example 1, but using an electrolyte solution without adding biphenyl and cyclohexylbenzene.

비교예 2Comparative Example 2

상기 실시예 1과 동일한 방법으로 제조하되, 바이페닐을 첨가하지 않고 시클로헥실벤젠 3 중량%를 첨가한 전해액을 사용하였다.Prepared in the same manner as in Example 1, except that biphenyl was added to the electrolyte solution was added 3% by weight of cyclohexylbenzene.

과충전 시험Overcharge Test

상기 실시예 1, 2, 3, 4 및 비교예 1, 2에 대한 12V / 2A 조건의 과충전 시험 결과 온도 변화를 도 3에 도시하였다. 도 3에서 보면, 실시예 1, 2, 3, 4의 경우 비교예 1, 2보다 과충전시 안전성이 향상됨을 알 수 있다.The temperature change of the result of the overcharge test under the conditions of 12V / 2A for Examples 1, 2, 3, and 4 and Comparative Examples 1 and 2 is shown in FIG. 3. 3, in the case of Examples 1, 2, 3 and 4, it can be seen that the safety during overcharging is improved compared to Comparative Examples 1 and 2.

상기 실시예 1, 2, 3, 4 및 비교예 1, 2에 대한 12 V / 2A 조건의 과충전 시험 결과를 여러 번 반복 시험 후 평균값으로 표 1에 기재하였다. 표 1에서 보면, 첨가제의 양이 늘어날수록 과충전시 최고 온도가 낮고, 최고 온도에 도달하는 시간이 짧아짐을 알 수 있다. 따라서 첨가제의 양에 따른 효과는 첨가제의 양이 많을 경우에 과충전시 안전성이 향상됨을 알 수 있다.The results of the overcharge test under 12 V / 2A conditions for Examples 1, 2, 3, and 4 and Comparative Examples 1 and 2 are shown in Table 1 as average values after repeated tests. In Table 1, it can be seen that as the amount of the additive increases, the maximum temperature during overcharging is low, and the time for reaching the maximum temperature is shortened. Therefore, the effect according to the amount of the additive can be seen that the safety during overcharging when the amount of the additive is large.

상기 실시예 1, 2, 3, 4 및 비교예 1, 2에 대한 6 V/2 A 조건의 과충전 시험 결과 온도 변화를 도 4에 도시하였다. 도 3에서 보면, 실시예 1, 2, 3, 4의 경우 비교예 1, 2보다 과충전시 안전성이 향상됨을 알 수 있다.The temperature change of the result of the overcharge test under the conditions of 6 V / 2 A for Examples 1, 2, 3 and 4 and Comparative Examples 1 and 2 is shown in FIG. 4. 3, in the case of Examples 1, 2, 3 and 4, it can be seen that the safety during overcharging is improved compared to Comparative Examples 1 and 2.

상기 실시예 1, 2, 3, 4 및 비교예 1, 2에 대한 6 V/2 A 조건의 과충전 시험 결과를 여러 번 반복 시험 후 평균값으로 표 2에 나타내었다. 표 2에서 보면, 첨가제의 양이 늘어날수록 과충전시 최고 온도가 낮고, 최고 온도에 도달하는 시간이 짧아짐을 알 수 있다. 따라서 첨가제의 양에 따른 효과는 첨가제의 양이 많을 경우에 과충전시 안전성이 향상됨을 알 수 있다.The results of the overcharge test under the conditions of 6 V / 2 A for Examples 1, 2, 3, and 4 and Comparative Examples 1 and 2 are shown in Table 2 as average values after repeated tests. In Table 2, it can be seen that as the amount of the additive increases, the maximum temperature during overcharging is low, and the time for reaching the maximum temperature is shortened. Therefore, the effect according to the amount of the additive can be seen that the safety during overcharging when the amount of the additive is large.

이상에서 설명한 바와 같이, 본 발명에 따르면 이러한 첨가제를 사용하면 과충전시 전해액 용매보다 먼저 반응하여 저항으로 작용하는 중합물을 만들어 냄으로써 전류를 차단하게 되고 안전성이 향상됨을 알 수 있다.As described above, according to the present invention, it can be seen that the use of such an additive blocks the current and improves safety by generating a polymer that reacts as a resistance by reacting before the electrolyte solvent when overcharged.

도 1은 충전 전압에 따른 반응 전류의 그래프를 도시한다.1 shows a graph of reaction current with charge voltage.

도 2는 전도성 고분자막 형성후 충전 전압에 따른 반응 전류를 도시한다.Figure 2 shows the reaction current according to the charging voltage after the conductive polymer film is formed.

도 3은 12 V/2 A 과충전 실험 중의 온도 및 전압 변화를 도시한다.3 shows temperature and voltage changes during a 12 V / 2 A overcharge experiment.

도 4는 6 V/2 A 과충전 실험 중의 온도 및 전압 변화를 도시한다.4 shows temperature and voltage changes during a 6 V / 2 A overcharge experiment.

도 5는 전지의 구조도를 도시한다.5 shows a structural diagram of a battery.

Claims (10)

리튬염 및 전해액 화합물을 포함하는 리튬 이차 전지용 비수전해액에 있어서, 비전도성 고분자 단량체 0.5∼5 중량%과 전도성 고분자 단량체 0.1∼2 중량%를 포함하고, 이들의 산화 전위가 전해액 > 비전도성 고분자 단량체 > 전도성 고분자 단량체인 것을 특징으로 하는 비수전해액.A non-aqueous electrolyte solution for a lithium secondary battery comprising a lithium salt and an electrolyte compound, wherein the non-conductive polymer monomer comprises 0.5 to 5 wt% of the nonconductive polymer monomer and 0.1 to 2 wt% of the conductive polymer monomer, and their oxidation potential is electrolyte solution> nonconductive polymer monomer> Non-aqueous electrolyte, characterized in that the conductive polymer monomer. 제1항에 있어서, 상기 비전도성 고분자 단량체는 시클로헥실벤젠, 이소프로필벤젠 또는 t-부틸벤젠이며, 전도성 고분자 단량체는 바이페닐, 1-페닐-1-시클로헥산 또는 벤조푸란인 것을 특징으로 하는 비수전해액.The nonaqueous polymer of claim 1, wherein the nonconductive polymer monomer is cyclohexylbenzene, isopropylbenzene or t-butylbenzene, and the conductive polymer monomer is biphenyl, 1-phenyl-1-cyclohexane, or benzofuran. Electrolyte solution. 리튬 이차 전지에 있어서,In a lithium secondary battery, a) 리튬 이온을 흡장 방출할 수 있는 양극;a) a positive electrode capable of storing and releasing lithium ions; b) 리튬 이온을 흡장 방출할 수 있는 음극;b) a negative electrode capable of storing and releasing lithium ions; c) 다공성 분리막; 및c) a porous separator; And d) 리튬염과 전해액 화합물을 포함하는 비수전해액을 포함하는 리튬 이차 전지에 있어서, 상기 비수전해액은 비전도성 고분자 단량체 및 전도성 고분자 단량체를 포함하고, 이들의 산화 전위가 전해액 > 비전도성 고분자 단량체 > 전도성 고분자 단량체인 것을 특징으로 하는 리튬 이차 전지.d) A lithium secondary battery comprising a nonaqueous electrolyte containing a lithium salt and an electrolyte compound, wherein the nonaqueous electrolyte includes a nonconductive polymer monomer and a conductive polymer monomer, and their oxidation potential is electrolyte> nonconductive polymer monomer> conductivity A lithium secondary battery, characterized in that the polymer monomer. 제3항에 있어서, 상기 비전도성 고분자 단량체는 시클로헥실벤젠, 이소프로필벤젠 또는 t-부틸벤젠이며, 전도성 고분자 단량체는 바이페닐, 1-페닐-1-시클로헥산 또는 벤조푸란인 것을 특징으로 하는 리튬 이차 전지.4. The lithium of claim 3, wherein the nonconductive polymer monomer is cyclohexylbenzene, isopropylbenzene or t-butylbenzene, and the conductive polymer monomer is biphenyl, 1-phenyl-1-cyclohexane or benzofuran. Secondary battery. 제3항에 있어서, 상기 비전도성 고분자 단량체의 함량이 전해액에 대하여 0.5∼5 중량%이고, 상기 전도성 고분자 단량체의 함량이 전해액에 대하여 0.1∼2 중량%인 리튬 이차 전지.The lithium secondary battery according to claim 3, wherein the content of the nonconductive polymer monomer is 0.5 to 5 wt% with respect to the electrolyte, and the content of the conductive polymer monomer is 0.1 to 2 wt% with respect to the electrolyte. 제3항에 있어서, 상기 a)의 양극의 활물질이 리튬 전이 금속 산화물이 LiCoO2, LiNiO2, LiMn2O4 및 LiNi1-XCoXO2 (여기에서, 0<X<1)로 이루어진 군으로부터 1종 이상 선택되는 리튬 전이금속 산화물인 리튬 이차 전지.The method of claim 3, wherein the active material of the positive electrode of a) is a lithium transition metal oxide of LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and LiNi1-XCoXO 2 (here, 0 <X <1) A lithium secondary battery which is a lithium transition metal oxide selected above. 제3항에 있어서, 상기 b)의 음극의 활물질이 탄소, 리튬 또는 합금인 리튬 이차 전지.The lithium secondary battery according to claim 3, wherein the active material of the negative electrode of b) is carbon, lithium, or an alloy. 제3항에 있어서, 상기 d)의 리튬염이 LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6 및 LiN(CF3SO2)2로 이루어진 군으로부터 1종 이상 선택되는 리튬 이차 전지.The lithium secondary battery of claim 3, wherein the lithium salt of d) is at least one selected from the group consisting of LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6, and LiN (CF 3 SO 2 ) 2 . . 제3항에 있어서, 상기 d)의 전해액 화합물이 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC) 및 감마부티로락톤(GBL)로 이루어진 군으로부터 1 종 이상 선택되는 환형 카보네이트; 및 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 에틸메틸카보네이트 (EMC), 및 메틸 프로필 카보네이트(MPC)로 이루어진 군으로부터 1 종 이상 선택되는 직쇄형 카보네이트를 포함하는 리튬 이차 전지.The method of claim 3, wherein the electrolyte compound of d) is cyclic carbonate selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC) and gamma butyrolactone (GBL); And a linear carbonate selected from the group consisting of diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), and methyl propyl carbonate (MPC). 제3항에 있어서, 상기 리튬 이차 전지는 캔으로 된 원통형 또는 각형, 또는 파우치형인 리튬 이차 전지.4. The lithium secondary battery of claim 3, wherein the lithium secondary battery is cylindrical or angular or pouched in a can.
KR10-2002-0055309A 2002-09-12 2002-09-12 Non-aqueous-electrolyte and lithium secondary battery using the same Expired - Lifetime KR100482816B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0055309A KR100482816B1 (en) 2002-09-12 2002-09-12 Non-aqueous-electrolyte and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0055309A KR100482816B1 (en) 2002-09-12 2002-09-12 Non-aqueous-electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
KR20040023870A KR20040023870A (en) 2004-03-20
KR100482816B1 true KR100482816B1 (en) 2005-04-14

Family

ID=37327170

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0055309A Expired - Lifetime KR100482816B1 (en) 2002-09-12 2002-09-12 Non-aqueous-electrolyte and lithium secondary battery using the same

Country Status (1)

Country Link
KR (1) KR100482816B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100628470B1 (en) 2004-11-03 2006-09-26 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery comprising same
TWI332937B (en) 2005-04-20 2010-11-11 Lg Chemical Ltd Additive for non-aqueous electrolyte and secondary battery using the same
KR100793605B1 (en) * 2005-11-11 2008-01-10 주식회사 엘지화학 A cathode active material composition containing poly indene-co-coumaron and a lithium secondary battery using the same
KR20160008341A (en) 2014-07-14 2016-01-22 동우 화인켐 주식회사 Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20160009427A (en) 2014-07-16 2016-01-26 동우 화인켐 주식회사 Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20160009952A (en) 2014-07-17 2016-01-27 동우 화인켐 주식회사 Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171840A (en) * 1995-11-17 1997-06-30 Moli Energy 1990 Ltd Aromatic monomer-based gas generating agent for overcharge protection in non-aqueous lithium batteries
JPH10321258A (en) * 1997-05-16 1998-12-04 Nec Molienerg Canada Ltd Non-aqueous rechargeable lithium battery
US5879834A (en) * 1995-08-23 1999-03-09 Nec Moli Energy (Canada) Ltd. Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
JP2001015158A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and charge control system for non-aqueous electrolyte secondary battery and equipment using the same
WO2002054524A1 (en) * 2000-12-28 2002-07-11 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolytic secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879834A (en) * 1995-08-23 1999-03-09 Nec Moli Energy (Canada) Ltd. Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
JPH09171840A (en) * 1995-11-17 1997-06-30 Moli Energy 1990 Ltd Aromatic monomer-based gas generating agent for overcharge protection in non-aqueous lithium batteries
JPH10321258A (en) * 1997-05-16 1998-12-04 Nec Molienerg Canada Ltd Non-aqueous rechargeable lithium battery
JP2001015158A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and charge control system for non-aqueous electrolyte secondary battery and equipment using the same
WO2002054524A1 (en) * 2000-12-28 2002-07-11 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolytic secondary battery

Also Published As

Publication number Publication date
KR20040023870A (en) 2004-03-20

Similar Documents

Publication Publication Date Title
KR102643744B1 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR102447200B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN1234179C (en) Lithium storage battery comprising over-discharge preventing agent
KR100884482B1 (en) Non-aqueous lithium secondary battery with improved cycle characteristics and / or high temperature safety
KR100856285B1 (en) Non-aqueous-electrolyte and lithium secondary battery using the same
KR101033697B1 (en) Electrolyte Additive for Lithium Secondary Battery, Non-Aqueous Electrolyte and Lithium Secondary Battery Containing the Electrolyte Additive
KR101073221B1 (en) Non-aqueous electrolyte and secondary battery using the same
KR102345312B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
KR100603303B1 (en) Lithium Battery with Efficient Performance
KR20200054097A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR102452330B1 (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
KR20080110160A (en) Non-aqueous electrolyte additive and secondary battery using same
KR20030076153A (en) Lithium ion secondary battery comprising overdischarge retardant
KR101952838B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR100482816B1 (en) Non-aqueous-electrolyte and lithium secondary battery using the same
KR102683061B1 (en) Nonaqueous electrolytic solution and lithium secondary battery
US12195431B2 (en) Non-aqueous electrolyte solution additive, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same
KR102605446B1 (en) Nonaqueous electrolytic solution and lithium secondary battery
KR102342258B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR102633568B1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising the same and lithium secondary battery
KR100440485B1 (en) New non-aqueous electrolyte and lithium secondary battery using the same
KR101584356B1 (en) Nonaqueous electrolyte comprising fluoride and electrochimical device using the same
KR102666156B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR102327531B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US7459240B2 (en) Nonaqueous electrolyte for battery

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20020912

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20040416

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20050328

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20050402

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20050404

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20080328

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20090402

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20100331

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20110404

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20120330

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20130329

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20140318

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20170328

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20180403

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20190401

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20200401

Start annual number: 16

End annual number: 16

PR1001 Payment of annual fee

Payment date: 20210401

Start annual number: 17

End annual number: 17

PC1801 Expiration of term

Termination date: 20230312

Termination category: Expiration of duration