KR100456074B1 - Cu-Ag-Zr alloy having high conductibiliy and high heat-resistance - Google Patents
Cu-Ag-Zr alloy having high conductibiliy and high heat-resistance Download PDFInfo
- Publication number
- KR100456074B1 KR100456074B1 KR10-2002-0016649A KR20020016649A KR100456074B1 KR 100456074 B1 KR100456074 B1 KR 100456074B1 KR 20020016649 A KR20020016649 A KR 20020016649A KR 100456074 B1 KR100456074 B1 KR 100456074B1
- Authority
- KR
- South Korea
- Prior art keywords
- alloy
- electrical conductivity
- heat treatment
- temperature
- recrystallization temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001093 Zr alloy Inorganic materials 0.000 title claims abstract description 20
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 27
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 238000001953 recrystallisation Methods 0.000 abstract description 22
- 229910052709 silver Inorganic materials 0.000 abstract description 14
- 238000002156 mixing Methods 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000000956 alloy Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 229910017985 Cu—Zr Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 238000001000 micrograph Methods 0.000 description 6
- 229910017770 Cu—Ag Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017813 Cu—Cr Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
본 발명은 전기 및 전자 분야 등, 특히 높은 전기전도도 및 높은 연화온도를 요구하는 분야에서 이용되는 Cu-Ag-Zr 합금에 관한 것으로, 전체 중량%에 대해 Ag 0.3wt% 이하, Zr 0.1wt% 이하로 배합하여 열처리함으로서 재결정온도를 500℃ 이상, 전기전도도를 IACS 90% 이상으로 향상시키는 효과가 있다.The present invention relates to a Cu-Ag-Zr alloy used in fields such as electrical and electronic fields, particularly high electrical conductivity and high softening temperature, 0.3 wt% Ag or less, 0.1 wt% Zr or less based on the total weight It is effective to improve the recrystallization temperature to 500 ° C. or higher and the electrical conductivity to 90% or more by IACS by blending and heat treatment.
Description
본 발명은 전기 ·전자 분야 등에 사용되는 구리합금에 관한 것으로, 전기전도도 및 연화온도가 향상된 고전도도, 고내열성이 우수한 Cu-Ag-Zr 합금에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy used in the field of electric and electronic fields, and to a Cu-Ag-Zr alloy having excellent high conductivity and high heat resistance with improved electrical conductivity and softening temperature.
순동은 전기전도도가 IACS(International Annealed Copper Standard) 100%이상으로 매우 높아 전기, 전자 산업, 자동차 산업 등의 여러분야에서 다양하게 사용되고 있으며, 특히 전기 모터의 정류자, 리드프레임, 용접봉 팁(tip) 등에 사용될 경우 전기전도도 뿐만 아니라 사용 중에 상승되는 온도에 견딜 수 있도록 연화온도가 높아야 한다.Pure copper has a high electrical conductivity of over 100% of the International Annealed Copper Standard (IACS), so it is used in various fields in the electric, electronic, and automotive industries.In particular, copper is used in commutators, lead frames, and welding rod tips. If used, the softening temperature should be high to withstand the electrical conductivity as well as the elevated temperature during use.
그러나, 상기 순동은 전기전도도는 우수하나 재결정 온도가 200℃ 이하로 낮아 고온에서 사용시 기계적 특성이 낮아지는 문제가 있었고, 상기와 같은 단점을 보완하여 재결정 온도를 높이기 위해 순동에 Ag, Cr, Zr 등의 합금원소를 첨가시켜 Cu-Ag, Cu-Cr, Cu-Zr 등의 형태로 목적에 맞게 사용하였다.However, the pure copper is excellent in electrical conductivity, but the recrystallization temperature is less than 200 ℃ had a problem of low mechanical properties when used at high temperatures, to compensate for the above drawbacks Ag, Cr, Zr, etc. in pure copper to increase the recrystallization temperature The alloying element of was added in the form of Cu-Ag, Cu-Cr, Cu-Zr and the like was used for the purpose.
순동에 0.1% 이하의 Ag를 첨가한 Cu-Ag 합금은 순동에 비해 전기 전도도의큰 저하없이 재결정 온도를 350℃ 정도까지 상승시킬 수 있으나 500℃ 이상의 고온에서는 연화되어 사용이 불가능하고, 순동에 0.15% 미만의 Zr을 첨가한 Cu-Zr 합금의 경우 재결정 온도를 500℃ 이상으로 대폭 상승시킬 수 있으나, Zr의 첨가에 따른 전기전도도의 하락이 Ag에 비해 큰 단점이 있어 고전도도 및 고내열성을 요구하는 분야에 사용하는 것은 적합하지 않은 문제점이 있다.Cu-Ag alloys containing 0.1% or less of Ag in pure copper can raise the recrystallization temperature to about 350 ℃ without a significant decrease in electrical conductivity compared to pure copper, but it is softened at high temperatures above 500 ℃ and cannot be used. In the case of Cu-Zr alloy containing less than Zr, the recrystallization temperature can be greatly increased to above 500 ° C. However, the drop in electrical conductivity due to the addition of Zr has a significant disadvantage compared to Ag, resulting in high conductivity and high heat resistance. There is a problem that it is not suitable to use in the required field.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 전기 전도도 저하가 작은 Ag 및 재결정 온도 상승 효과가 우수한 Zr을 Cu에 합금하여 열처리함으로서 높은 전기 전도도를 유지함과 동시에 높은 연화 온도를 갖는 Cu-Ag-Zr 합금을 제공함에 있다.The present invention has been made to solve the above problems, Cu-Ag- having a high softening temperature while maintaining high electrical conductivity by alloying Ag with a small electrical conductivity reduction and Zr excellent in the recrystallization temperature rise effect and heat treatment. Zr alloys.
도 1은 본 발명의 시험예에 따른 Zr 함량과 열처리 온도에 따른 경도 측정 그래프1 is a hardness measurement graph according to the Zr content and the heat treatment temperature according to the test example of the present invention
도 2는 본 발명의 시험예에 따른 첨가원소 함량에 따른 재결정 온도의 변화 그래프Figure 2 is a graph of the change in recrystallization temperature according to the content of the added element according to the test example of the present invention
도 3은 본 발명의 시험예에 따른 Cu-Zr 합금의 Zr 함량에 따른 전기전도도 측정 그래프3 is a graph of electrical conductivity measurement according to the Zr content of the Cu-Zr alloy according to the test example of the present invention
도 4는 본 발명의 시험예에 따른 열처리를 실시하지 않은 Cu-0.1wt%Zr 합금의 현미경 사진Figure 4 is a micrograph of the Cu-0.1wt% Zr alloy not subjected to the heat treatment according to the test example of the present invention
도 5는 본 발명의 시험예에 따른 525℃에서 1시간 열처리한 Cu-0.1wt%Zr 합금의 현미경 사진5 is a micrograph of a Cu-0.1wt% Zr alloy heat treated at 525 ° C. for 1 hour according to a test example of the present invention.
도 6은 본 발명의 시험예에 따른 600℃에서 열처리한 Cu-0.1wt%Zr 합금의 현미경 사진Figure 6 is a micrograph of the Cu-0.1wt% Zr alloy heat-treated at 600 ℃ according to the test example of the present invention
도 7는 본 발명의 시험예에 따른 열처리를 실시하지 않은 Cu-0.05wt%Ag-0.05wt%Zr 합금의 현미경 사진Figure 7 is a micrograph of the Cu-0.05wt% Ag-0.05wt% Zr alloy not subjected to the heat treatment according to the test example of the present invention
도 8는 본 발명의 시험예에 따른 525℃에서 1시간 열처리한 Cu-0.05wt%Ag-0.05wt%Zr 합금의 현미경 사진Figure 8 is a micrograph of the Cu-0.05wt% Ag-0.05wt% Zr alloy after 1 hour heat treatment at 525 ℃ according to the test example of the present invention
도 9은 본 발명의 시험예에 따른 600℃에서 열처리한 Cu-0.05wt%Ag-0.05wt%Zr 합금의 현미경 사진9 is a micrograph of a Cu-0.05 wt% Ag-0.05 wt% Zr alloy heat treated at 600 ° C. according to a test example of the present invention.
상기 목적을 달성하기 위해, 본 발명 Cu-Ag-Zr 합금은 Ag함량 0.3wt%이하, Zr함량 0.1wt%이하로, 바람직하게 Ag함량 0.1wt%이하, Zr함량 0.02wt%이하로 첨가하여 열처리함을 특징으로 한다. 이때, Ag함량이 0.1wt%이상이면 전기전도도 감소는 크지 않으나 재결정 온도 상승에 한계가 있으며, Zr함량이 0.02wt%이상이면 재결정온도 상승 효과가 크지 않으면서, 전기전도도를 크게 감소시킨다.In order to achieve the above object, the Cu-Ag-Zr alloy of the present invention is heat-treated by adding 0.3 wt% or less of Ag, 0.1 wt% or less of Zr, preferably 0.1 wt% or less of Ag, and 0.02 wt% or less of Zr. It is characterized by. At this time, if the Ag content is more than 0.1wt%, the electrical conductivity decreases little, but there is a limit to increase the recrystallization temperature. If the Zr content is more than 0.02wt%, the effect of increasing the recrystallization temperature is not large, and the electrical conductivity is greatly reduced.
이하, 본 발명의 실시예를 상세하게 설명하면 다음과 같다.Hereinafter, the embodiment of the present invention will be described in detail.
[실시예]EXAMPLE
합금 제조Alloy manufacturing
본 발명의 Cu-Ag-Zr합금을 제조하기 위해 흑연 발열체를 사용하는 소형진공용해로를 이용하여 진공도Torr에서 진공용해주조를 하였다. 도가니는 고순도 흑연재질로서 내경이 100mm, 높이가 100mm인 도가니를 사용하였으며 무산소동에 Zr의 함량을 0.02wt%, 0.04wt%, 0.06wt%, 0.08wt%, 0.10wt%로 달리하여 Cu-0.02wt%Zr, Cu-0.04wt%Zr Cu-0.06wt%Zr, Cu-0.08wt%Zr, Cu-0.1wt%Zr 합금을 제조한다. 또한, Ag와 Zr을 각각 0.05wt%로 첨가하여 Cu-0.05wt%Ag-0.05wt%Zr 합금을 제조한다.Vacuum degree using a small vacuum furnace using graphite heating element to manufacture Cu-Ag-Zr alloy of the present invention Vacuum melting bath was performed at Torr. The crucible is a high purity graphite material, which uses a crucible with an internal diameter of 100 mm and height of 100 mm. wt% Zr, Cu-0.04 wt% Zr Cu-0.06 wt% Zr, Cu-0.08 wt% Zr, Cu-0.1 wt% Zr alloys are prepared. In addition, Ag and Zr are added at 0.05 wt% to prepare a Cu-0.05 wt% Ag-0.05 wt% Zr alloy.
상기 합금을 제조하기 위해 용해온도는 1200℃로 하고, 용해시간은 용해 후 충분한 탈가스 및 불순물 제거 또는 성분균일화를 위해 한시간 동안 유지한다. 상기 과정 후 99.99% Ar가스를 냉각가스로 하여 진공용해로 내에서 용탕을 냉각시켰으며 70mm(Ø)×25mm(t)의 시편을 압연속도 100mm/min, 단면감소율 96%의 압연조건으로 가공 후 500mm(ℓ)×10mm(w)×1mm(t)의 시편을 제작하고, 상기 제작된 시편들을 10mm×10mm×1mm로 절단하여 기초시편을 제작한다.In order to prepare the alloy, the dissolution temperature is 1200 ° C., and the dissolution time is maintained for one hour for sufficient degassing and impurity removal or component homogenization after dissolution. After the above process, the molten metal was cooled in a vacuum melting furnace using 99.99% Ar gas as a cooling gas, and 500 mm after processing a 70 mm (Ø) × 25 mm (t) specimen under rolling conditions with a rolling speed of 100 mm / min and a section reduction rate of 96%. A specimen of (L) × 10 mm (w) × 1 mm (t) was prepared, and the prepared specimens were cut into 10 mm × 10 mm × 1 mm to prepare a basic specimen.
시험예 1: 경도 측정Test Example 1: Hardness Measurement
경도를 측정하기 위해, 상기 실시예에서 제조된 합금 시편들을 150-600℃ 온도 범위에서 25℃간격으로 1시간 동안 고온박스형 전기로에서 열처리하고, 각 시편들에 대해 Vickers경도계(HM-122)로 시험하중 50gf, 하중유지시간 10초로 하여 경도를 5회씩 측정하고, 그 평균값을 구하여 그 결과를 도 1에 도시하였다.In order to measure the hardness, the alloy specimens prepared in the above example were heat-treated in a high temperature box-type electric furnace for 1 hour at intervals of 25 ° C. in a temperature range of 150-600 ° C., and each specimen was tested with a Vickers hardness tester (HM-122). The hardness was measured five times with a load of 50 gf and a load holding time of 10 seconds, and the average value was obtained. The results are shown in FIG.
도 1에 나타난 바와 같이, Zr의 함량이 커질수록 Cu-Zr 합금의 경도는 커지며, 상기 시편 모두 미량의 Zr 첨가로 450℃ 온도 범위 정도까지는 경도가 큰 폭으로 변하지 않고 유지됨을 알 수 있다.As shown in FIG. 1, as the Zr content increases, the hardness of the Cu-Zr alloy increases, and it can be seen that the hardness remains unchanged to a large extent up to a temperature range of about 450 ° C. by adding a small amount of Zr.
시험예 2: 재결정온도 측정Test Example 2: Recrystallization Temperature Measurement
상기 시험예 1에서 나타난 도 1의 결과를 토대로, Cu-Zr, Cu-Ag 합금의 Zr, Ag함량에 따른 50% 재결정온도와 Cu-0.05%wt%Ag-0.05wt%Zr 합금의 50% 재결정온도를 파악하여 그 결과를 하기 도 2에 나타내었다.Based on the results of FIG. 1 shown in Test Example 1, 50% recrystallization temperature and 50% recrystallization of Cu-0.05% wt% Ag-0.05wt% Zr alloy according to Zr and Ag content of Cu-Zr and Cu-Ag alloys. Grasping the temperature is shown in Figure 2 below.
도 2에 나타난 바와 같이, Cu-Ag합금에서는 재결정온도가 Ag함량이 증가할수록 재결정온도가 거의 일정하게 직선형으로 증가하지만 Cu-Zr합금의 경우 Zr의 함량이 0.02wt%까지만 재결정온도가 급격히 증가하며 그 이후부터는 소폭으로 증가한다.As shown in Figure 2, in the Cu-Ag alloy recrystallization temperature is As the Ag content increases, the recrystallization temperature increases almost linearly, but in the case of Cu-Zr alloys, the recrystallization temperature rapidly increases only up to 0.02 wt%, and then slightly increases thereafter.
시험예 3: 전기전도도 측정Test Example 3: Electrical Conductivity Measurement
상기 실시예에서 제조된 Cu-Zr 합금과 Cu-0.05wt%Ag-0.05wt%Zr 합금에 대해 열처리를 실시하지 않은 것과 650℃에서 1시간 열처리를 실시한 것으로 분류하여, 상온에서 Double Bridge 저항측정법(KS D 0240)으로 전기전도도를 측정하였다. 열처리를 실시하지 않은 시편에 대한 측정 결과를 하기 표 1에 나타내고, 열처리하여 재결정화가 이루어진 시편에 대한 측정 결과를 하기 표2에 나타내었다. 상기 표 1과 표 2에 대한 결과를 도시화하여 도 3에 나타내었다.The Cu-Zr alloy and the Cu-0.05wt% Ag-0.05wt% Zr alloy prepared in the above examples were classified as not subjected to heat treatment and subjected to an annealing at 650 ° C for 1 hour. KS D 0240) to measure the electrical conductivity. The measurement results for the specimens not subjected to heat treatment are shown in Table 1 below, and the measurement results for the specimens subjected to heat treatment and recrystallization are shown in Table 2 below. The results for Table 1 and Table 2 are shown in FIG. 3.
(표 1) 열처리를 실시하지 않은 시편에 대한 전기전도도Table 1 Electrical Conductivity for Specimens Without Heat Treatment
(표 2) 열처리를 실시한 시편에 대한 전기전도도Table 2 Electrical Conductivity for Specimens Heated
상기 표 1, 2 및 도 3에 나타난 바와 같이, 열처리를 거치지 않은 Cu-Zr합금의 경우 Zr의 함량이 0.06wt%까지 증가할수록 급격히 전기전도도가 감소하며 그 이상으로 Zr을 첨가할 경우에는 전기전도도에 큰 영향을 미치지 않았다.As shown in Tables 1, 2 and 3, in the case of Cu-Zr alloy which has not undergone heat treatment, as the Zr content increases to 0.06 wt%, the electrical conductivity rapidly decreases. Did not have a big impact on.
반면, 650℃에서 1시간 열처리하여 재결정화된 Cu-Zr합금의 경우 Zr 함량에 큰 영향을 받지 않고 전기전도도를 유지하는 것으로 보아, 열처리과정을 통해 전기전도도가 회복되었음을 알 수 있다.On the other hand, in the case of Cu-Zr alloy recrystallized by heat treatment at 650 ℃ for 1 hour to maintain the electrical conductivity without being significantly affected by the Zr content, it can be seen that the electrical conductivity was recovered through the heat treatment process.
시험예 4: 조직 관찰Experimental Example 4: Observation of Tissue
열처리에 따른 조직변화를 조사하기 위해, Cu-0.1wt%Zr과 Cu-0.05wt%Ag-0.05wt%Zr 합금에 대해서 열처리를 실시하지 않은 것, 525℃, 600℃에서 열처리한 것으로 시편을 준비하고, 각 시편에 대해혼합 부식액에서 1-3초 부식시킨 후 광학현미경으로 200배 확대하여 관찰한 조직 사진을 도4-9에 나타내었다.In order to investigate the change of the structure due to the heat treatment, the specimens were prepared by heat treatment at 525 ° C and 600 ° C without performing heat treatment on Cu-0.1wt% Zr and Cu-0.05wt% Ag-0.05wt% Zr alloys. For each specimen Figure 4-9 shows the tissue photograph observed after 200-fold magnification with an optical microscope after corrosion for 1-3 seconds in the mixed corrosion solution.
도 4-9에 나타난 바와 같이, 열처리가 실시된 시편의 경우 가공 방향이 사라지고 각각의 합금의 특성에 따라 결정립이 발생, 성장함을 알 수 있다.As shown in Fig. 4-9, in the case of the specimen subjected to the heat treatment, the processing direction disappears and it can be seen that grains are generated and grown according to the characteristics of each alloy.
시험예 5: 요인실험Test Example 5: Factor experiment
재결정온도 및 전기전도도에 미치는 Ag 및 Zr 함량에 대해 2²요인실험계획(Factorial Design)을 적용하여 요인간 상호 작용에 대해 표 3, 4에 나타난 것처럼 알아보고, 그 결과를 표 5에 나타내었다.For the Ag and Zr content on the recrystallization temperature and electrical conductivity, 2² factorial design was applied to the interactions between the factors as shown in Tables 3 and 4, and the results are shown in Table 5.
(표 3)Table 3
(표 4)Table 4
(표 5)Table 5
상기 2²요인실험계획 분석 결과, 재결정 온도에 미치는 Ag의 효과는 72.5℃/0.05wt%Ag이고 Zr의 효과는 242.5℃/0.05wt%Zr으로 Zr이 Ag에 비해 약 3배의 재결정온도 상승효과가 있음을 알 수 있다. 또한, 재결정온도에 대한 Ag와 Zr의 상승의 효과는 -12.5℃로 약간의 상호효과가 있으나 Ag 및 Zr에 비해서는 매우 작음을 알 수 있다.As a result of the analysis of the 2² factor design, the effect of Ag on the recrystallization temperature is 72.5 ° C / 0.05wt% Ag and the effect of Zr is 242.5 ° C / 0.05wt% Zr. It can be seen that. In addition, the effect of the increase of Ag and Zr on the recrystallization temperature is -12.5 ℃ a little inter-effects, but it can be seen that very small compared to Ag and Zr.
한편, 전기전도도에 대한 Ag의 효과는 +5%/0.05wt%Ag, Zr의 효과는 -17%/0.05wt%Zr, Ag와 Zr의 상호효과는 +5%로 Ag의 효과와 Ag와 Zr의 상호효과는 Zr의 효과에 비해 매우 적음을 알 수 있다.On the other hand, the effect of Ag on the electrical conductivity is + 5% / 0.05wt% Ag, the effect of Zr is -17% / 0.05wt% Zr, and the effect of Ag and Zr is + 5%, the effect of Ag and Ag and Zr It can be seen that the interaction effect of is very small compared to the effect of Zr.
이상에서 살펴본 바와 같이, 본 발명에 의한 Cu-Ag-Zr 합금은 전기전도도 저하가 작은 Ag와 재결정 온도 상승 효과가 큰 Zr을 Cu에 합금시켜 열처리함으로서 재결정온도 및 전기전도도를 500℃이상, IACS 90%이상으로 향상시키는 효과가 있다.As described above, the Cu-Ag-Zr alloy according to the present invention is heat treated by alloying Ag having a low electrical conductivity reduction and Zr having a high recrystallization temperature rising effect on Cu to heat the recrystallization temperature and electrical conductivity above 500 ° C, IACS 90 It is effective to improve by more than%.
본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구 범위에 의해 마련되는 본 발명의 정신이나 분야를 벗어나지 않는 한도 내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것을 당업계에서 통상의 지식을 가진자는 용이하게 알 수 있음을 밝혀두고자 한다.While the invention has been shown and described with respect to particular embodiments, it will be appreciated that the invention can be varied and modified without departing from the spirit or scope of the invention as set forth in the claims below. It will be appreciated that those skilled in the art can easily know.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0016649A KR100456074B1 (en) | 2002-03-27 | 2002-03-27 | Cu-Ag-Zr alloy having high conductibiliy and high heat-resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0016649A KR100456074B1 (en) | 2002-03-27 | 2002-03-27 | Cu-Ag-Zr alloy having high conductibiliy and high heat-resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030077771A KR20030077771A (en) | 2003-10-04 |
KR100456074B1 true KR100456074B1 (en) | 2004-11-06 |
Family
ID=32376797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0016649A Expired - Lifetime KR100456074B1 (en) | 2002-03-27 | 2002-03-27 | Cu-Ag-Zr alloy having high conductibiliy and high heat-resistance |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100456074B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101010406B1 (en) * | 2010-11-01 | 2011-01-21 | 신연선 | Molding device for lead ring injection of lipstick container |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58210140A (en) * | 1982-06-01 | 1983-12-07 | Sumitomo Electric Ind Ltd | Heat resistant conductive copper alloy |
US5077005A (en) * | 1989-03-06 | 1991-12-31 | Nippon Mining Co., Ltd. | High-conductivity copper alloys with excellent workability and heat resistance |
JPH09316569A (en) * | 1996-05-23 | 1997-12-09 | Dowa Mining Co Ltd | Copper alloy for lead frame and its production |
KR0182225B1 (en) * | 1996-03-21 | 1999-04-01 | 서상기 | Cu-zr-mg-mischemetal alloy and the heat treatment thereof |
-
2002
- 2002-03-27 KR KR10-2002-0016649A patent/KR100456074B1/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58210140A (en) * | 1982-06-01 | 1983-12-07 | Sumitomo Electric Ind Ltd | Heat resistant conductive copper alloy |
US5077005A (en) * | 1989-03-06 | 1991-12-31 | Nippon Mining Co., Ltd. | High-conductivity copper alloys with excellent workability and heat resistance |
KR0182225B1 (en) * | 1996-03-21 | 1999-04-01 | 서상기 | Cu-zr-mg-mischemetal alloy and the heat treatment thereof |
JPH09316569A (en) * | 1996-05-23 | 1997-12-09 | Dowa Mining Co Ltd | Copper alloy for lead frame and its production |
Also Published As
Publication number | Publication date |
---|---|
KR20030077771A (en) | 2003-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107208191B (en) | Copper alloy material and method for producing same | |
TW201348467A (en) | Cu-Zn-Sn-Ni-P-based alloy | |
JP2004307905A (en) | Cu alloy and method for producing the same | |
JP6230341B2 (en) | Copper alloy sheet with excellent stress relaxation properties | |
KR20160106772A (en) | Titanium target for sputtering | |
KR102786079B1 (en) | Copper-nickel-silicon alloy with high strength and high electrical conductivity | |
KR100456074B1 (en) | Cu-Ag-Zr alloy having high conductibiliy and high heat-resistance | |
JP4130593B2 (en) | High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics | |
CN109136634B (en) | High-performance copper alloy material and preparation method thereof | |
JPWO2009041194A1 (en) | High strength and high conductivity copper alloy with excellent hot workability | |
TWI639163B (en) | Cu-Co-Ni-Si alloy for electronic parts, and electronic parts | |
JP5587646B2 (en) | Copper-titanium-hydrogen alloy and method for producing the same | |
Szkliniarz | Formation of microstructure and properties of Cu-3Ti alloy in thermal and thermomechanical processes | |
CN111979447B (en) | High-conductivity copper alloy material and preparation method thereof | |
JPS6256937B2 (en) | ||
JP2020002404A (en) | Material for probe pin and probe pin | |
JP5858961B2 (en) | Copper alloy sheet with excellent stress relaxation properties | |
JP2013095977A (en) | Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME | |
CN113215439A (en) | High-strength copper alloy plate and production process thereof | |
JP6308672B2 (en) | Platinum rhodium alloy and method for producing the same | |
JP7610667B1 (en) | Copper alloy | |
JP2015048523A (en) | Copper alloy sheet excellent in stress relaxation characteristic | |
JPH01165733A (en) | High strength and high electric conductive copper alloy | |
JP2007291516A (en) | Copper alloy and its production method | |
JPH09143597A (en) | Copper alloy for lead frame and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20020327 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20040223 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20040805 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20041028 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20041028 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20070723 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20080930 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20090831 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20101018 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20111010 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20121026 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20121026 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20131028 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20131028 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20141028 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20141028 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20151228 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20151228 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20161028 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20161028 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20171027 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20171027 Start annual number: 14 End annual number: 14 |
|
FPAY | Annual fee payment |
Payment date: 20181029 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20181029 Start annual number: 15 End annual number: 15 |
|
FPAY | Annual fee payment |
Payment date: 20191028 Year of fee payment: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20191028 Start annual number: 16 End annual number: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20201028 Start annual number: 17 End annual number: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20211028 Start annual number: 18 End annual number: 18 |
|
PC1801 | Expiration of term |
Termination date: 20220927 Termination category: Expiration of duration |