[go: up one dir, main page]

KR100460203B1 - Signal light Pumping Method using Long-period fiber grating for Cladding pump fiber amplifier - Google Patents

Signal light Pumping Method using Long-period fiber grating for Cladding pump fiber amplifier Download PDF

Info

Publication number
KR100460203B1
KR100460203B1 KR10-2002-0036539A KR20020036539A KR100460203B1 KR 100460203 B1 KR100460203 B1 KR 100460203B1 KR 20020036539 A KR20020036539 A KR 20020036539A KR 100460203 B1 KR100460203 B1 KR 100460203B1
Authority
KR
South Korea
Prior art keywords
cladding
optical fiber
excitation light
core
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR10-2002-0036539A
Other languages
Korean (ko)
Other versions
KR20020070190A (en
Inventor
송재원
이남권
손익부
권형우
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR10-2002-0036539A priority Critical patent/KR100460203B1/en
Publication of KR20020070190A publication Critical patent/KR20020070190A/en
Application granted granted Critical
Publication of KR100460203B1 publication Critical patent/KR100460203B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • G02B6/02095Long period gratings, i.e. transmission gratings coupling light between core and cladding modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

본 발명은 초고속 광통신에 응용할 수 있는 장주기 광섬유 격자(LPFG:Long-Period Fiber Grating)를 이용한 클래딩 여기 광섬유 증폭기(Cladding pump EDFA)에 관한 것이다. 본 발명은 기존의 광섬유 증폭기(EDFA)가 코어를 통해 여기 광이 입사된데 비하여 단면적이 넓은 클래딩을 통하여 여기 광을 입사하고, 이 여기 광이 클래딩을 통해 전파하는 중에 장주기 광섬유 격자를 이용해 코어로 여기 광을 결합(coupling)시킴으로써 기존 광섬유 증폭기에 비해서 보다 높은 세기(high power)의 여기 광을 이용하여 신호 광을 효과적으로 증폭시킬 수 있도록 하였다.The present invention relates to a cladding pump optical fiber amplifier (Cladding pump EDFA) using a long-period fiber grating (LPFG) that can be applied to high-speed optical communication. According to the present invention, the conventional optical fiber amplifier (EDFA) enters the excitation light through the cladding with a large cross-sectional area, whereas the excitation light is incident through the core, and the excitation light propagates through the cladding to the core using a long period optical fiber grating. Coupling the excitation light makes it possible to effectively amplify the signal light using a higher power excitation light as compared to the conventional optical fiber amplifier.

Description

클래딩 여기 광섬유 증폭기에서의 장주기 광섬유 격자를 이용한 신호 광 증폭 방법{Signal light Pumping Method using Long-period fiber grating for Cladding pump fiber amplifier}Signal light amplification method using long-period fiber grating in cladding excitation fiber amplifier

오늘날 광통신 시스템은 파장분할 다중화(WDM:Wavelength Division Multiplexing) 및 광통신의 고속화를 위한 완전 광 능동 소자의 필요성이 매우 증대되고 있다. 고속 장거리 광통신의 혁신은 어븀이 첨가된 광섬유 증폭기(EDFA:Erbium Doped Fiber Amplifier)가 개발되면서 시작되었다. EDFA는 광섬유의 최저 손실 파장영역인 1.55um 대역에서 광 증폭기의 기본적인 요구사항인 높은 이득, 저잡음, 고효율 및 고출력이라는 특성을 만족시킨다. 그러나, 광 증폭을 위해서는 광섬유 코어(core)내로 여기(pump) 광원을 조사해 주어야 한다. 이 경우에 단면적이 좁은 코어 내로 높은 세기(high power)의 여기(pump) 광원은 비선형 효과(nonlinear effect)가 나타나게 되어 여기 광원의 세기를 높이는데 제약이 있다. 이것을 해결하기 위하여 코어와 비교해서 단면적이 매우 넓은 클래딩으로 여기 광을 입사하는 구조[1]가 연구 발표되었다. 이 경우 여기(pump) 광이 내부 클래딩 층을 진행하면서 코어에 있는 희토류 이온에 의한 광 흡수가 일어나서 코어를 지나가는 신호 광을 증폭하게 된다. 이와 같이 클래딩으로 여기 광을 입사할 경우 코어로 진행하는 신호광을 증폭시키기 위해서 여기 광을 코어로 결합시켜야 한다. 일반 광섬유에서 클래딩으로 진행하는 광이 코어로 결합되는 확률은 매우 낮기 때문에 코어가 광섬유 중심에서 조금 이동한 오프셋 코어(offset core) 광섬유[2]를 이용하여 결합효율을 높이거나, 클래딩의 단면형태를 원형이 아닌 복잡한 구조로 만든 특수한 광섬유[3]를 사용하여 결합효율을 높이는 방법 등이 연구 발표되었다. 이러한 방법들은 특수한 광섬유 사용해야 하므로 제작방법이 쉽지 않고 제작비도 많이 소요된다.In today's optical communications systems, the need for fully optical active devices for wavelength division multiplexing (WDM) and high speed optical communications is increasing. Innovation in high-speed, long-distance optical communications began with the development of Erbium Doped Fiber Amplifiers (EDFAs). EDFA meets the basic requirements of optical amplifiers such as high gain, low noise, high efficiency and high power in the 1.55um band, the lowest loss wavelength of optical fiber. However, in order to amplify the light, an excitation light source must be irradiated into the optical fiber core. In this case, a high power excitation light source into a core having a narrow cross-sectional area exhibits a nonlinear effect, thereby limiting the intensity of the excitation light source. In order to solve this problem, a structure for inciting excitation light with a cladding having a very large cross section compared with the core [1] has been studied. In this case, as the excitation light travels through the inner cladding layer, light absorption by the rare earth ions in the core occurs to amplify the signal light passing through the core. As such, when the excitation light is incident on the cladding, the excitation light must be coupled to the core in order to amplify the signal light traveling to the core. Since the probability that light from the ordinary optical fiber to the cladding is coupled to the core is very low, use an offset core optical fiber [2] where the core is slightly moved from the center of the optical fiber to increase the coupling efficiency or to change the cross-sectional shape of the cladding. The method of increasing the coupling efficiency by using a special optical fiber [3] made of a complex structure rather than a circular shape has been studied. Since these methods require the use of special optical fibers, the manufacturing method is not easy and the manufacturing cost is high.

본 발명은 단면적이 넓은 클래딩으로 여기 광원을 입사하고 장주기 광섬유 격자(LPFG)를 어븀 첨가 광섬유에 직접 제작하고, 이를 이용하여 클래딩으로 입사된 여기 광을 코어로 결합시킴으로써 보다 높은 세기의 여기 광을 사용 가능토록 한다. 클래딩으로 여기 광을 입사시킬 경우 다중 스트라이프 다이오드 레이저(Multi-stripe Diode Laser)등과 같이 값싼 광원으로 높은 세기의 여기 광을 구현할 수 있다. 그리고, 장주기 광섬유 격자를 이용하여 여기 광을 코어로 결합시키므로 특수한 광섬유가 아닌 일반 어븀 첨가 광섬유에서도 클래딩 여기 광섬유 증폭기를 제작 할 수 있다. 또한 장주기 광섬유 격자(LPFG)의 주기를 변화시킴으로써 결합 파장과 대역을 조절할 수 있으므로 여기 광의 종류에 제약받지 않고 클래딩 여기 광섬유 증폭기(Cladding pump EDFA)를 제작할 수 있다.The present invention uses a higher intensity excitation light by injecting an excitation light source with a wide cross-sectional cladding and fabricating a long period optical fiber grating (LPFG) directly to the erbium-doped optical fiber, and combining the excitation light incident on the cladding with a core. Make it possible. When the excitation light is incident on the cladding, a high intensity excitation light can be realized by an inexpensive light source such as a multi-stripe diode laser. In addition, since the excitation light is coupled to the core using a long period optical fiber grating, it is possible to manufacture a cladding excitation optical fiber amplifier even in a general erbium-doped optical fiber instead of a special optical fiber. In addition, since the coupling wavelength and band can be adjusted by changing the period of the long period optical fiber grating (LPFG), it is possible to manufacture a cladding pump fiber amplifier (FAD) without being limited by the type of excitation light.

본 발명은 장주기 광섬유 격자를 이용하여 단면적이 넓은 클래딩으로 높은 세기(high power)의 여기 광을 입사하는 새로운 클래딩 여기 광섬유 증폭기(Cladding pump EDFA)를 구현 하고자 한다. 클래딩을 통해 전파하는 여기 광이 장주기 광섬유 격자에서 위상 정합 조건(phase matching condition)을 만족하는 특정 파장의 코어 모드와 결합(coupling)하여 코어로 결합하게 된다. 이 때 장주기 광섬유 격자의 위상 정합 조건(phase matching condition)을 만족하는 공진 파장(resonant condition)은 여기(pump) 광의 파장이 되도록 하여야 한다. 이렇게 코어로 결합된 여기 광에 의하여 신호 광이 증폭되게 된다. 이와 같이, 본 발명은 코어로 여기 광을 입사하는 기존의 광섬유 증폭기(EDFA)에 비하여 단면적이 100배 이상 넓은 클래딩으로 여기 광을 입사하기 때문에 값싼 광원을 이용하여 높은 세기의 여기 광을 입사할 수 있고 특수한 광섬유가 아닌 일반 어븀 첨가 광섬유를 이용하여 제작할 수 있기 때문에 비교적 제작 방법이 간단하고 낮은 가격으로 효율이뛰어난 클래딩 여기 광섬유 증폭기를 구현할 수 있다. 뿐만 아니라, 기존의 희토류계 이온의 광흡수를 이용한 광섬유 증폭기가 흡수파장과 대역에 따라 여기 광에 대한 제약이 많은데 비해서, 장주기 광섬유 격자(LPFG)의 주기를 변화시켜 결합파장과 대역을 조절할 수 있으므로 여기 광의 파장특성에 제약을 받지 않는 장점이 있다.The present invention is to implement a new cladding excitation fiber amplifier (ED) for injecting high power excitation light into a cladding with a wide cross section using a long period fiber grating. The excitation light propagating through the cladding is coupled to the core by coupling with a core mode of a specific wavelength that satisfies a phase matching condition in the long period fiber grating. At this time, the resonant condition that satisfies the phase matching condition of the long period optical fiber grating should be the wavelength of the excitation light. The signal light is amplified by the excitation light coupled to the core. As described above, the present invention allows the excitation light to be incident with a cladding having a cross section of 100 times or more compared to the conventional optical fiber amplifier (EDFA) that enters the excitation light into the core. It can be manufactured using ordinary erbium-doped fiber instead of a special fiber, and thus, a relatively simple manufacturing method and a high efficiency cladding-excited fiber amplifier can be realized at a low cost. In addition, while conventional optical fiber amplifiers using light absorption of rare earth ions have many limitations on the excitation light depending on the absorption wavelength and band, the coupling wavelength and band can be controlled by changing the period of the long period optical fiber grating (LPFG). There is an advantage that is not limited by the wavelength characteristics of the excitation light.

도 1은 본 발명에서 제안한 장주기 광섬유 격자(LPFG)를 이용한 클래딩 여기 광섬유 증폭기(Cladding pump EDFA)의 개념도.1 is a conceptual diagram of a cladding excitation optical fiber amplifier using a long period optical fiber grating (LPFG) proposed in the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 어븀 첨가 광섬유 코어(core)1: Erbium-doped fiber core

2 : 어븀 첨가 광섬유 클래딩(cladding)2: erbium-doped fiber cladding

3 : 장주기 광섬유 격자(LPFG)3: long period optical fiber grating (LPFG)

4 : 여기(pump) 광원(light source)4: pump light source

5 : 신호(signal) 광원(light source)5: signal light source

이하 첨부된 도면에 의해 상세히 설명하면 다음과 같다. 도 1은 본 발명에서 제안한 장주기 광섬유 격자(LPFG)를 이용한 클래딩 여기 광섬유 증폭기(Cladding pump EDFA)의 개념도 이다. 클래딩으로 입사된 여기 광은 장주기 광섬유 격자에서 위상정합조건을 만족하는 코어 모드와 결합(coupling)하여 코어로 입사되며, 이 여기 광에 의하여 코어로 진행하는 광 신호의 증폭이 일어나게 된다. 코어 내로 진행하는 기본 모드와 진행 방향의 클래딩모드들간의 위상 정합 조건(phase matching condition)은 다음과 같다.Hereinafter, described in detail by the accompanying drawings as follows. 1 is a conceptual diagram of a cladding excitation optical fiber amplifier using a long period optical fiber grating (LPFG) proposed in the present invention. The excitation light incident on the cladding is incident on the core by coupling with a core mode that satisfies the phase matching condition in the long period optical fiber grating, and the excitation light amplifies an optical signal traveling to the core. The phase matching condition between the basic mode progressing into the core and the cladding modes in the advancing direction is as follows.

여기서,Λ는 장주기 광섬유 격자의 격자 주기(grating period)이고, λm은 위상정합조건을 만족하는 공진파장(resonant wavelength)이고, ncore와 nm clad는 코어 모드와 m-th 클래딩 모드의 유효굴절률(effective refrative index)이다. (1)식에서 장주기 광섬유 격자의 주기,Λ를 조절하면 공진파장, λm을 이동시킬 수 있다.또한, 장주기 광섬유 격자의 길이에 따라 결합파장대역의 넓이를 조절할 수 있다. 이와 같이, 장주기 광섬유 격자의 주기와 길이를 적절히 변화시킴으로써 여기 광의 파장특성에 따라 적절한 클래딩 여기 광섬유 증폭기를 제작할 수 있고, 코어에 비해 단면적이 매우 넓은 클래딩으로 높은 세기(high power)의 여기 광을 입사할 수 있기 때문에 매우 효율적인 광섬유 증폭기를 제작할 수 있다.Where Λ is the grating period of the long-period fiber grating, λ m is the resonant wavelength that satisfies the phase matching conditions, and n core and n m clad are the effective modes of the core mode and the m-th cladding mode. Refractive index (effective refrative index). In Equation (1), the resonant wavelength, λ m , can be shifted by adjusting the period, Λ of the long-period fiber grating, and the width of the combined wavelength band can be adjusted according to the length of the long-period fiber grating. As such, by appropriately changing the period and length of the long-period optical fiber grating, an appropriate cladding excitation fiber amplifier can be manufactured according to the wavelength characteristics of the excitation light, and the high power excitation light is incident to the cladding having a very large cross section compared to the core. This allows the fabrication of highly efficient fiber amplifiers.

이상에서 상술한 바와 같이 본 발명은 단면적이 넓은 클래딩에 여기(pump) 광을 입사하므로, 코어로 광을 조사하는 기존의 광섬유 증폭기(EDFA) 비하여 값싼 광원으로 높은 세기(high power)의 여기 광을 입사할 수 있어서 증폭기의 길이가 매우 짧고 신호 광의 손실이 적은 클래딩 광섬유 증폭기(Cladding EDFA)를 구현할 수 있다. 또한, 특수한 광섬유가 아닌 일반 어븀 첨가 광섬유를 이용하여 제작하므로 제작방법이 간단하고, 장주기 광섬유 격자의 주기를 적절히 조절하여 여기 광의 파장 특성에 따라 적절한 클래딩 여기 광섬유 증폭기를 제작할 수 있다. 나아가서 본 발명에서 제안된 클래딩 광섬유 증폭기는 초고속 광통신을 위해서 반드시 필요한 WDM 구현에 유용하게 이용될 것이다. As described above, in the present invention, the excitation light is incident on the cladding having a large cross-sectional area, and thus the excitation light of high power is used as a cheaper light source than the conventional optical fiber amplifier (EDFA) that irradiates light to the core. It can be incident to implement a cladding fiber optic amplifier (Cladding EDFA) with a very short amplifier length and low loss of signal light. In addition, since the fabrication is made using a general erbium-doped optical fiber instead of a special optical fiber, the manufacturing method is simple, and the appropriate cladding excitation fiber amplifier can be manufactured according to the wavelength characteristics of the excitation light by appropriately adjusting the period of the long-period fiber grating. Furthermore, the cladding optical fiber amplifier proposed in the present invention will be usefully used for implementing WDM, which is essential for ultra-high speed optical communication.

Claims (1)

클래딩 여기 광섬유 증폭기(Cladding pump EDFA)에서의 신호 광 증폭 방법에 있어서:A signal optical amplification method in a cladding excitation optical fiber amplifier (Cladding pump EDFA): 신호 광이 어븀 첨가 광섬유의 코어로 입사하고, 여기 광이 상기 어븀 첨가 광섬유의 클래딩으로 입사하는 단계;Signal light is incident on the core of the erbium-doped optical fiber, and excitation light is incident on the cladding of the erbium-doped optical fiber; 상기 클래딩으로 입사한 여기 광이 상기 코어에 구비된 장주기 광섬유 격자(LPFG)에서, 상기 장주기 광섬유 격자의 주기 조절에 의해서 위상정합조건을 만족하는 코어모드와 결합(coupling)하여 상기 코어로 입사하는 단계;The excitation light incident to the cladding is incident on the core by coupling to a core mode satisfying a phase matching condition by a period adjustment of the long period optical fiber grating (LPFG) provided in the core. ; 상기 코어로 입사한 여기 광에 의해서 신호 광이 증폭되는 단계를 포함하여 구성되는 것을 특징으로 하는 클래딩 여기 광섬유 증폭기에서의 장주기 광섬유 격자를 이용한 신호 광 증폭 방법.And amplifying the signal light by the excitation light incident on the core. The signal optical amplification method using a long period optical fiber grating in a cladding excitation optical fiber amplifier.
KR10-2002-0036539A 2002-06-25 2002-06-25 Signal light Pumping Method using Long-period fiber grating for Cladding pump fiber amplifier Expired - Fee Related KR100460203B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0036539A KR100460203B1 (en) 2002-06-25 2002-06-25 Signal light Pumping Method using Long-period fiber grating for Cladding pump fiber amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0036539A KR100460203B1 (en) 2002-06-25 2002-06-25 Signal light Pumping Method using Long-period fiber grating for Cladding pump fiber amplifier

Publications (2)

Publication Number Publication Date
KR20020070190A KR20020070190A (en) 2002-09-05
KR100460203B1 true KR100460203B1 (en) 2004-12-08

Family

ID=27727058

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0036539A Expired - Fee Related KR100460203B1 (en) 2002-06-25 2002-06-25 Signal light Pumping Method using Long-period fiber grating for Cladding pump fiber amplifier

Country Status (1)

Country Link
KR (1) KR100460203B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920582A (en) * 1996-12-19 1999-07-06 Northern Telecom Limited Cladding mode pumped amplifier
US6058226A (en) * 1997-10-24 2000-05-02 D-Star Technologies Llc Optical fiber sensors, tunable filters and modulators using long-period gratings
WO2001011736A1 (en) * 1999-08-09 2001-02-15 Sdl, Inc. Waveguide laser
KR20010082401A (en) * 2001-05-04 2001-08-30 송재원 Cladding optical fiber amplifier using long-period fiber grating pair
KR20010113395A (en) * 2000-06-19 2001-12-28 병 호 이 fiber amplifier and device for manufacturing wavelength of fiber grating using the fiber amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920582A (en) * 1996-12-19 1999-07-06 Northern Telecom Limited Cladding mode pumped amplifier
US6058226A (en) * 1997-10-24 2000-05-02 D-Star Technologies Llc Optical fiber sensors, tunable filters and modulators using long-period gratings
WO2001011736A1 (en) * 1999-08-09 2001-02-15 Sdl, Inc. Waveguide laser
KR20010113395A (en) * 2000-06-19 2001-12-28 병 호 이 fiber amplifier and device for manufacturing wavelength of fiber grating using the fiber amplifier
KR20010082401A (en) * 2001-05-04 2001-08-30 송재원 Cladding optical fiber amplifier using long-period fiber grating pair

Also Published As

Publication number Publication date
KR20020070190A (en) 2002-09-05

Similar Documents

Publication Publication Date Title
EP0527265B1 (en) Fiber amplifier having modified gain spectrum
JP5484073B2 (en) Selective excitation of gain-doped regions in optical fibers.
US6903865B2 (en) Communication system using S-band Er-doped fiber amplifiers with depressed cladding
EP1124295A2 (en) Raman fiber laser
JP6125971B2 (en) High power double clad (DC) pump erbium-doped fiber amplifier (EDFA)
US6392789B1 (en) Erbium-doped optical fiber having gratings formed therein and fabrication method thereof
Kuroiwa et al. Fusion spliceable and high efficient Bi2O3-based EDF for short-length and broadband application pumped at 1480 nm
KR100634208B1 (en) Fiber Optics and Fiber Amplifiers Using the Same
US6721088B2 (en) Single-source multiple-order raman amplifier for optical transmission systems
US7095552B2 (en) Raman optical fiber amplifier using erbium doped fiber
KR100417468B1 (en) Method of manufacturing cladding optical fiber amplifier using long-period fiber grating pair
US7116472B2 (en) Rare-earth-doped optical fiber having core co-doped with fluorine
KR100460203B1 (en) Signal light Pumping Method using Long-period fiber grating for Cladding pump fiber amplifier
KR20120095147A (en) Self-protection multi-core optical fiber amplifier
KR100668289B1 (en) Fiber optic
KR100417467B1 (en) Method of manufacturing tunable gain-flattening filter using microbending long-period fiber grating
KR20010101027A (en) L-Band Amplification With Detuned 980nm Pump
KR100584717B1 (en) Optical Fiber and Hybrid Fiber Amplifier Using It
US6847769B1 (en) Optical fiber amplifier
AU2021104951A4 (en) A system and a method for edfa gain flattening optimization
CN1595277A (en) Reflection-type separated Raman fibre amplifier
KR100683910B1 (en) Raman Amplification and Rare Earth-Added Fiber-Based Combined Optical Amplifier
Ohara et al. Boron co-doped Bi2O3-based Erbium doped fiber for Short Pulse Amplification
JP2008283175A (en) Fiber laser device
JP2001203415A (en) Optical amplifier

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20020625

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20040223

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20041102

GRNT Written decision to grant
N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20041126

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20041126

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20041126

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20061228

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20081029

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20091102

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20101027

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20111027

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20111130

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20111130

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20131028

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20131028

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20141028

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20141028

Start annual number: 11

End annual number: 11

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20161009