[go: up one dir, main page]

KR100465853B1 - Method for improving viability by cold adaptation of Bradyrhizobium japonicum - Google Patents

Method for improving viability by cold adaptation of Bradyrhizobium japonicum Download PDF

Info

Publication number
KR100465853B1
KR100465853B1 KR10-2002-0009602A KR20020009602A KR100465853B1 KR 100465853 B1 KR100465853 B1 KR 100465853B1 KR 20020009602 A KR20020009602 A KR 20020009602A KR 100465853 B1 KR100465853 B1 KR 100465853B1
Authority
KR
South Korea
Prior art keywords
low temperature
pretreatment
japonicum
strain
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR10-2002-0009602A
Other languages
Korean (ko)
Other versions
KR20030069676A (en
Inventor
소재성
오은택
Original Assignee
학교법인 인하학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 인하학원 filed Critical 학교법인 인하학원
Priority to KR10-2002-0009602A priority Critical patent/KR100465853B1/en
Publication of KR20030069676A publication Critical patent/KR20030069676A/en
Application granted granted Critical
Publication of KR100465853B1 publication Critical patent/KR100465853B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 브래디리조비움 자포니쿰(Bradyrhizobium japonicum)을 저온 전처리하여 생균력을 증진시키는 방법에 관한 것으로서, 보다 상세하게는 브래디리조비움 자포니쿰를 저온 처리하여 고온, 건조, 알코올 및 산화적 스트레스와 같은 여러 환경 스트레스에 대한 내성을 증진시켜 생균력을 증진시키는 방법에 관한 것이다. 본 발명의 브래디리조비움 자포니쿰을 저온 전처리하여 생균력을 증진시키는 방법은 상기 균주를 제제화하는 과정에서 받게 되는 스트레스에 대한 내성이 증가하여 상기 균주를 이용한 미생물 비료제의 제조에 유용하게 사용될 수 있다.The present invention relates to a method of enhancing prebiotics by low temperature pretreatment of Bradyrhizobium japonicum . The present invention relates to a method for enhancing viability by increasing resistance to various environmental stresses. Low temperature pretreatment of the bradyrizobium japonicum of the present invention to enhance the viability of the strain increases the resistance to the stress received during the formulation of the strain can be usefully used in the preparation of microbial fertilizers using the strain have.

Description

브래디리조비움 자포니쿰 균주를 저온 처리하여 생균력을 증진시키는 방법{Method for improving viability by cold adaptation of Bradyrhizobium japonicum}Method for improving viability by cold treatment of Bradyrizobium japonicum strain {Method for improving viability by cold adaptation of Bradyrhizobium japonicum}

본 발명은 브래디리조비움 자포니쿰(Bradyrhizobium japonicum)을 저온 전처리하여 생균력을 증진시키는 방법에 관한 것으로서, 보다 상세하게는 브래디리조비움 자포니쿰를 저온 처리하여 고온, 건조, 알코올 및 산화적 스트레스와 같은 여러 환경 스트레스에 대한 내성을 증진시켜 생균력을 증진시키는 방법에 관한 것이다.The present invention relates to a method of enhancing prebiotics by low temperature pretreatment of Bradyrhizobium japonicum , and more particularly, by treating low temperature of Bradyrizobium japonicum with high temperature, drying, alcohol and oxidative stress. The present invention relates to a method for enhancing viability by increasing resistance to various environmental stresses.

미생물의 환경 스트레스와 관련하여 저온 전처리 효과에 대한 많은 연구가 이루어져 왔다(Crist et al.,Appl. Environ. Microbiol, 1984, 47:895-900, Panoff et al.,Crybiol, 1995, 32:516-520). 37℃에서 배양한 대장균(E. coli)을 6시간 동안 10℃에서 저온 전처리 한 후 냉동시켰을 때, 저온 전처리를 하지 않은 것에 비해 미생물의 활성이 높아진다고 보고되었다(Goldstein et al.,Proc. Natl. Acad. USA.1990, 87:283-287). 또한 저온 전처리한 바실러스 섭틸러스(Bacillus subtilis)와 락토코커스 락티스 아종 락티스(Lactococcus lactissubsp.lactis)에서도 저온 전처리하지 않은 경우보다 저온 전처리한 경우에 냉동 조건에서 훨씬 큰 생균력을 갖는다(Panoff et al., Cryobiol, 1995, 32:516-520, Willimsky et al.,J. Bacteriol.1990, 87:5589-5593). 엔테로코커스 패카리스(Enterococcus faecalis)를 저온 전처리하면 저온 내성(cryotolerance)이 증가된다는 보고도 있다(Thammavongs et al.,Lett. Appl. Microbiol. 1996, 23:398-402). 또한, 회분식 배양에서 회수한 미생물을 저온으로 전처리 하였을 경우, 그렇지 않은 미생물보다 높은 활성을 갖는 것으로 여러 연구에서 확인되었다(Hartke et al.,Appl. Environ. Microbiol. 1994, 60:3474-78).Many studies have been conducted on the effect of low temperature pretreatment on the environmental stress of microorganisms (Crist et al., Appl. Environ. Microbiol , 1984, 47: 895-900, Panoff et al., Crybiol , 1995, 32: 516- 520). When E. coli cultured at 37 ° C. was frozen for 6 hours at 10 ° C. after low temperature pretreatment, it was reported that the activity of microorganisms was higher (Goldstein et al., Proc. Natl. Acad. USA. 1990, 87: 283-287). Also has a much larger viable force in the freezing conditions in the case of low temperature pretreatment by Bacillus interference Tiller's (Bacillus subtilis) and Lactococcus lactis subspecies lactis low temperature pretreatment than no cold pretreatment at (Lactococcus lactis subsp. Lactis) ( Panoff et al., Cryobiol, 1995, 32: 516-520, Willimsky et al., J. Bacteriol. 1990, 87: 5589-5593). Low temperature pretreatment of Enterococcus faecalis has been reported to increase cryotolerance (Thammavongs et al., Lett. Appl. Microbiol . 1996, 23: 398-402). In addition, microorganisms recovered in batch cultures have been shown to have higher activity than microorganisms when pretreated at low temperatures (Hartke et al., Appl. Environ. Microbiol . 1994, 60: 3474-78).

그러나 상기와 같은 현상은 일반적인 것은 아니다. 예를 들어, 다양한 미생물 32속과 135종을 포함하는 259균주 중 냉동에 대해 저항력을 갖는 것은 몇 개의 종과 속에 특이적이고 몇몇 호냉(psychrophilic) 미생물은 냉동 저장에 오히려 민감한 것으로 알려져 있다(Wamasato et al.,Cryobiol. 1973, 10:453-463). 25℃에서 5℃로 저온 전처리한 티오바실러스 페록시던스(Thiobacillus ferrooxidans)는 -15℃의 냉동 조건에 대해 영향을 확인하지 못했으나(Hubert et al.,Curr. Microbiol. 1994, 28:179-183), 유산균에서는 적지 않은 균주가 10℃에서 저온 전처리하였을 때 내성을 갖는 효과를 나타내었다(Kim and Dunn,Curr. Microbiol. 1997, 35:59-83; Kim et al.,Cryobiol.1998, 37:86-91).However, such a phenomenon is not common. For example, the resistance to freezing of 259 strains, including 32 genera and 135 species of microorganisms, is specific to some species and some psychrophilic microorganisms are known to be rather sensitive to freezing storage (Wamasato et al. , Cryobiol . 1973, 10: 453-463. Thiobacillus ferrooxidans pretreated at 25 ° C. to 5 ° C. did not show any effect on freezing conditions at −15 ° C. (Hubert et al., Curr. Microbiol . 1994, 28: 179-183 In the lactic acid bacteria, not a few strains showed resistance when cold pretreated at 10 ° C. (Kim and Dunn, Curr. Microbiol . 1997, 35: 59-83; Kim et al., Cryobiol. 1998, 37: 86-91).

미생물은 저온 전처리 하였을 경우 저온 쇼크(cold shock)에 의해 특정반응(방어기작)을 하게 되는데, 크게 나누어 생화학적 반응과 분자수준에서 방어기작을 하게 된다. 일반적인 생화학 반응으로는 세포막의 구조적인 변화가 있으며, 분자수준의 방어기작으로는 CSP(cold shock protein)(Fujii et al.,FEMS Microbiol Lett. 1999, 178:123-128; Graumann et al.,J. Bacteriol. 1996, 178:4611-4619; Horton et al.,Antonie van Leeuwenhoek, 2000, 77:13-20)와 CAP(cold acclimation protein) 같은 특정 단백질을 생산하는 기작이 알려져 있으나(Drouin et al.,FEMS Microbiol. Ecol. 2000, 32:111-120) 구체적인 작용 메카니즘은 아직 밝혀지지 않은 실정이다. 따라서, 저온 전처리가 미생물이 스트레스에 대해 어떻게 반응하는지에 대한 메카니즘을 이해하는 것이 필요하고, 이것은 환경 스트레스하에서 미생물의 성장과 유지를 성공적으로 조절하는 것에 결과적으로 도움이 된다고 할 수 있다.When the microorganism is subjected to low temperature pretreatment, a specific reaction (defense mechanism) is caused by cold shock, which is largely divided into biochemical reactions and defense mechanisms at the molecular level. Common biochemical reactions include structural changes in cell membranes, and defense mechanisms at the molecular level include cold shock protein (CSP) (Fujii et al., FEMS Microbiol Lett . 1999, 178: 123-128; Graumann et al., J.) . Bacteriol 1996, 178: 4611-4619; Horton et al., Antonie van Leeuwenhoek , 2000, 77: 13-20) and mechanisms for producing specific proteins such as cold acclimation protein (CAP) are known (Drouin et al. , FEMS Microbiol.Ecol. 2000, 32: 111-120) The specific mechanism of action is still unknown. Thus, it is necessary to understand the mechanism by which low temperature pretreatment reacts to stress, which may consequently help to successfully control the growth and maintenance of microorganisms under environmental stress.

질소고정 균주인 리조비아(Rhizobia)는 그람 음성균으로 운동성을 가지고 있으며, 콩과식물이 리조비아에 의하여 감염되면 뿌리혹(root nodule)을 형성하며 기체상의 질소(N2)를 수소와 결합된 상태의 질소(NH3)로 전환시키는 질소고정(nitrogen fixiation)이 이루어지게 된다. 콩과식물-리조비아의 공생관계에서 이루어지는 질소고정은 농업적으로 대단히 중요한 의미를 가지는데, 토양 중에 존재하는 화합물 형태의 질소는 사실상 이에 의한 것이다. 시비를 하지 않은 토양의 경우 질소 결핍은 당연한 결과이나 이와 같은 토양 조건하에서 뿌리혹을 가진 콩과식물은 질소결핍의 문제점을 스스로 해결하여 질소가 결핍되어 식물이 생장할 수 없는 토양 조건하에서도 생육이 가능하다(Stacey et al.,Mol. Plant-Microbe Interact. 1991, 4:332-340). 이와 같은 질소고정 균주를 제제화 하여 사용하려 하면 제제화 과정에서 많은 스트레스를 받게 되어 생균력이 급격히 떨어지게 된다. 그러나, 현재까지 이러한 질소고정 균주를 대상으로 생균력을 증진시키는 방법에 대한 보고는 없는 실정이다.Rhizobia, a nitrogen-fixed strain, is gram-negative and has motility. When legumes are infected by lysovia, they form root nodule and gaseous nitrogen (N 2 ) is combined with hydrogen. Nitrogen fixiation is performed to convert to nitrogen (NH 3 ). Nitrogen fixation in the symbiotic relationship between legumes and lysvia is of great agricultural importance, and the nitrogen in the form of compounds in the soil is, in fact, the result. In the case of unfertilized soil, nitrogen deficiency is a natural result, but under these soil conditions, legumes with root nodules solve the problem of nitrogen deficiency themselves, so they can grow under soil conditions where plants cannot grow due to nitrogen deficiency. Stacey et al., Mol. Plant-Microbe Interact . 1991, 4: 332-340. If you try to formulate such a nitrogen-fixed strain is subjected to a lot of stress in the formulation process, the viability is sharply dropped. However, there is no report on how to enhance the viability of the nitrogen-fixed strain to date.

이에, 본 발명자들은 브래디리조비움 자포니쿰을 저온 처리하면 환경 스트레스(고온, 건조, 알코올, 그리고 산화적)에 대해 증가된 내성을 갖는 것을 확인하였고, 상기 미생물은 제제화 과정을 거쳐도 생균력이 유지됨을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors confirmed that the low temperature treatment of Bradyrizium japonicum has an increased resistance to environmental stress (high temperature, dryness, alcohol, and oxidative), and the microorganism has a viability of the microorganism even after the formulation process. The present invention was completed by confirming maintenance.

본 발명의 목적은 브래디리조비움 자포니쿰을 저온 전처리하여 생균력을 증진시키는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for enhancing the viability by pretreating Bradyrizium japonicum at low temperature.

도 1은 브래디리조비움 자포니쿰 균주를 저온 전처리한 후 환경 스트레스에 대한 내성을 나타내는지 알아보기 위한 실험의 모식도이고, Figure 1 is a schematic diagram of the experiment to determine whether the resistance to environmental stress after cold pretreatment of Bradyrizium japonicum strain,

① 균주를 저온 전처리하기 전에 후기 성장기 또는 초기 정체기까지 배양,① Incubate until late growth or early stagnation before strain pretreatment

② 16시간 동안 전처리,② pretreatment for 16 hours,

③ 열(28℃, 42℃), 과산화수소(100 ppm, 500 ppm, 1,000 ppm), 에탄올(5%, 10%) 또는 건조 스트레스를 처리,③ Heat (28 ℃, 42 ℃), hydrogen peroxide (100 ppm, 500 ppm, 1,000 ppm), ethanol (5%, 10%) or dry stress,

* 클로람페니콜 처리* Chloramphenicol Treatment

도 2는 저온 전처리한 브래디리조비움 자포니쿰 균주와 대조군에 고온(42℃)스트레스를 주었을 때 생존율을 나타낸 것이고, Figure 2 shows the survival rate when the high temperature (42 ℃) stress to the low temperature pretreated Bradyrizium japonicum strain and the control group,

●, ■ : 저온 전처리, ○, □ : 대조군,●, ■: low temperature pretreatment, ○, □: control,

●, ○ : 28℃로 처리, ■, □ : 42℃로 처리,●, ○: treatment at 28 ℃, ■, □: treatment at 42 ℃,

도 3은 저온 전처리한 브래디리조비움 자포니쿰 균주와 대조군에 알코올 스트레스를 주었을 때 생존율을 나타낸 것이고, Figure 3 shows the survival rate when alcohol stress was given to the low-temperature pretreated Bradyrizobium japonicum strain and the control group,

●, ■ : 저온 전처리, ○, □ : 대조군,●, ■: low temperature pretreatment, ○, □: control,

●, ○ : 5% 에탄올 처리, ■, □ : 10% 에탄올 처리,●, ○: 5% ethanol treatment, ■, □: 10% ethanol treatment,

도 4는 저온 전처리한 브래디리조비움 자포니쿰 균주와 대조군에 산화적 스트레스를 주었을 때 생존율을 나타낸 것이고, Figure 4 shows the survival rate when given oxidative stress to the cold pretreated Bradyrizium japonicum strain and the control group,

●, ■, ▲ : 저온 전처리, ○, □, △ : 대조군,●, ■, ▲: low temperature pretreatment, ○, □, △: control,

●, ○ : 100 ppm 과산화수소 처리, ■, □ : 50 ppm 과산화수소 처리,●, ○: 100 ppm hydrogen peroxide treatment, ■, □: 50 ppm hydrogen peroxide treatment,

▲, △ : 1,000 ppm 과산화수소 처리,▲, △: 1,000 ppm hydrogen peroxide treatment,

도 5는 저온 전처리한 브래디리조비움 자포니쿰 균주, 대조군 또는 클로람페니콜을 처리한 균주에 건조 스트레스를 주었을 때 생존율을 나타낸 것이고, 5 shows the survival rate when dry stress was applied to the low-temperature pretreated Bradyrizobium japonicum strain, the control group or the chloramphenicol-treated strain,

● : 저온 전처리, ■ : 대조군, ▲ : 클로람페니콜 처리,●: low temperature pretreatment, ■: control, ▲: chloramphenicol treatment,

도 6은 브래디리조비움 자포니쿰 균주 및 대장균(Escherichia coli)의 지놈 DNA에서 csp 유전자를 PCR로 증폭한 전기영동 사진이고, 6 is an electrophoresis photograph of PCR amplifying the csp gene from genome DNA of Bradyrizobium japonicum strain and Escherichia coli ,

M : 사이즈 마커, 1 : 브래디리조비움 자포니쿰, 2 : 대장균,M: size marker, 1: Bradyrizium japonicum, 2: E. coli,

도 7은 브래디리조비움 자포니쿰 균주, 대장균 및 시노리조비움 멜리로티(Sinorhizobium meliloti) 유래 Csp 단백질의 부분 아미노산 서열을 비교한 것이다. FIG. 7 compares partial amino acid sequences of Bradyrizobium japonicum strains, E. coli and Csp protein derived from Sinorhizobium meliloti .

상기 목적을 달성하기 위하여, 본 발명은 브래디리조비움 자포니쿰을 저온 전처리하여 생균력을 증진시키는 방법을 제공한다.In order to achieve the above object, the present invention provides a method for enhancing the bio-viability by low-temperature pretreatment of Bradyrizium japonicum.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 브래디리조비움 자포니쿰을 저온 전처리하여 생균력을 증진시키는 방법을 제공한다.The present invention provides a method for enhancing the bioburden by low temperature pretreatment of Bradyrizium japonicum.

상기에서 저온 처리시의 온도는 4 내지 15℃인 것이 바람직하고, 4℃인 것이 더욱 바람직하다. 또한, 상기에서 저온 처리 시간은 6 내지 24 시간 인 것이 바람직하고, 16 시간인 것이 더욱 바람직하다.It is preferable that it is 4-15 degreeC, and, as for the temperature at the time of low temperature treatment above, it is more preferable that it is 4 degreeC. In addition, the low temperature treatment time is preferably 6 to 24 hours, more preferably 16 hours.

상기와 같이 브래디리조비움 자포니쿰을 저온 전처리하면 고온, 건조 및 산화적 스트레스와 같은 다른 환경 스트레스에 대해 내성을 가져 균주의 생존력이 증가한다.Low temperature pretreatment of Bradyrizium japonicum as described above increases the viability of the strain by having resistance to other environmental stresses such as high temperature, drying and oxidative stress.

저온 전처리의 고온 스트레스에 대한 내성증진 효과를 확인한 결과, 고온에 노출하였을 때 저온 전처리한 것은 저온 전처리하지 않은 것에 비해 100배 이상의 생균력을 유지한다. 또한, 1일 동안 고온에 노출하였을 경우에 저온 전처리한 것은 초기 균체수보다 100배 이상의 감소율을 보인 것에 비해 저온 전처리하지 않은 것은 1,000배 이상 감소한 것으로 나타나 브래디리조비움 자포니쿰을 저온 처리하면 고온에 대한 내성이 증가하는 것을 알 수 있다(도 2참조). 또한, 알코올 스트레스에 대한 저온 전처리 효과를 확인한 결과, 대조군에 비해 1,000배 이상의 생균력이 증가하고, 5% 농도의 알코올에 노출했을 때 저온 전처리한 것은 4시간까지 100배 감소하였고, 대조군은 10,000배 이상 감소하였고 10% 농도의 알코올에서도 저온 전처리한 경우에는 2시간 이상 생균수를 유지시키는 것을 확인하였다(도 3참조).As a result of confirming the effect of improving the resistance to high temperature stress of low temperature pretreatment, the low temperature pretreatment when exposed to high temperature maintains more than 100 times the viability compared to the low temperature pretreatment. In addition, when exposed to high temperature for 1 day, low temperature pretreatment showed a reduction rate of 100 times or more than the initial cell count, whereas low temperature pretreatment showed a decrease of 1,000 times or more. It can be seen that the resistance to this increases (see FIG. 2 ). In addition, as a result of confirming the effect of low temperature pretreatment on alcohol stress, the viability increased more than 1,000 times compared with the control group, and the low temperature pretreatment decreased 100 times by 4 hours when exposed to 5% concentration of alcohol, and the control group was 10,000 times. In the case of low temperature pretreatment even at 10% alcohol, it was confirmed that the viable cell count was maintained for 2 hours or more (see FIG. 3 ).

브래디리조비움 자포니쿰을 저온 전처리하였을 때 산화적 스트레스에 대한 내성도 증가하는데, 과산화수소 농도 100 ppm에서 20분 동안 처리한 결과 대조군에 비해 5배 정도, 40분 처리한 경우는 대조군에 비해 50배 이상의 생균수 증가를 확인할 수 있었다. 500 ppm에 노출한 후 40분 동안은 저온 전처리한 균주가 높은 생균수를 유지하였고, 1,000 ppm에서는 저온 전처리하지 않은 대조군은 생균력이 급격히 감소하였으나 저온 전처리한 균주는 20분 이상 높은 생균력이 유지되었다(도 4참조). 건조 스트레스에 대한 저온 전처리 효과는 4일 후 저온 전처리 하지 않은 균주에 비해 저온 전처리한 균주의 생균수가 100배 이상 높은 것을 확인하였다(도 5참조).The low-temperature pretreatment of Bradyrizobium japonicum also increased resistance to oxidative stress. After 20 min treatment at 100 ppm of hydrogen peroxide, it was 5 times higher than the control and 50 times higher than the control. The increase in viable cell number was confirmed. For 40 minutes after exposure to 500 ppm, the low-temperature pre-treated strains maintained high viable cell counts, and at 1,000 ppm, the viable cell viability decreased significantly in the control group without low-temperature pre-treatment. (See FIG. 4 ). The low temperature pretreatment effect on dry stress was confirmed that the number of viable cells of the low temperature pre-treated strain 100 times higher than the strain that was not pre-treated after 4 days (see Fig. 5 ).

저온 전처리 과정에서 신규 단백질 합성 여부를 확인하기 위하여 단백질 합성 저해제인 클로람페니콜을 처리한 균주는 저온 전처리 효과가 없었고 이는 저온 전처리시 내성 증진 효과가 신규 단백질 합성과 관련이 있음이 확인되었다(도 5참조). 저온충격 관련 유전자인 csp 유전자가 브래디리조비움 자포니쿰의 저온 전처리 과정에서 합성되는지 알아보기 위하여 PCR을 수행하여 확인해 본 결과, 저온 전처리시에 csp 유전자가 발현되는 것을 확인하였다(도 6참조). 상기 csp의서열번호 4로 기재되는 아미노산 서열은 대장균 및 시노리조비움 멜리로티의 csp 아미노산 서열을 높은 상동성을 보였다(도 7참조).In order to confirm the synthesis of new protein during low temperature pretreatment, the strain treated with chloramphenicol, a protein synthesis inhibitor, had no low temperature pretreatment effect, and it was confirmed that resistance enhancement effect was related to new protein synthesis at low temperature pretreatment (see FIG. 5 ). . In order to determine whether the csp gene, which is a cold shock related gene, is synthesized in the low temperature pretreatment process of Bradyrizium japonicum, PCR was confirmed, and it was confirmed that the csp gene was expressed during low temperature pretreatment (see FIG. 6 ). The amino acid sequence of SEQ ID NO: 4 of the csp showed high homology to the csp amino acid sequence of Escherichia coli and cynorizobium melorirot (see FIG. 7 ).

외부 스트레스에 대한 저온 전처리의 영향은 막 구조의 변화와 CSP의 합성으로 설명할 수 있다. 균주의 성장은 막의 유동성과 지질의 조성 및 기능에 의해 유지되는 침투성에 의해 좌우되는데 저온에서는 비포화 상태의 지질 비율과 비포화 정도가 증가하고 잔기의 길이가 감소하며 메틸 잔기가 증가되는 것으로 알려져 있다(Drouin et al.,FEMS Microbiol. Ecol. 2000, 32:111-120). 또한 저온에서 살아남기 위해 신규 단백질을 합성하게 되는데, 이러한 단백질로는 일정 시간 동안 저온에서 합성되는 CSP와 저온 배양동안 합성되는 CAP가 알려져 있다(Panoff et al.,Cryobiol.1995, 32:516-520). 이러한 단백질의 발현은 여러 균주에서 확인할 수 있다(Drouin et al.,FEMS Microbiol. Ecol. 2000, 32:111-120; Fujii et al.,FEMS Microbiol Lett. 1999, 178:123-128; Graumann et al.,J. Bacteriol.1996, 178:4611-4619; Horton et al.,Antonie van Leeuwenhoek, 2000, 77:13-20). 대부분의 CSP의 크기는 10 kDa 이하이고 특히 뿌리혹 생성 균주인 리조비움 레구미노사룸(Rhizobium leguminosarum)은 6.1 kDa의 CSP를 합성하고 CAP로서 여러개의 단백질이 합성되는 것으로 알려져 있다(Drouin et al.,FEMS Microbiol. Ecol. 2000, 32:111-120).The effect of low temperature pretreatment on external stress can be explained by the change of membrane structure and the synthesis of CSP. The growth of the strain depends on the permeability maintained by the fluidity of the membrane and the composition and function of the lipids. At low temperatures, it is known that the proportion of lipids and the degree of desaturation increases, the length of residues decreases, and methyl residues increase. (Drouin et al., FEMS Microbiol. Ecol . 2000, 32: 111-120). In addition, new proteins are synthesized to survive at low temperatures, such as CSP synthesized at a low temperature for a certain time and CAP synthesized during low temperature culture (Panoff et al., Cryobiol. 1995, 32: 516-520). ). Expression of these proteins can be confirmed in several strains (Drouin et al., FEMS Microbiol. Ecol . 2000, 32: 111-120; Fujii et al., FEMS Microbiol Lett . 1999, 178: 123-128; Graumann et al. J. Bacteriol . 1996, 178: 4611-4619; Horton et al., Antonie van Leeuwenhoek , 2000, 77: 13-20). Most CSPs are less than 10 kDa in size, and in particular, the root-knot-producing strain Rhizobium leguminosarum synthesizes 6.1 kDa of CSP and is known to synthesize several proteins as CAPs (Drouin et al., FEMS Microbiol.Ecol. 2000, 32: 111-120).

상기에서 살펴본 바와 같이 제제화를 위해 주요 스트레스로 작용하는 고온, 건조 및 산화적 스트레스 과정에서 모두 저온 전처리한 것이 상대적으로 높은 생균력 증진 효과를 보였기 때문에, 본 발명의 저온 전처리 방법은 브래디리조비움 자포니쿰의 생균력을 증가시킴으로서 상기 균주를 이용한 미생물 비료제의 제조에 유용하게 사용될 수 있다.As described above, since the low temperature pretreatment during the high temperature, drying, and oxidative stress processes acting as the main stress for the formulation showed a relatively high biocidal effect, the low temperature pretreatment method of the present invention is Bradyrizobium japoni. It can be usefully used for the preparation of microbial fertilizers using the strain by increasing the viability of the cum.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

<실시예 1> 브래디리조비움 자포니쿰의 저온 전처리Example 1 Low Temperature Pretreatment of Bradyrizium Japonicum

<1-1> 사용 균주 및 배지<1-1> Strains and Media Used

본 발명자들은 토양 미생물인 브래디리조비움 자포니쿰 61A101c(Nitragin, Wiscosin)를 이용하여 저온 전처리 효과를 알아보았다. 상기 미생물을 AMA배지(mannitol 10 g; yeast extract 1 g; NaCl 0.2 g; K2HPO40.5 g; MgSO40.2 g; FeSO40.005 g; distilled water 1,000 ㎖)에서 배양하였고, 이때 배양조건은 28℃, 150 rpm이었다.The present inventors examined the effect of low temperature pretreatment using the soil microorganism Bradyrizium japonicum 61A101c (Nitragin, Wiscosin). The microorganisms were incubated in AMA medium (mannitol 10 g; yeast extract 1 g; NaCl 0.2 g; K 2 HPO 4 0.5 g; MgSO 4 0.2 g; FeSO 4 0.005 g; distilled water 1,000 ml). C, 150 rpm.

<1-2> 브래디리조비움 자포니쿰의 저온 전처리<1-2> Low Temperature Pretreatment of Bradyrizium Japonicum

본 발명자들은 브래디리조비움 자포니쿰 61A101c를후기 성장기나 초기 정체기 상태에서 저온 전처리 조건인 4℃와 대조 조건인 28℃에 각각 16시간(2배수 시간의 2배) 동안 정치배양 시킨 후, 원심분리(8,000 rpm, 15분)로 세포를 얻어내었다. 0.1 M PBS(phosphate buffered saline, pH 7.2)에서 3회 세척한 후 0.1 M PBS를 이용하여 OD600(Optical Density)이 0.5∼1.0(CFU 0.5∼1.0 × 109)이 되도록 재현탁하였다. 상기 세포를 여러 가지 스트레스 실험에 적용하였다. 그리고 스트레스에 노출된 시간마다 생균수 측정을 위하여 콜로니 카운팅을 실시하고, 측정된 생균수를 초기 콜로니 수를 기준으로 생존력(%)으로 나타내었다.The present inventors centrifuged the Bradyrizobium japonicum 61A101c for 16 hours (2 times the doubled time) at 4 ° C. and 28 ° C. at low temperature pretreatment conditions during the late growth phase or initial stagnation phase. Cells were harvested at (8,000 rpm, 15 minutes). After washing three times in 0.1 M PBS (phosphate buffered saline, pH 7.2), and resuspended so that OD 600 (Optical Density) is 0.5 ~ 1.0 (CFU 0.5 ~ 1.0 × 10 9 ) using 0.1 M PBS. The cells were subjected to various stress experiments. And colony counting was performed to measure the number of viable cells at every time exposed to stress, and the measured number of viable cells was expressed as viability (%) based on the initial number of colonies.

<실시예 2> 환경 스트레스에 대한 내성 분석Example 2 Analysis of Resistance to Environmental Stress

본 발명자들은 저온 전처리한 브래디리조비움 자포니쿰이 산, 열, 에탄올, 염 및 과산화수소와 같은 환경 스트레스에 내성을 갖는지 알아보았다(도 1).The inventors have examined whether low temperature pretreated Bradyrizium japonicum is resistant to environmental stresses such as acids, heat, ethanol, salts and hydrogen peroxide ( FIG. 1 ).

<2-1> 고온 스트레스에 대한 저온 전처리 효과<2-1> Effect of Low Temperature Pretreatment on High Temperature Stress

본 발명자들은 저온 전처리한 브래디리조비움 자포니쿰의 고온 스트레스에 대한 내성 효과를 알아보았다. 구체적으로, 저온 전처리한 것과 저온 전처리하지 않은 것으로 나누어 배양액을 원심분리(15,000 × g, 5분)하여 세포를 수거한 후 0.1 M PBS(pH 7.2)에 재현탁한 후에 1.5 ㎖ 마이크로튜브에 1 ㎖씩 나누어 분배한 후 28℃와 42℃에서 배양하여 1일 단위로 생균수를 측정하였다.The present inventors have investigated the effect of resistance to the high temperature stress of the low temperature pretreatment Bradyrizium japonicum. Specifically, the cells were harvested by centrifugation (15,000 × g, 5 minutes) after diluting the cold pre-treatment and the low-temperature pre-treatment, resuspending in 0.1 M PBS (pH 7.2), and then 1 ml each in 1.5 ml microtubes. After dividing and incubating at 28 ℃ and 42 ℃ was measured the number of viable cells on a daily basis.

그 결과, 42℃에 노출하였을 때 전처리 한 것이 그렇지 않는 것보다 100배 이상의 생균력을 유지하는 것을 확인할 수 있었다. 1일 동안 고온(42℃)에 노출하였을 때, 저온 전처리한 것은 초기 균체수보다 100 배 이상의 감소율을 보인 것에 비해, 그렇지 않는 것은 1,000배 이상 감소한 것을 확인할 수 있다(도 2).As a result, it was confirmed that the pretreatment when exposed to 42 ℃ to maintain more than 100 times the viability than that did not. When exposed to high temperature (42 ℃) for one day, the low temperature pre-treatment showed a reduction rate of 100 times or more than the initial cell number, it can be seen that the other is reduced by more than 1,000 times ( Fig. 2 ).

<2-2> 알코올 스트레스에 대한 저온 전처리 효과<2-2> Low Temperature Pretreatment Effect on Alcohol Stress

본 발명자들은 저온 전처리한 브래디리조비움 자포니쿰의 알코올 스트레스에 대한 내성 효과를 알아보았다. 구체적으로, 알코올에 대한 스트레스 영향을 확인하기 위하여 균주를 5% 또는 10% 에탄올 용액에 현탁하여 0, 2, 4, 8 시간 동안 노출시킨 후 생균수를 측정하였다.The present inventors have examined the resistance effect of the cold pretreated Bradyrizium japonicum to alcohol stress. Specifically, in order to confirm the effect of stress on alcohol, the strain was suspended in 5% or 10% ethanol solution and exposed for 0, 2, 4, 8 hours, and the number of viable cells was measured.

그 결과, 저온 전처리 효과로 1,000배 정도의 생균력이 증가한 것을 확인할 수 있었다. 5% 농도에 노출했을 때 저온 전처리한 것은 4 시간까지 100배 감소하였고 그렇지 않은 것은 10,000배의 감소를 확인하였으며 8시간 이후에는 두 경우 모두 사멸하는 것으로 확인하였다. 10% 농도에서는 전처리함으로써 2시간 이상 생균수를 유지시키는 것을 확인할 수 있다(도 3).As a result, it was confirmed that about 1,000 times the viability was increased by the low temperature pretreatment effect. When exposed to 5% concentration, low temperature pretreatment decreased by 100 times up to 4 hours, otherwise decreased by 10,000 times. After 8 hours, both cases were killed. At 10% concentration, it can be confirmed that the viable cell number is maintained for 2 hours or more by pretreatment ( FIG. 3 ).

<2-3> 산화적 스트레스에 대한 저온 전처리 효과<2-3> Low Temperature Pretreatment Effect on Oxidative Stress

본 발명자들은 저온 전처리한 브래디리조비움 자포니쿰의 산화적 스트레스에 대한 내성 효과를 알아보았다. 구체적으로, 산화적 스트레스를 확인하기 위하여 현탁된 균주 50 ㎖에 100, 500, 1000 ppm의 H2O2를 첨가하여 각각 0, 20, 40 또는 60분 동안 노출한 후 생균수를 측정하였다.The present inventors have investigated the resistance effect of oxidative stress of low temperature pretreated Bradyrizium japonicum. Specifically, in order to confirm oxidative stress, 100, 500, and 1000 ppm of H 2 O 2 were added to 50 ml of the suspended strain, and the number of viable cells was measured after 0, 20, 40, or 60 minutes, respectively.

그 결과, 각 농도에서 모두 저온 전처리 효과를 확인할 수 있었다. 과산화수소 농도 100 ppm에서는 20분 동안 처리한 결과 5 배정도, 40분에서는 50배 이상의 생균수 증가를 확인할 수 있었으나 60분 후에는 전처리 효과를 확인하지 못하였다. 500 ppm에 노출한 후 40분 동안은 전처리한 균주가 높은 생균수를 유지함을 확인하였다. 1,000 ppm에서는 저온 전처리하지 않은 것은 급격히 생균력이 감소하였으나 전처리한 균주를 20분 이상 높은 생균력을 유지하였다(도 4).As a result, it was possible to confirm the low temperature pretreatment effect at each concentration. At 100 ppm of hydrogen peroxide concentration, after 20 minutes of treatment, the number of viable cells was increased by about 5 times and 40 times, but after 60 minutes, the pretreatment effect was not confirmed. For 40 minutes after exposure to 500 ppm, it was confirmed that the pretreated strain maintained a high viable count. At 1,000 ppm, non-pretreatment did not significantly reduce the viability, but the pretreated strain maintained the high viability for 20 minutes or more ( FIG. 4 ).

<2-4> 건조 스트레스에 대한 저온 전처리 효과<2-4> Low Temperature Pretreatment Effect on Drying Stress

본 발명자들은 저온 전처리한 브래디리조비움 자포니쿰의 건조 스트레스에 대한 내성 효과를 알아보았다. 건조 실험은 6 ㎜의 필터 종이(Whatman, England)를 멸균하고 각각에 5 ㎕씩 균주의 현탁액을 접종한 후 1∼4일 동안 건조시켰다. 생균수는 균주가 접종된 필터 종이 10개를 1 ㎖의 증류수를 1.5 ㎖ 마이크로튜브에서 현탁한 후 측정하였다.The present inventors have investigated the effect of resistance to dry stress of Bradyrizium japonicum pretreated at low temperature. Drying experiments were sterilized with 6 mm filter paper (Whatman, England) and inoculated with 5 μl of a suspension of strain each and dried for 1-4 days. The viable cell number was measured after 10 strains of filter paper inoculated with 1 ml of distilled water suspended in 1.5 ml microtube.

그 결과, 4일 후 전처리 하지 않은 균주에 비해 전처리 균주의 생균수가 100배정도 높음을 확인하였다(도 5).As a result, it was confirmed that the number of viable cells of the pretreated strain was about 100 times higher than the strain that was not pretreated after 4 days ( FIG. 5 ).

<실시예 3> 저온 전처리 효과에 대한 메카니즘 분석Example 3 Mechanism Analysis for Low Temperature Pretreatment Effect

본 발명자들은 브래디리조비움 자포니쿰을 저온 전처리했을 때 환경 스트레스에 대하여 내성을 갖는 것이 세포내 유전자의 발현에 의해 기인한 것인지 알아보기 위하여, 50S 리보좀 유니트(ribosomal unit)의 펩티딜-트랜스퍼라제(peptidyl-transferase)에 비가역적으로 결합하여 단백질 합성을 저해하는 것으로 알려져 있는 클로람페니콜을 처리하여 알아보았다.In order to determine whether the resistance to environmental stress caused by low temperature pretreatment of Bradyrizium japonicum was attributable to the expression of intracellular genes, the present inventors examined the peptidyl-transferase of Chloramphenicol, which is known to inhibit protein synthesis by irreversibly binding to peptidyl-transferase), was studied.

구체적으로, 저온 전처리 한 것과 50 ㎍/㎖ 농도의 클로람페니콜을 포함하여 전처리 한 것과 전처리 하지 않은 것으로 나누어 건조 스트레스 실험을 수행하였다. 건조 스크레스 실험은 상기 실시예 <2-4>와 동일하게 수행하였다.Specifically, dry stress experiments were performed by pretreatment with low temperature pretreatment and pretreatment including chloramphenicol at a concentration of 50 μg / ml. Dry screed experiment was performed in the same manner as in Example <2-4>.

그 결과, 클로람페니콜과 함께 저온 전처리한 경우에는 저온 전처리 하지 않은 경우와 동일한 스트레스 대응 양상을 보였다(도 5). 이는 저온 전처리 과정에서 이루어지는 단백질 합성이 스트레스에 대한 내성 유도에 반드시 필요하다는 것을 나타낸다.As a result, the low temperature pretreatment with chloramphenicol showed the same stress response as the low temperature pretreatment ( FIG. 5 ). This indicates that protein synthesis during cold pretreatment is essential for inducing resistance to stress.

<실시예 4> 저온 전처리 과정에서 발현되는 유전자 분석Example 4 Gene Analysis Expressed in Low Temperature Pretreatment

상기 실시예 3에서 저온 전처리 과정에서 단백질 합성이 필수적이라는 것을 확인한 본 발명자들은 저온 전처리 과정에서 발현되는 유전자를 확인하고자 PCR(Polymerase chain reaction)을 수행하였다.In Example 3, the inventors of the present invention confirmed that protein synthesis is essential in the low temperature pretreatment, and performed a polymerase chain reaction (PCR) to identify genes expressed in the low temperature pretreatment.

<4-1> PCR를 통한<4-1> through PCR cspAcspA 확인Confirm

본 발명자들은 다른 미생물에서 저온 전처리 과정중에cspA유전자가 발현된다는 것을 기초로 하여 여러cspA유전자 염기서열 중 보존적 부위를 포함하는 프라이머를 사용하여 PCR 분석을 수행하였다. 구체적으로 염색체 DNA를 분리하고(Sambrook et al.,Molecular cloning, 2001, Cold Spring Harbor), PCR(Polymerase Chain Reaction)을 수행하기 위해서열번호 1로 기재되는 CSP1과서열번호 2로 기재되는 CSP2 프라이머를 사용하였다. 상기 프라이머는csp유전자를 가지고 있는 균주에서 보존적 염기서열을 분석하여 제작하였다(Panoff et al.,Cryobiol, 1998, 36:75-83).csp유전자를 클로닝하기 위해 각각 5' 양쪽에EcoRI,BamHI 부위를 포함시켜 제작하였다.csp유전자를 증폭하기 위해 PCR 반응의 총량은 25 ㎕로, 1 ng 주형 DNA, 10 × 반응 버퍼, 10 mM dNTP 혼합액, 10 pmol 프라이머(CSP1, CSP2) 및 2.5 U Taq 중합효소(TaKaRa, Japan)의 농도로 혼합하여 증폭하였다. 또한 대조군으로서 대장균(E. coliJM109)을 포함시켰다. PCR 조건은 다음과 같다; 95℃에서 4분가 변성시킨 후, 95℃에서 15초, 50℃에서 30초, 72℃에서 30초를 30회 반복 수행하였고, 후에 72℃에서 4분간 더 실시하였다. 증폭된 DNA는 에티디움 브로마이드(ethidium bromide, 0.5 ㎍/㎖)가 포함된 2.0% 아기로스 젤을 사용하여 1 × TAE 버퍼(pH 8.0)에서 전기영동으로 확인하였다. 사이즈 마커로는 100 bp DNA 래더(TaKaRa, Japan)를 사용하였다.The inventors performed PCR analysis using primers containing conserved sites among several cspA gene sequences based on the expression of cspA gene during cold pretreatment in other microorganisms. Specifically, to separate chromosomal DNA (Sambrook et al., Molecular cloning , 2001, Cold Spring Harbor), PCR (Polymerase Chain Reaction) to perform CSP1 primers described in SEQ ID NO: 1 and CSP2 primers described in SEQ ID NO: 2 Used. The primers were prepared by analyzing conservative sequences in strains containing the csp gene (Panoff et al., Cryobiol , 1998, 36: 75-83). In order to clone the csp gene, each of the 5 ' Eco RI, Bam HI sites were included. To amplify the csp gene, the total amount of the PCR reaction was 25 μl, and 1 ng template DNA, 10 × reaction buffer, 10 mM dNTP mixture, 10 pmol primer (CSP1, CSP2) and 2.5 U Taq polymerase (TaKaRa, Japan) Amplify by mixing to concentration. In addition, E. coli JM109 was included as a control. PCR conditions were as follows; After 4 minutes of denaturation at 95 ° C., 15 seconds at 95 ° C., 30 seconds at 50 ° C., and 30 seconds at 72 ° C. were repeated 30 times, followed by further 4 minutes at 72 ° C. Amplified DNA was confirmed by electrophoresis in 1 × TAE buffer (pH 8.0) using 2.0% agarose gel containing ethidium bromide (0.5 μg / ml). 100 bp DNA ladder (TaKaRa, Japan) was used as a size marker.

그 결과, 대조군으로 사용된 저온 전처리 관련 유전자가 확인된 대장균보다 적은 양이긴 하지만 브래디리조비움 자포니쿰의csp유전자부위가 200 bp의 크기로 증폭되었음을 확인하였다(도 6).As a result, the cold pretreatment-related gene used as a control, but less than the confirmed E. coli, but confirmed that the csp gene region of Bradyrizium japonicum amplified to a size of 200 bp ( Fig .

<4-2> 염기서열 분석<4-2> Sequence Analysis

본 발명자들은 상기 저온 전처리 동안 발현되는 Csp의 염기서열을 분석하였다. 증폭된csp유전자의 염기서열을 확인하기 위하여 ABI PRISM 310 분석기(Applied biosystems, USA)를 사용하였으며 유전자의 염기 서열을 아미노산 서열로 전환하고 상동성을 확인하기 위해 분석 프로그램(gene DOC program; Immunex Corporation, USA)을 사용하였다.We analyzed the sequencing of Csp expressed during the cold pretreatment. An ABI PRISM 310 analyzer (Applied biosystems, USA) was used to identify the nucleotide sequence of the amplified csp gene, and the gene DOC program (Immunex Corporation, USA).

그 결과, 상기 Csp 유전자의 염기서열은서열번호 3으로 기재되고 상기 염기서열에서 유추되는 아미노산 서열은서열번호 4로 기재되는 것을 확인하였다.As a result, it was confirmed that the nucleotide sequence of the Csp gene is described by SEQ ID NO: 3 and the amino acid sequence inferred from the nucleotide sequence is described by SEQ ID NO: 4 .

상기 아미노산 서열을 이미 밝혀진 대장균 및 시노리조비움 멜리로티(Sinorhizobium meliloti)의csp유전자의 아미노산 서열과 비교한 결과, 브래디리조비움 자포니쿰의 유전자는 상기 균주에서 분리된 유전자 뿐만 아니라 다른 균주에서 분리된 유전자와도 아미노산 서열의 상동성을 보였다(도 7).Comparing the amino acid sequence with the amino acid sequence of the csp gene of E. coli and Sinorhizobium meliloti , which is already known , the gene of Bradyrizobium japonicum was isolated from other strains as well as from the other strains. The homology of the amino acid sequence was also shown with the gene ( FIG. 7 ).

상기에서 살펴본 바와 같이, 본 발명의 브래디리조비움 자포니쿰을 저온 전처리하여 생균력을 증진시키는 방법은 상기 균주를 제제화하는 과정에서 받게 되는 스트레스에 대한 내성이 증가하여 상기 균주를 이용한 미생물 비료제의 제조에 유용하게 사용될 수 있다.As described above, the method of improving the bio-vibration by low-temperature pretreatment of the bradyrizobium japonicum of the present invention is to increase the resistance to stress received in the process of formulating the strain of the microbial fertilizer using the strain It can be usefully used for manufacturing.

<110> INHA UNIVERSITY <120> Method for improving viability performing cold adaptation of Bradyrhizobium japonicum <130> 2p-01-16 <160> 4 <170> KopatentIn 1.71 <210> 1 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CSP1 <400> 1 cccgaattcg gtacagtaaa atggttcaac gc 32 <210> 2 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> CSP2 <400> 2 cccggatccg gttacgttag cagctggcgg gcc 33 <210> 3 <211> 170 <212> DNA <213> Bradyrhizobium japonicum <400> 3 ccctgcaagg cttcggcttc atcactcctg acgatggctc taaagatgtg ttcgtacact 60 tctntgctat ccagaacgat ggttacaaat ctctggacga aggtcagaaa gtgtccttca 120 ccatcgaaag cggcgctaaa ggcccggcag ctgctaacgt aaccggatcc 170 <210> 4 <211> 44 <212> PRT <213> Bradyrhizobium japonicum <400> 4 Leu Gln Gly Phe Gly Phe Ile Thr Pro Asp Asp Gly Ser Lys Asp Val 1 5 10 15 Phe Val His Phe Xaa Ala Ile Gln Asn Asp Gly Tyr Lys Ser Leu Asp 20 25 30 Glu Gly Gln Lys Val Ser Phe Thr Ile Glu Ser Gly 35 40<110> INHA UNIVERSITY <120> Method for improving viability performing cold adaptation of Bradyrhizobium japonicum <130> 2p-01-16 <160> 4 <170> KopatentIn 1.71 <210> 1 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CSP1 <400> 1 cccgaattcg gtacagtaaa atggttcaac gc 32 <210> 2 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> CSP2 <400> 2 cccggatccg gttacgttag cagctggcgg gcc 33 <210> 3 <211> 170 <212> DNA <213> Bradyrhizobium japonicum <400> 3 ccctgcaagg cttcggcttc atcactcctg acgatggctc taaagatgtg ttcgtacact 60 tctntgctat ccagaacgat ggttacaaat ctctggacga aggtcaggg cct <212> PRT <213> Bradyrhizobium japonicum <400> 4 Leu Gln Gly Phe Gly Phe Ile Thr Pro Asp Asp Gly Ser Lys Asp Val 1 5 10 15 Phe Val His Phe Xaa Ala Ile Gln Asn Asp Gly Tyr Lys Ser Leu Asp 20 25 30 Glu Gly Gln Lys Val Ser Phe Thr Ile Glu Ser Gly 35 40

Claims (3)

브래디리조비움 자포니쿰(Bradyrhizobium japonicum)을 저온 전처리하여 생균력을 증진시키는 방법.A method of enhancing the viability by low temperature pretreatment of Bradyrhizobium japonicum . 제 1항에 있어서, 상기 전처리는 4 내지 15℃에서 저온 전처리하는 것을 특징으로 하는 방법.The method of claim 1, wherein the pretreatment is a low temperature pretreatment at 4 to 15 ° C. 제 1항에 있어서, 상기 전처리는 6 내지 24 시간 동안 저온 전처리하는 것을 특징으로 하는 방법.The method of claim 1 wherein the pretreatment is a low temperature pretreatment for 6 to 24 hours.
KR10-2002-0009602A 2002-02-22 2002-02-22 Method for improving viability by cold adaptation of Bradyrhizobium japonicum Expired - Fee Related KR100465853B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0009602A KR100465853B1 (en) 2002-02-22 2002-02-22 Method for improving viability by cold adaptation of Bradyrhizobium japonicum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0009602A KR100465853B1 (en) 2002-02-22 2002-02-22 Method for improving viability by cold adaptation of Bradyrhizobium japonicum

Publications (2)

Publication Number Publication Date
KR20030069676A KR20030069676A (en) 2003-08-27
KR100465853B1 true KR100465853B1 (en) 2005-01-13

Family

ID=32222291

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0009602A Expired - Fee Related KR100465853B1 (en) 2002-02-22 2002-02-22 Method for improving viability by cold adaptation of Bradyrhizobium japonicum

Country Status (1)

Country Link
KR (1) KR100465853B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150117451A (en) * 2014-04-10 2015-10-20 전남대학교산학협력단 Method for induction of freezing stress resistance of Latobacillus plantarum
KR20190059851A (en) 2017-11-23 2019-05-31 한국식품연구원 Method for improving viability and storage stability by supercooling cold adaptation of lactic acid bacteria
KR20190059850A (en) 2017-11-23 2019-05-31 한국식품연구원 Method for improving viability and storage stability by supercooling cold adaptation of Weissella cibaria WiKim28
KR20190059849A (en) 2017-11-23 2019-05-31 한국식품연구원 Method for improving viability and storage stability by supercooling cold adaptation of Leuconostoc mesenteroides WiKim32
KR20190059848A (en) 2017-11-23 2019-05-31 한국식품연구원 Method for improving viability and storage stability by supercooling cold adaptation of Lactobacillus curvatus WiKim38

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UY36850A (en) * 2015-08-13 2017-03-31 Novozymes Bioag As FACILITATION OF THE GROWTH OF PLANTS WITH TOLERANT RIZOBIOS TO THE ENVIRONMENT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030058497A (en) * 2001-12-31 2003-07-07 학교법인 인하학원 A method for improving viability performing cold adaptation of Lactobacillus crispatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030058497A (en) * 2001-12-31 2003-07-07 학교법인 인하학원 A method for improving viability performing cold adaptation of Lactobacillus crispatus

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
논문(Bradyrhizobium japonicum의 저온 전처리에 의한 환경스트레스 내성 증진에 대한 연구,2001 ) *
논문(Cold shock and adaptation.[Bioessays. 1998 Jan;20(1):49-57. Review) *
논문(Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance.[Curr Microbiol. 1997 Jul;35(1):59-63) *
보고서(대두에 공생하는 질소고정 뿌리혹 박테리아(Bradyrhizobium japonicum)에서 분리한 지방다당류 합성유전자 분석,1995) *
유지철 외 3인, 인하대학교 석사학위 논문, 2001 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150117451A (en) * 2014-04-10 2015-10-20 전남대학교산학협력단 Method for induction of freezing stress resistance of Latobacillus plantarum
KR101603123B1 (en) 2014-04-10 2016-03-14 전남대학교 산학협력단 Method for induction of freezing stress resistance of Latobacillus plantarum
KR20190059851A (en) 2017-11-23 2019-05-31 한국식품연구원 Method for improving viability and storage stability by supercooling cold adaptation of lactic acid bacteria
KR20190059850A (en) 2017-11-23 2019-05-31 한국식품연구원 Method for improving viability and storage stability by supercooling cold adaptation of Weissella cibaria WiKim28
KR20190059849A (en) 2017-11-23 2019-05-31 한국식품연구원 Method for improving viability and storage stability by supercooling cold adaptation of Leuconostoc mesenteroides WiKim32
KR20190059848A (en) 2017-11-23 2019-05-31 한국식품연구원 Method for improving viability and storage stability by supercooling cold adaptation of Lactobacillus curvatus WiKim38

Also Published As

Publication number Publication date
KR20030069676A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
Franche et al. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants
Elbeltagy et al. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties
Lanteigne et al. Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato
Montesinos et al. Plant-microbe interactions and the new biotechnological methods of plant disease control
Saravanakumar et al. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants
Sessitsch et al. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities
Rainey Adaptation of Pseudomonas fluorescens to the plant rhizosphere
Cao et al. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber
Han et al. Variation in nitrogen fixing ability among natural isolates of Azospirillum
Cloutier et al. Heat and cold shock protein synthesis in arctic and temperate strains of rhizobia
Toro Nodulation competitiveness in the Rhizobium-legume symbiosis
La Fuente et al. Pseudomonas fluorescens UP61 isolated from birdsfoot trefoil rhizosphere produces multiple antibiotics and exerts a broad spectrum of biocontrol activity
Wilson et al. Altered epiphytic colonization of mannityl opine-producing transgenic tobacco plants by a mannityl opine-catabolizing strain of Pseudomonas syringae
Xu et al. Enhanced control of plant wilt disease by a xylose-inducible degQ gene engineered into Bacillus velezensis strain SQR9XYQ
Janczarek et al. Multiple copies of rosR and pssA genes enhance exopolysaccharide production, symbiotic competitiveness and clover nodulation in Rhizobium leguminosarum bv. trifolii
Elhalag et al. Evaluation of antibacterial activity of Stenotrophomonas maltophilia against Ralstonia solanacearum under different application conditions
WO2016040729A2 (en) Bacteria with 1-aminocyclopropane-1-carboxylic acid (acc) deaminase for promoting turfgrass growth
Guiñazú et al. Evaluation of rhizobacterial isolates from Argentina, Uruguay and Chile for plant growth-promoting characteristics and antagonistic activity towards Rhizoctonia sp. and Macrophomina sp. in vitro
KR100465853B1 (en) Method for improving viability by cold adaptation of Bradyrhizobium japonicum
Kowalska et al. Burkholderia gladioli associated with soft rot of onion bulbs in Poland
Nautiyal et al. Rhizosphere colonization: molecular determinants from plant-microbe coexistence perspective
CA2420393A1 (en) Bacterial strains, genes and enzymes for control of bacterial diseases by quenching quorum-sensing signals
KR100460215B1 (en) A method for improving viability performing cold adaptation of Lactobacillus crispatus
Werner et al. Competitiveness and communication for effective inoculation by Rhizobium, Bradyrhizobium and vesicular-arbuscular mycorrhiza fungi
Mishra et al. Physiological and molecular characterization of clusterbean [Cyamopsis tetragonoloba (L.) taub] rhizobia isolated from different areas of Rajas Than, India

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20020222

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20040422

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20041229

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20041231

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20050103

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20071204

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20081203

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20091208

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20101209

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20111111

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20121227

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20121227

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20131115

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20131115

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20141120

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20141120

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20151202

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20151202

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20160926

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20160926

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20171205

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20171205

Start annual number: 14

End annual number: 14

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20191011