KR100465881B1 - Process of High Flow Thermoplastic Resin Having Good Moldability - Google Patents
Process of High Flow Thermoplastic Resin Having Good Moldability Download PDFInfo
- Publication number
- KR100465881B1 KR100465881B1 KR10-2002-0022501A KR20020022501A KR100465881B1 KR 100465881 B1 KR100465881 B1 KR 100465881B1 KR 20020022501 A KR20020022501 A KR 20020022501A KR 100465881 B1 KR100465881 B1 KR 100465881B1
- Authority
- KR
- South Korea
- Prior art keywords
- reactor
- content
- flow rate
- thermoplastic resin
- bulk polymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/02—Polymerisation in bulk
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F12/06—Hydrocarbons
- C08F12/08—Styrene
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
본 발명의 고유동 열가소성 수지는 제1반응기에서 스티렌 단량체가 제1, 제2반응기로 투입되는 전체유량을 F, 원료용액이 제1반응기로 투입되는 전체유량을 F1, 원료용액이 제2반응기로 투입되는 전체유량을 F2, 제1반응기의 반응기 내용적을 V1, 제1반응기에서 반응액이 점하는 내용적을 V1'라고 했을 때, F = F1+ F2, F = 12, 6.1 ≤ F1/F2≤ 7.0, 1.9 ≤ V1/V1' ≤ 2.9의 조건으로 연속괴상중합하고; 제2반응기에서 제2반응기의 반응기 내용적을 V2, 제2반응기에서 반응액이 점하는 내용적을 V2'라고 했을 때, 1.3 ≤ V2/V2' ≤ 1.8, F = F1+ F2의 조건하에서 연속괴상중합하고 최종 펠릿 기준으로 탄화수소 화합물 1.5∼2.3 중량%를 연속적으로 투입하고; 제3반응기에서 제3반응기의 반응기 내용적을 V3, 제3반응기에서 반응액이 점하는 내용적을 V3'라고 했을 때, V3/V3' = 1의 조건하에 연속괴상중합하고; 그리고 제3반응기로부터 생성된 중합물로부터 미반응 단량체를 분리한 후 펠렛 형태로 절단하는 단계에 의해 제조되고, 평균분자량이 16∼20만이고, 유동성이 11.0∼15.0이고, 황색도가 1.0 이하이다.In the high flow thermoplastic resin of the present invention, the total flow rate of the styrene monomer is introduced into the first and second reactors in the first reactor is F, the total flow rate of the raw material solution is introduced into the first reactor, F 1 , and the raw material solution is the second reactor. F = F 1 + F 2 , F = 12, 6.1 when the total flow rate into the reactor is F 2 , the reactor volume of the first reactor is V 1 , and the volume of the reaction solution in the first reactor is V 1 ′. Continuous bulk polymerization under the conditions ≦ F 1 / F 2 ≦ 7.0 and 1.9 ≦ V 1 / V 1 ≦≦ 2.9; When the content of the reactor in the second reactor is V 2 and the content of the reaction solution in the second reactor is V 2 ′, 1.3 ≤ V 2 / V 2 '≤ 1.8, F = F 1 + F 2 Continuous bulk polymerization under the conditions of and continuously adding 1.5 to 2.3% by weight of the hydrocarbon compound based on the final pellets; When the reactor volume of the third reactor in the third reactor is V 3 and the volume of the reaction solution in the third reactor is V 3 ′, continuous bulk polymerization is carried out under the condition of V 3 / V 3 '= 1; And it is prepared by the step of separating the unreacted monomer from the polymer produced from the third reactor and then cut into pellets, the average molecular weight is 16-200,000, the fluidity is 11.0 ~ 15.0, the yellowness is 1.0 or less.
Description
발명의 분야Field of invention
본 발명은 이형성이 우수한 고유동 열가소성 수지의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 제1반응기에서의 반응조건을 조절하여 체류시간을 조절하고, 제2반응기에서는 고온유지 및 반응시간을 줄일 수 있도록 반응조건을 조절하고, 제3반응기에서는 고온유지 연속 괴상중합하여 고형분(폴리스티렌) 함량이 일정범위이고, 분자량이 특정범위에 해당하는 열가소성 수지를 제조함으로써, 황색도가 양호하고 유동성이 우수할 뿐만 아니라 이형성이 크게 향상되어 식음료 용기, 오디오 제품 케이스, 냉장고 내부부품, 잡화용기 등의 제조에 유용한 고유동 열가소성 수지의 제조방법에 관한 것이다.The present invention relates to a method for producing a high flow thermoplastic resin having excellent release properties. More specifically, the present invention controls the residence time by adjusting the reaction conditions in the first reactor, the reaction conditions are adjusted to reduce the high temperature and reaction time in the second reactor, the high temperature continuous mass in the third reactor By preparing a thermoplastic resin having a certain range of solids (polystyrene) content and a molecular weight within a specific range by polymerization, the yellowness is good, the fluidity is excellent, and the releasability is greatly improved, so that food and beverage containers, audio product cases, and refrigerators The present invention relates to a method for producing a high flow thermoplastic resin useful for the production of parts, sundries and the like.
발명의 배경Background of the Invention
일반적으로 식음료 용기, 오디오 제품 케이스, 냉장고 내부부품, 잡화용기 등의 제조에는 고유동 폴리스티렌이 사용되어왔다. 이러한 고유동 폴리스티렌을 제조하기 위한 제조공정은 용액중합으로 진행되며, 원료용액을 모두 제1반응기에 투입하여 중합하는 방법들이 있으며, 상기 방법들은 일본 및 미국 특허문헌 등을 통해 다수 알려져 있다. 그러나, 상기 방법들은 솔벤트(EB, MEK)를 이용한 용액중합으로 반응이 이루어지기 때문에 투명성을 제일의 우수조건으로 삼고 있는 폴리스티렌에는 제품의 저급화를 가져오게 된다.In general, high-flow polystyrene has been used to manufacture food and beverage containers, audio product cases, refrigerator internal parts, and general merchandise containers. The manufacturing process for producing such high-flow polystyrene proceeds by solution polymerization, and there are methods for polymerizing all the raw material solutions by adding them to the first reactor, and the methods are well known through Japanese and US patent documents. However, since the above methods are reacted by solution polymerization using solvents (EB, MEK), polystyrene, which has transparency as the best condition, brings about lowering of the product.
이에 본 발명자들은 상기한 종래 기술의 문제점을 해결하기 위하여, 3개의 반응기로 연속괴상중합함으로써 황색도가 양호하면서 유동성이 뛰어난 폴리스티렌 수지의 제조방법을 개발하기에 이르렀다.In order to solve the problems of the prior art, the present inventors have developed a method for producing a polystyrene resin having good yellowness and excellent fluidity by continuous bulk polymerization in three reactors.
본 발명의 목적은 유동성이 뛰어난 열가소성 수지의 제조방법을 제공하기 위한 것이다.An object of the present invention is to provide a method for producing a thermoplastic resin excellent in fluidity.
본 발명의 다른 목적은 황색도가 양호하고 유동성이 우수할 뿐만 아니라 이형성이 크게 향상되어 식음료 용기, 오디오 제품 케이스, 냉장고 내부부품, 잡화용기 등의 제조에 유용한 고유동 열가소성 수지의 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method of producing a high flow thermoplastic resin useful in the manufacture of food and beverage containers, audio product cases, refrigerator internal parts, general merchandise containers, etc., as well as good yellowness and excellent fluidity. It is for.
본 발명의 상기 및 기타의 목적들은 모두 하기에 설명되는 본 발명에 의해서 달성될 수 있다. 이하 본 발명의 내용을 하기에 상세히 설명한다.Both the above and other objects of the present invention can be achieved by the present invention described below. Hereinafter, the content of the present invention will be described in detail.
도 1은 본 발명에 따른 이형성이 우수한 고유동 열가소성 수지를 제조하기 위한 연속괴상중합장치를 모식적으로 나타낸 개략도이다.1 is a schematic diagram schematically showing a continuous block polymerization apparatus for producing a high flow thermoplastic resin having excellent release properties according to the present invention.
* 도면의 주요부호에 대한 간단한 설명 *Brief description of the main symbols in the drawing
1 : 스티렌 단량체가 제1, 제2반응기로 투입되는 전체유량(F)1: total flow rate (F) in which styrene monomer is introduced into the first and second reactors
2 : 스티렌 단량체가 제1반응기로 투입되는 전체유량(F1)2: total flow rate of the styrene monomer to the first reactor (F 1 )
3 : 스티렌 단량체가 제2반응기로 투입되는 전체유량(F2)3: total flow rate of the styrene monomer to the second reactor (F 2 )
4 : 제1반응기의 반응기 내용적(V1)4: reactor content of the first reactor (V 1 )
5 : 제1반응기에서 반응액이 점하는 내용적(V1')5: the volume of the reaction solution in the first reactor (V 1 ')
6 : 제2반응기의 반응기 내용적(V2)6: reactor volume of the second reactor (V 2 )
7 : 제2반응기에서 반응액이 점하는 내용적(V2')7: Content (V 2 ') of the reaction solution in the second reactor
8 : 제3반응기에서의 반응기 내용적(V3)8: reactor volume in the third reactor (V 3 )
9 : 제3반응기에서의 반응액이 점하는 내용적(V3')9: the internal volume of the reaction solution in the third reactor (V 3 ')
발명의 요약Summary of the Invention
본 발명의 고유동 열가소성 수지는 스티렌 단량체(원료용액)를 제1반응기, 제2반응기 및 제3반응기에서 연속적으로 괴상중합하여 폴리스티렌을 제조함에 있어서, 상기 스티렌 단량체의 전체 투입 유량의 비율을 조절하여 제1반응기와 제2반응기에 분리 투입하여 제조된다.In the high flow thermoplastic resin of the present invention in the production of polystyrene by mass polymerization of styrene monomer (raw material solution) in the first reactor, the second reactor and the third reactor, by adjusting the ratio of the total flow rate of the styrene monomer It is manufactured by separating and adding the first reactor and the second reactor.
제1반응기에서는 스티렌 단량체를 고유동 수지로 생성할 수 있는 조건인 적정한 분자량의 폴리스티렌을 만드는 핵심 반응이 진행되고, 제2반응기에서는 연속적으로 이동되는 제1반응기의 반응물을 고온에서 중합하여 제1반응기에서의 분자량보다 상대적으로 낮은 폴리스티렌 생성을 하고, 수지에 우수한 유동특성 및 이형성을 부여하기 위하여 석유로부터 추출한 탄화수소 화합물이 적당량 첨가된다. 제3반응기에서는 고온에서 중합하여 원하는 유동성을 가질 수 있는 적정 분자량의 폴리스티렌을 생성하고, 최종 고형분의 비율을 상승시킨다.In the first reactor, a core reaction for producing polystyrene having an appropriate molecular weight, which is a condition for producing styrene monomer into a high flow resin, proceeds, and in the second reactor, the first reactant is polymerized at a high temperature to continuously react the reactant of the first reactor. In order to produce polystyrene which is relatively lower than the molecular weight in, and to give the resin excellent flow characteristics and release property, an appropriate amount of hydrocarbon compound extracted from petroleum is added. In the third reactor, the polymer is polymerized at a high temperature to produce polystyrene having an appropriate molecular weight which may have a desired fluidity, and the ratio of the final solid content is increased.
본 발명에 따른 고유동 열가소성 수지는 제1반응기에서 스티렌 단량체 투입유량 및 반응시간을 하기식(A)∼(C)의 조건으로 유지하며 연속괴상중합하고; 제2반응기에서 반응조건을 하기식(D)의 조건으로 유지하며 연속괴상중합하고; 제3반응기에서 반응조건을 하기식(E)의 조건으로 유지하며 연속괴상중합하고: 그리고 제3반응기에서 생성된 중합물(고형분)로부터 미반응 단량체를 분리하여 제조된다:The high flow thermoplastic resin according to the present invention is subjected to continuous bulk polymerization while maintaining the styrene monomer input flow rate and reaction time in the first reactor under the conditions of the following formulas (A) to (C); Continuous block polymerization while maintaining the reaction conditions in the second reactor under the conditions of the following formula (D); It is prepared by continuous bulk polymerization while maintaining the reaction conditions in the third reactor under the condition of the following formula (E): and separating the unreacted monomers from the polymer (solids) produced in the third reactor:
F = F1+ F2, F = 12 (A)F = F 1 + F 2 , F = 12 (A)
6.1 ≤ F1/F2≤ 7.0 (B)6.1 ≤ F 1 / F 2 ≤ 7.0 (B)
1.9 ≤ V1/V1' ≤ 2.9 (C)1.9 ≤ V 1 / V 1 '≤ 2.9 (C)
1.3 ≤ V2/V2' ≤ 1.8 (D)1.3 ≤ V 2 / V 2 '≤ 1.8 (D)
V3/V3' = 1 (E)V 3 / V 3 '= 1 (E)
상기식에서, F는 스티렌 단량체가 제1, 제2반응기로 투입되는 전체유량이고, F1은 스티렌 단량체가 제1반응기로 투입되는 전체유량이고, F2는 스티렌 단량체가 제2반응기로 투입되는 전체유량이고, V1은 제1반응기의 반응기 내용적이고, V1'는 제1반응기에서 반응액이 점하는 내용적이고, V2는 제2반응기의 반응기 내용적이고, V2'는 제2반응기에서 반응액이 점하는 내용적이고, V3는 제3반응기의 반응기 내용적이고, V3'는 제3반응기에서 반응액이 점하는 내용적임.In the above formula, F is the total flow rate of the styrene monomer to the first, second reactor, F 1 is the total flow rate of the styrene monomer to the first reactor, F 2 is the total flow rate of the styrene monomer to the second reactor. Flow rate, V 1 is the reactor content of the first reactor, V 1 ′ is the content of the reaction liquid in the first reactor, V 2 is the reactor content of the second reactor, and V 2 ′ is the reaction in the second reactor. and information that the liquid point, V 3 is the reactor and the contents of the third reactor, V 3 'is cut out contents to the reaction solution points in the third reactor.
본 발명에 따른 제조방법에서 제1반응기에서 연속괴상중합은 140∼149 ℃에서 시행되고, 제2반응기에서 연속괴상중합은 165∼180 ℃로 시행되며, 제3반응기에서의 연속괴상중합은 190∼205 ℃에서 시행된다. 상기와 같은 방법으로 얻어진 폴리스티렌의 함량은 고형분 기준으로 제2반응기에서 50∼65 중량%이며, 제3반응기에서 70∼85 중량%이고, 최종 펠릿 수지의 평균 분자량은 16∼20만이고, 유동성이 11∼15이며, 황색도가 1.0 이하이다.In the production method according to the present invention, the continuous bulk polymerization is carried out at 140 to 149 ° C. in the first reactor, the continuous bulk polymerization is carried out at 165 to 180 ° C. in the second reactor, and the continuous bulk polymerization in the third reactor is 190 to It is carried out at 205 ℃. The content of polystyrene obtained by the above method is 50 to 65% by weight in the second reactor, 70 to 85% by weight in the third reactor, the average molecular weight of the final pellet resin is 16 to 200,000, and fluidity 11-15, and yellowness is 1.0 or less.
발명의 구체예에 대한 상세한 설명Detailed Description of the Invention
본 발명의 고유동 열가소성 수지를 제조하는 방법을 보다 구체적으로 설명하면 다음과 같다.Referring to the method of producing a high flow thermoplastic resin of the present invention in more detail.
우선 제1반응기 및 제2반응기에서는 스티렌 단량체가 저장된 탱크로부터 스티렌 단량체를 연속적으로 공급받는다. 본 발명에서 사용될 수 있는 스티렌 단량체는 스티렌; α-에틸스티렌 및 α-메틸스티렌과 같은 옆사슬 알킬치환 스티렌류; 비닐크실렌, O-t-부틸스티렌, P-t-부틸스티렌 및 P-메틸 스티렌과 같은 핵알킬 치환 스티렌류; 모노클로로 스티렌, 디클로로 스티렌,트리브로모 스티렌 및 테트라 히드로 스티렌과 같은 활로겐화스티렌; P-히드록시 스티렌; 및 O-메록시 스티렌이 있다. 이 중에서 일반적으로 스티렌이 가장 많이 사용된다.First, in the first reactor and the second reactor, the styrene monomer is continuously supplied from the tank in which the styrene monomer is stored. Styrene monomers that can be used in the present invention include styrene; side chain alkyl-substituted styrenes such as α-ethylstyrene and α-methylstyrene; Nuclear alkyl substituted styrenes such as vinyl xylene, O-t-butylstyrene, P-t-butylstyrene and P-methyl styrene; Halogenated styrenes such as monochloro styrene, dichloro styrene, tribromo styrene and tetrahydro styrene; P-hydroxy styrene; And O-methoxy styrene. Of these, styrene is most commonly used.
(1) 제1반응기에서의 중합(1) Polymerization in the first reactor
원료용액(스티렌 단량체)이 제1, 제2반응기로 투입되는 전체유량을 F, 원료용액이 제1반응기로 투입되는 전체유량을 F1, 원료용액이 제2반응기로 투입되는 전체유량을 F2, 제1반응기의 반응기 내용적을 V1, 제1반응기에서 반응액이 점하는 내용적을 V1'라고 했을 때, F = F1+ F2, F = 12, 6.1 ≤ F1/F2≤ 7.0, 1.9 ≤ V1/V1' ≤ 2.9의 조건으로, 제1반응기의 교반기 회전수를 30 회/분으로 조절하여 140∼149 ℃에서 연속괴상중합한다.The total flow rate of the raw material solution (styrene monomer) to the first and second reactors is F, the total flow rate of the raw material solution to the first reactor is F 1 , and the total flow rate of the raw material solution to the second reactor is F 2. , F = F 1 + F 2 , F = 12, 6.1 ≤ F 1 / F 2 ≤ 7.0 when the reactor volume of the first reactor is V 1 , and the volume of the reaction solution in the first reactor is V 1 ′. , Under the condition of 1.9 ≦ V 1 / V 1 ′ 2.9, continuously agitated polymerization at 140 to 149 ° C. by adjusting the stirrer speed of the first reactor to 30 times / minute.
F1/F2〉7.0 의 경우에는 적정한 분자량의 폴리스티렌이 형성될 수 없고, F1/F2< 6.1 의 경우에는 반응물의 점도가 지나치게 높아져서 이송 불량이 발생하여제2반응기의 온도 조절이 어려울 뿐만 아니라, 제2반응기에서 저분자량 폴리스티렌이 다량 발생하여 원하는 고유동 수지를 얻을 수 없다. 또한, 제1반응기에서 6.1 ≤ F1/F2≤ 7.0, F = F1+ F2, F = 12의 조건을 유지하는 이유는 3개의 반응기를 효과적으로 이용하여 점도조절을 하고, 반응물의 이송을 원활하게 하며, 적정한 분자량의 스티렌 수지가 이형성이 우수하면서 고유동성을 갖도록 하기 위한 것이다.In the case of F 1 / F 2 > 7.0, polystyrene of the appropriate molecular weight cannot be formed, and in the case of F 1 / F 2 <6.1, the viscosity of the reactant is too high, resulting in poor transport, making it difficult to control the temperature of the second reactor. However, a large amount of low molecular weight polystyrene is generated in the second reactor, so that a desired high flow resin cannot be obtained. In addition, the reason for maintaining the conditions of 6.1 ≦ F 1 / F 2 ≤ 7.0, F = F 1 + F 2 , F = 12 in the first reactor is to use the three reactors effectively to control the viscosity, It is to make it smooth and to make styrene resin of moderate molecular weight excellent in mold release property, and having high fluidity.
V1/V1'〈 1.9 의 경우에는 점도가 지나치게 높아져 교반기의 부하가 증가하여 운전이 어려울 뿐 아니라, 비상상황 발생시 대처할 수 있는 시간 부족으로 위험에 처하게 된다. 반면, V1/V1' 〉2.9 의 경우에는 원하는 함량의 고형분을 얻을 수 없으며, 분자량이 저하되어 원하는 수지를 얻을 수 없다.In the case of V 1 / V 1 '<1.9, the viscosity becomes too high and the load of the stirrer increases, which makes it difficult to operate and also poses a danger due to insufficient time to cope with an emergency situation. On the other hand, in the case of V 1 / V 1 '> 2.9, the solid content of the desired content cannot be obtained, and the molecular weight is lowered to obtain the desired resin.
결국, 제1반응기에서 상기 반응조건을 유지함으로써 솔벤트를 사용하지 않는 연속괴상중합에서 원활한 반응물의 이송이 가능하고, 평균분자량 16∼20만의 고유동 양이형성 수지를 얻을 수 있다.As a result, by maintaining the reaction conditions in the first reactor, it is possible to smoothly transfer the reactants in the continuous bulk polymerization without using a solvent, thereby obtaining a high flow cationic resin having an average molecular weight of 16 to 200,000.
제1반응기에서 반응이 진행된 중합물은 제2반응기로 연속적으로 공급되어 연속괴상중합된다.The polymerized product in the first reactor is continuously supplied to the second reactor and subjected to continuous bulk polymerization.
(2) 제2반응기에서의 중합(2) Polymerization in Second Reactor
원료용액(스티렌 단량체)이 제1, 제2반응기로 투입되는 전체유량을 F, 원료용액이 제1반응기로 투입되는 전체유량을 F1, 원료용액이 제2반응기로 투입되는 전체유량을 F2, 제2반응기의 반응기 내용적을 V2, 제2반응기에서 반응액이 점하는 내용적을 V2'라고 했을 때, 1.3 ≤ V2/V2' ≤ 1.8의 조건을 유지하고, 반응기의 회전수를 20 회/분으로 고정하여 165∼180 ℃에서 고형분이 50∼65 중량%가 되도록 연속괴상중합한다. 또한, 여기에 최종 펠릿 기준으로 탄화수소 화합물을 1.5∼2.3 중량% 연속적으로 투입한다.The total flow rate of the raw material solution (styrene monomer) to the first and second reactors is F, the total flow rate of the raw material solution to the first reactor is F 1 , and the total flow rate of the raw material solution to the second reactor is F 2. When the content of the reactor in the second reactor is V 2 , and the content of the reaction solution in the second reactor is V 2 ′, the condition of 1.3 ≦ V 2 / V 2 ≦ 1.8 is maintained and the number of revolutions of the reactor is maintained. It is fixed at 20 times / min and subjected to continuous bulk polymerization at 165 to 180 deg. C so that the solid content is 50 to 65 wt%. In addition, 1.5 to 2.3% by weight of the hydrocarbon compound is continuously added to the final pellets.
본 발명에 사용 가능한 탄화수소 화합물은 일반적으로 말하는 화이트 오일(white oil)로서 국내 극동유화, 미창석유 등에서 생산되며, LP-350, TOMI-350 등이 있다.Hydrocarbon compounds usable in the present invention are generally produced as white oil, which is produced in domestic Far East oil, unchanged petroleum, and the like, and LP-350, TOMI-350, and the like.
제2반응기에서 V2/V2' >1.8 의 경우에는 고형분의 함량이 감소되어 생산성이 떨어지고, V2/V2' < 1.3 의 경우에는 발열량 증대로 중합온도 조절이 어렵다.In the second reactor, in the case of V 2 / V 2 '> 1.8, the content of solid content is reduced, and productivity is decreased. In the case of V 2 / V 2 '<1.3, it is difficult to control the polymerization temperature due to the increase in calorific value.
제2반응기에서 온도를 165 ℃ 미만으로 유지하면 생산성의 감소를 가져오며, 180 ℃ 이상으로 유지하면 최종 펠렛에서 고분자량 생성비율이 낮아 원하는 고유동 수지를 얻을 수 없다.Maintaining the temperature below 165 ° C. in the second reactor results in a decrease in productivity. Maintaining a temperature above 180 ° C. results in a low molecular weight formation rate in the final pellets, thereby preventing the desired high flow resin.
따라서, 제2반응기의 반응조건을 1.3 ≤ V2/V2' ≤ 1.8, F = F1+ F2, F = 12, 165∼180 ℃로 유지하고, 탄화수소 화합물 1.5∼2.3 중량%를 연속적으로 투입함으로써 가치 있는 생산성을 유지하면서 이형성이 우수한 고유동성의 폴리스티렌을 얻을 수 있다.Therefore, the reaction conditions of the second reactor were maintained at 1.3 ≦ V 2 / V 2 ′ ≦ 1.8, F = F 1 + F 2 , F = 12, 165 to 180 ° C., and 1.5 to 2.3% by weight of the hydrocarbon compound was continuously The high flow polystyrene with excellent release property can be obtained by maintaining valuable productivity.
제2반응기에서 반응이 진행된 중합물은 제3반응기로 연속적으로 공급되어 연속괴상중합된다.The polymerized product in the second reactor is continuously supplied to the third reactor and subjected to continuous bulk polymerization.
(3) 제3반응기에서의 중합(3) polymerization in the third reactor
제3반응기의 반응기 내용적을 V3, 제3반응기에서 반응액이 점하는 내용적을 V3'라고 했을 때, V3/V3' = 1의 조건을 유지하고, 반응기의 회전수를 15 회/분으로 고정하여 190∼205 ℃에서 고형분이 70∼85 중량%가 되도록 연속괴상중합한다.When the content of the reactor of the third reactor is V 3 , and the content of the reaction solution in the third reactor is V 3 ′, the condition of V 3 / V 3 '= 1 is maintained and the number of revolutions of the reactor is 15 times / It is fixed in minutes and subjected to continuous bulk polymerization at 190 to 205 ° C so that the solid content is 70 to 85% by weight.
제3반응기에서 온도를 190 ℃ 미만으로 유지하면 생산성이 감소되고, 원하는 함량의 고형분을 얻을 수 없으며, 205 ℃ 이상으로 유지하면 고형분 함량이 증가하게 되어 이송 불량이 발생하게 되며, 최종 펠렛에서 고분자량 생성비율이 낮아 원하는 고유동 수지를 얻을 수 없다.Maintaining the temperature below 190 ° C. in the third reactor reduces the productivity, and it is not possible to obtain a solid content of the desired content. If the temperature is maintained above 205 ° C., the solid content increases, resulting in poor transport, and high molecular weight in the final pellet. The production rate is low to obtain the desired high flow resin.
따라서, 제3반응기의 반응조건을 V3/V3' = 1, 190∼205 ℃로 유지하여 원하는 유동성을 갖을 수 있는 적정 분자량의 폴리스티렌을 생성하고, 고형분의 비율을 상승시켜 이형성이 우수한 고유동성의 폴리스티렌을 얻을 수 있다.Therefore, the reaction conditions of the third reactor is maintained at V 3 / V 3 '= 1, 190 ~ 205 ℃ to produce a polystyrene of the appropriate molecular weight that can have the desired fluidity, and increase the proportion of solid content, high flowability with excellent releasability Polystyrene of can be obtained.
제1반응기 또는 제2반응기에 분자량 조절제와 같은 기타의 첨가제가 첨가될 수 있다. 예를 들어, 대전방지제, 산화방지제 등을 각각의 용도에 따라 적절히 첨가하여 사용할 수 있다.Other additives such as molecular weight regulators may be added to the first reactor or the second reactor. For example, an antistatic agent, antioxidant, etc. can be added and used suitably according to each use.
제3반응기에서 중합반응이 완료된 반응물은 승온기, 휘발조 등을 거치면서 미반응 단량체를 분리한 후 펠릿 형태로 절단된다. 이 펠릿 형태의 최종 수지의 평균분자량은 16∼20만이고, 유동성이 11.0∼15.0이고, 황색도가 1.0 이하이다.After the polymerization reaction is completed in the third reactor, an unreacted monomer is separated through a temperature increaser, a volatilization tank, and the like, and is then cut into pellets. The average molecular weight of this pellet-form final resin is 16-200,000, fluidity is 11.0-15.0, and yellowness is 1.0 or less.
본 발명의 제조방법에 따라 투명성이 양호하며 고유동 특성을 유지하는 이형성이 우수한 폴리스티렌이 추가의 솔벤트 투입 없이 3개의 반응기를 이용하여 효율적으로 제조된다.According to the production method of the present invention, polystyrene having good transparency and excellent releasability to maintain high flowability is efficiently manufactured using three reactors without additional solvent addition.
본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.
실시예Example
실시예 1Example 1
제1반응기에서 중합은 원료용액(스티렌 단량체)이 제1, 제2반응기로 투입되는 전체유량을 F, 원료용액이 제1반응기로 투입되는 전체유량을 F1, 원료용액이 제2반응기로 투입되는 전체유량을 F2, 제1반응기의 반응기 내용적을 V1, 제1반응기에서 반응액이 점하는 내용적을 V1'라고 했을 때, F = F1+ F2, F = 12, F1/F2= 6.5, V1/V1' = 2.7의 반응조건에서 실시하였다. 교반기 회전수 30 회/분, 중합온도 145 ℃에서 연속괴상중합을 하였다.In the first reactor, the polymerization is carried out in which the total flow rate of the raw material solution (styrene monomer) into the first and second reactors is F, the total flow rate of the raw material solution into the first reactor is F 1 , and the raw material solution is introduced into the second reactor. F = F 1 + F 2 , F = 12, F 1 / when the total flow rate is F 2 , the content of the reactor in the first reactor is V 1 , and the content of the reaction solution in the first reactor is V 1 ′. F 2 = 6.5, V 1 / V 1 '= was carried out under the reaction conditions of 2.7. Continuous block polymerization was performed at the stirrer speed of 30 times / min and polymerization temperature of 145 degreeC.
제1반응기의 중합물은 제1반응기의 공급유량과 동일하게 제2반응기로 연속 공급하여, 원료용액(스티렌 단량체)이 제1, 제2반응기로 투입되는 전체유량을 F,원료용액이 제1반응기로 투입되는 전체유량을 F1, 원료용액이 제2반응기로 투입되는 전체유량을 F2, 제2반응기의 반응기 내용적을 V2, 제2반응기에서 반응액이 점하는 내용적을 V2'라고 했을 때, V2/V2' = 1.5, F = F1+ F2, F = 12로 유지하였다. 반응기의 회전수는 20 회/분으로 고정하고, 반응온도는 170 ℃로 유지했다.The polymer of the first reactor is continuously supplied to the second reactor in the same manner as the supply flow rate of the first reactor, so that the total flow rate of the raw material solution (styrene monomer) to the first and second reactors is F, and the raw material solution is the first reactor. The total flow rate introduced into the reactor F 1 , the total flow rate of the raw material solution into the second reactor, F 2 , the reactor volume of the second reactor V 2 , and the volume of the reaction solution in the second reactor V 2 ′. When V 2 / V 2 '= 1.5, F = F 1 + F 2 , F = 12 was maintained. The rotation speed of the reactor was fixed at 20 times / minute, and the reaction temperature was maintained at 170 ° C.
제2반응기에 석유로부터 추출한 탄화수소 화합물인 화이트 오일을 최종 펠릿 내에서 1.5 중량%가 되도록 별도의 저장탱크에서 연속 투입했다.In the second reactor, white oil, a hydrocarbon compound extracted from petroleum, was continuously added in a separate storage tank so as to be 1.5% by weight in the final pellet.
제2반응기의 중합물은 제3반응기로 연속 공급하였으며, 제3반응기의 반응기 내용적을 V3, 제3반응기에서 반응액이 점하는 내용적을 V3'라고 했을 때, V3/V3' = 1의 조건을 유지하고, 반응기의 회전수를 15 회/분으로 고정하였으며, 반응온도는 195℃로 유지했다.The polymer of the second reactor was continuously fed to the third reactor. When the reactor content of the third reactor was V 3 and the content of the reaction solution in the third reactor was V 3 ', V 3 / V 3 ' = 1 The condition of was maintained, the rotation speed of the reactor was fixed at 15 times / min, the reaction temperature was maintained at 195 ℃.
제3반응기에서 얻어진 최종 중합물은 탈휘공정에 연속적으로 보내서 245 ℃까지 승온하여 미반응 단량체등 휘발성분을 제거하여 펠릿 형태로 제조하였다. 얻어진 펠릿 상의 수지에 대해 분자량, 황색도, 유동성을 측정하고, 사출기의 격자금형을 이용하여 이형성을 평가하였다.The final polymer obtained in the third reactor was continuously sent to a devolatilization step and heated up to 245 ° C. to remove volatile components such as unreacted monomers. Molecular weight, yellowness, and fluidity were measured about the obtained resin on pellets, and mold release property was evaluated using the lattice mold of the injection machine.
유동성은 ASTM D1238에 의하여 측정하였다(200 ℃, 5㎏).Flowability was measured by ASTM D1238 (200 ° C., 5 kg).
황색도는 JIS K7105에 의하여 측정하였다.Yellowness was measured by JIS K7105.
분자량은 최종 펠릿 중 시료 5 ㎎을 채취하여 THF 5㎖를 혼합하여 진탕기(shaker)에 넣고 30분간 흔들어 완전히 용해한 후, 이 용액을 SPECTRA-PHYSICS ANALYTICAL社의 젤투과 크로마토그래프(Gel Permeation Chromatograph)로측정하였다.Molecular weight is 5 mg of the sample in the final pellet, 5 ml of THF is mixed in a shaker and shaken for 30 minutes to completely dissolve the solution, and then the solution is subjected to gel permeation chromatography of SPECTRA-PHYSICS ANALYTICAL. Measured.
이형깨짐 발생율은 금성전선에서 제작한 5.3 OZ 사출기에 이형성 평가용 격자금형을 이용하여 20개 사출하여 깨짐 발생량을 비율로 환산하였다.The release cracking rate was calculated by converting 20 crack generation rates into a 5.3 OZ injection machine manufactured by Venus Cable using a lattice mold for evaluation of release property.
실시예 2Example 2
F1/F2= 6.8로 하고, 제2반응기에 연속적으로 투입되는 화이트 오일을 2.0 중량%로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.F 1 / F 2 = 6.8 and was carried out in the same manner as in Example 1 except that the white oil continuously added to the second reactor was changed to 2.0% by weight.
실시예 3Example 3
제1반응기의 체류시간을 조절하여 V1/V1' = 2.8로 하고, 제2반응기에 연속적으로 투입되는 화이트 오일을 2.0 중량%로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The residence time of the first reactor was adjusted to V 1 / V 1 ′ = 2.8, and the same procedure as in Example 1 was carried out except that the white oil continuously added to the second reactor was changed to 2.0 wt%.
실시예 4Example 4
제2반응기의 체류시간을 조절하여 V2/V2' = 1.7로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that the residence time of the second reactor was adjusted to V 2 / V 2 ′ = 1.7.
실시예 5Example 5
제2반응기의 온도를 177 ℃로 변경한 것을 제외하고는 실시예 1과 동일하게실시하였다.The same process as in Example 1 was conducted except that the temperature of the second reactor was changed to 177 ° C.
실시예 6Example 6
제3반응기의 반응 온도를 198 ℃로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same process as in Example 1 was carried out except that the reaction temperature of the third reactor was changed to 198 ° C.
실시예 7Example 7
제2반응기에 연속으로 투입되는 화이트 오일을 2.3 중량%로 변경한 것을 제외하고는 실시예1과 동일한 방법으로 시행하였다.The same procedure as in Example 1 was conducted except that the white oil continuously added to the second reactor was changed to 2.3 wt%.
비교실시예 1Comparative Example 1
원료용액(스티렌 단량체)의 반응기 투입비율을 조절하여 F1/F2= 5.0으로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The reaction was carried out in the same manner as in Example 1 except that the reactor input ratio of the raw material solution (styrene monomer) was adjusted to F 1 / F 2 = 5.0.
비교실시예 2Comparative Example 2
제1반응기의 체류시간을 조절하여 V1/V1' = 3.1로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that the residence time of the first reactor was adjusted to V 1 / V 1 ′ = 3.1.
비교실시예 3Comparative Example 3
제2반응기의 체류시간을 조절하여 V2/V2' = 2.2로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was conducted except that the residence time of the second reactor was adjusted to V 2 / V 2 ′ = 2.2.
비교실시예 4Comparative Example 4
제2반응기의 온도를 185 ℃로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same process as in Example 1 was conducted except that the temperature of the second reactor was changed to 185 ° C.
비교실시예 5Comparative Example 5
제3반응기의 반응 온도를 208 ℃로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same process as in Example 1 was carried out except that the reaction temperature of the third reactor was changed to 208 ° C.
비교실시예 6Comparative Example 6
제2반응기에 화이트 오일을 2.7 중량%로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same process as in Example 1 was carried out except that the white oil was changed to 2.7 wt% in the second reactor.
비교실시예 7Comparative Example 7
제2반응기에 연속으로 투입되는 화이트 오일을 3.0 중량%로 조절한 것을 제외하고는 실시예1과 동일한 방법으로 시행하였다.The same procedure as in Example 1 was conducted except that the white oil continuously added to the second reactor was adjusted to 3.0 wt%.
상기 실시예 1∼7 및 비교실시예 1∼7에서 사용된 반응조건과 각 실시예에 따라 제조된 수지에 대한 물성 측정결과를 각각 표 1 및 표 2에 나타내었다.Tables 1 and 2 show the measurement results of the physical properties of the reaction conditions and the resins prepared according to the examples used in Examples 1 to 7 and Comparative Examples 1 to 7, respectively.
상기 표 1,2의 결과로부터, 본 발명에 따른 반응조건 하에서 연속괴상중합함으로써 우수한 황색도, 이형성 및 유동성을 갖는 폴리스티렌 수지를 얻을 수 있음을 알 수 있다.From the results of Tables 1 and 2, it can be seen that polystyrene resin having excellent yellowness, mold release property and fluidity can be obtained by continuous bulk polymerization under the reaction conditions according to the present invention.
본 발명은 황색도가 양호하고 유동성이 우수할 뿐만 아니라 이형성이 크게 향상되어 식음료 용기, 오디오 제품 케이스, 냉장고 내부부품, 잡화용기 등의 제조에 유용한 고유동 열가소성 수지의 제조방법을 제공하는 효과를 갖는다.The present invention has the effect of providing a high-flow thermoplastic resin, which is useful for the production of food and beverage containers, audio product cases, refrigerator internal parts, general merchandise containers, etc., as well as good yellowness and excellent fluidity. .
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0022501A KR100465881B1 (en) | 2002-04-24 | 2002-04-24 | Process of High Flow Thermoplastic Resin Having Good Moldability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0022501A KR100465881B1 (en) | 2002-04-24 | 2002-04-24 | Process of High Flow Thermoplastic Resin Having Good Moldability |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030084027A KR20030084027A (en) | 2003-11-01 |
KR100465881B1 true KR100465881B1 (en) | 2005-01-13 |
Family
ID=32380292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0022501A Expired - Fee Related KR100465881B1 (en) | 2002-04-24 | 2002-04-24 | Process of High Flow Thermoplastic Resin Having Good Moldability |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100465881B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980022739A (en) * | 1996-09-24 | 1998-07-06 | 유현식 | Manufacturing method of high rigid thermoplastic resin |
KR20000013236A (en) * | 1998-08-06 | 2000-03-06 | 유현식 | Process for the preparation of high strength thermoplastic resin having a good releasing property |
KR20000055443A (en) * | 1999-02-06 | 2000-09-05 | 유현식 | method of preparing thermoplastic resin having excellent release property and antiabrasive property |
KR20010058186A (en) * | 1999-12-24 | 2001-07-05 | 안복현 | Process of high tensile strength thermoplastic material with good molding productivity |
-
2002
- 2002-04-24 KR KR10-2002-0022501A patent/KR100465881B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980022739A (en) * | 1996-09-24 | 1998-07-06 | 유현식 | Manufacturing method of high rigid thermoplastic resin |
KR20000013236A (en) * | 1998-08-06 | 2000-03-06 | 유현식 | Process for the preparation of high strength thermoplastic resin having a good releasing property |
KR20000055443A (en) * | 1999-02-06 | 2000-09-05 | 유현식 | method of preparing thermoplastic resin having excellent release property and antiabrasive property |
KR20010058186A (en) * | 1999-12-24 | 2001-07-05 | 안복현 | Process of high tensile strength thermoplastic material with good molding productivity |
Also Published As
Publication number | Publication date |
---|---|
KR20030084027A (en) | 2003-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1358232B1 (en) | Method for preparing thermoplastic resin | |
KR20170076272A (en) | Method for preparing heat resistant styrene copolymer and heat resistant styrene copolymer produced by the same | |
KR100465881B1 (en) | Process of High Flow Thermoplastic Resin Having Good Moldability | |
KR100604087B1 (en) | Continuous manufacturing method of high flow rate, high gloss rubber modified styrene resin | |
KR100464697B1 (en) | Process of High Flow Thermoplastic Resin Having Good Moldability | |
KR100893873B1 (en) | Continuous production method of thermoplastic copolymer resin having excellent heat resistance | |
KR100465880B1 (en) | Process of the Thermoplastic Resin with High Tensile Strength and High Fluidity | |
KR100479750B1 (en) | method of preparing thermoplastic resin having excellent release property and antiabrasive property | |
KR100215508B1 (en) | Method for producing high rigidity thermoplastic resin | |
KR100464696B1 (en) | Process of High Heat Resistance Thermoplastic Resin | |
KR100558253B1 (en) | Manufacturing method of high rigid thermoplastic resin with excellent molding workability | |
KR100543926B1 (en) | Continuous production method of high impact polystyrene resin | |
KR20000013236A (en) | Process for the preparation of high strength thermoplastic resin having a good releasing property | |
KR100874030B1 (en) | Manufacturing method of copolymer of styrene monomer and acrylonitrile monomer | |
KR100587649B1 (en) | Continuous production method of ultra high impact rubber modified styrene resin | |
US20110054123A1 (en) | High Impact Polymers and Methods of Making and Using Same | |
García‐Martínez et al. | Chemical modification process of an atactic polypropylene by p‐phenylen‐bismaleamic acid in the melt | |
US5473014A (en) | Rubber modified styrenic resin composition having high gloss and impact strength | |
KR100751020B1 (en) | Continuous production method of high impact polystyrene resin with excellent heat resistance, surface gloss and practical impact strength | |
KR101526000B1 (en) | Continuous process for preparing rubber-modified styrene polymer from conjugated diene | |
KR100751022B1 (en) | Continuous production method of ultra high gloss rubber modified styrene resin | |
KR100576325B1 (en) | Continuous process for manufacturing high impact polystyrene resin | |
KR100587650B1 (en) | Continuous production method of rubber modified styrene resin with excellent impact strength | |
KR100556188B1 (en) | Continuous mass production method of rubber modified styrene resin | |
KR100587648B1 (en) | Continuous production method of high impact polystyrene resin with excellent surface gloss and practical impact strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20020424 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20040531 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20041228 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20050103 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20050104 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20080103 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20090105 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20091230 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20101221 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20111228 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20130103 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20130103 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20131217 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20131217 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20141223 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20141223 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20151218 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20151218 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20161201 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20161201 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20171204 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20171204 Start annual number: 14 End annual number: 14 |
|
FPAY | Annual fee payment |
Payment date: 20181204 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20181204 Start annual number: 15 End annual number: 15 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20211014 |