KR100446985B1 - A PREPARATION OF W-Cu COMPOSITE POWDER - Google Patents
A PREPARATION OF W-Cu COMPOSITE POWDER Download PDFInfo
- Publication number
- KR100446985B1 KR100446985B1 KR10-2001-0072452A KR20010072452A KR100446985B1 KR 100446985 B1 KR100446985 B1 KR 100446985B1 KR 20010072452 A KR20010072452 A KR 20010072452A KR 100446985 B1 KR100446985 B1 KR 100446985B1
- Authority
- KR
- South Korea
- Prior art keywords
- powder
- ball milling
- composite powder
- tungsten
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000843 powder Substances 0.000 title claims abstract description 56
- 239000002131 composite material Substances 0.000 title claims abstract description 32
- 239000010949 copper Substances 0.000 claims abstract description 54
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 28
- 238000000498 ball milling Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 25
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000010937 tungsten Substances 0.000 claims abstract description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000001257 hydrogen Substances 0.000 claims abstract description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052786 argon Inorganic materials 0.000 claims abstract description 4
- 239000011812 mixed powder Substances 0.000 claims abstract description 4
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims abstract description 3
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 7
- 238000013329 compounding Methods 0.000 claims description 2
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 claims 3
- 239000000203 mixture Substances 0.000 abstract description 7
- 238000005245 sintering Methods 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 9
- 238000011946 reduction process Methods 0.000 description 9
- 238000003801 milling Methods 0.000 description 8
- 238000000227 grinding Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000000280 densification Methods 0.000 description 3
- 230000008707 rearrangement Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005551 mechanical alloying Methods 0.000 description 2
- 238000009462 micro packaging Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
- B22F9/22—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/01—Reducing atmosphere
- B22F2201/013—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/02—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/10—Inert gases
- B22F2201/11—Argon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
본 발명은 텅스텐 금속 분말과 구리 산화물 분말을 혼합하여 질소 기체 또는 아르곤 기체 분위기 하에서 볼 밀링하는 제 1 단계; 및 상기 제 1 단계의 볼 밀링 과정에 의해 생성된 혼합 분말을 수소 분위기 하에서 250 내지 400 ℃의 온도 범위에서 환원시키는 제 2 단계를 포함하는 것으로써, 좀더 간편하고 경제적인 방법으로 높은 소결 밀도를 갖는 W-Cu 복합분말을 얻을 수 있다.The present invention is a first step of ball milling a mixture of tungsten metal powder and copper oxide powder in a nitrogen gas or argon gas atmosphere; And a second step of reducing the mixed powder produced by the ball milling process of the first step at a temperature in the range of 250 to 400 ° C. under a hydrogen atmosphere, thereby having a high sintered density in a simpler and more economical manner. W-Cu composite powder can be obtained.
Description
본 발명은 W-Cu 복합 복말을 제조하는 방법에 관한 것이다. 좀더 구체적으로, 본 발명은 W-Cu 복합재료를 액상소결법으로 제조함에 있어서, W 금속 분말과 Cu 산화물 분말을 이용함으로써 W과 Cu의 혼합도를 증진시켜 소결도가 향상된 W-Cu 복합 분말을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a W-Cu composite garment. More specifically, the present invention to prepare a W-Cu composite material by the liquid sintering method, by using the W metal powder and Cu oxide powder to improve the mixing of W and Cu to produce a W-Cu composite powder with improved sintering degree It is about how to.
일반적으로, W-Cu 복합재료를 제조하기 위한 방법은 크게 두 가지로 나눌 수 있다. 하나는 용침법이며, 다른 하나는 액상소결법이다. 용침법은 W을 예비소결한 후 액상의 Cu를 W 골격체 사이로 넣는 방법으로 치밀한 미세 조직을 얻을 수 있지만, 생성된 미세 조직이 불균일하며, 또한 Cu의 조성을 원하는 대로 조정할 수 없다는 단점이 있다. 한편, 액상소결법은 균일한 미세 조직을 얻을 수 있지만, W과 Cu의 상호불고용의 특성과 W에 대한 Cu의 접촉각이 크기 때문에 완전 치밀화가 어렵다는 단점이 있다. 이에 따라, 최근에는 액상소결시 치밀화를 촉진시키기 위해 W 입자의 미세화와 W과 Cu의 균일한 혼합을 유도하여 완전 치밀화를 이루고자 하는 연구 결과들이 다수 발표되고 있다.In general, there are two main methods for manufacturing a W-Cu composite material. One is infiltration and the other is liquid sintering. In the infiltration method, a fine microstructure can be obtained by pre-sintering W and then inserting liquid Cu into the W framework, but the resulting microstructures are nonuniform, and the composition of Cu cannot be adjusted as desired. On the other hand, the liquid sintering method can obtain a uniform microstructure, but has a disadvantage in that the complete densification is difficult because of the mutual insolubility characteristics of W and Cu and the contact angle of Cu to W is large. Accordingly, in recent years, many studies have been published to achieve perfect densification by inducing refinement of W particles and uniform mixing of W and Cu to promote densification during liquid phase sintering.
이러한 연구들 또한 크게 두 가지로 나눠볼 수 있는데, 첫 번째는 W 및 Cu의 금속 분말을 직접적으로 기계적 합금화시키는 것이며, 두 번째는 W 및 Cu의 두 성 분 모두를 산화물로서 이용하는 것이다.These studies can also be broadly divided into two types: the first is the direct mechanical alloying of metal powders of W and Cu, and the second is the use of both components of W and Cu as oxides.
W-Cu 복합분말을 제조하기 위해 W과 Cu를 모두 금속으로 기계적 합금화시킬경우, 수십 나노 크기 이하의 미세한 결정립으로 혼합된 복합분말을 얻을 수 있지만 고 에너지의 장시간 동안의 볼 밀링에 의한 변형(strain)의 축적과 불순물의 혼입 등의 문제가 있다. 즉, W과 Cu 금속 분말을 직접 기계적으로 합금화할 경우, 수십 나노 크기 이하까지의 미세화 및 균일한 혼합을 위해서 최소한 약 30~50 시간 이상의 장시간 동안 고 에너지로 볼 밀링을 수행하여야 하며 그 과정에서 과도한 변형(strain)이 축적되며, 또한 이 과정 중에 불순물, 특히 밀링 매체인 Fe 등의 혼입이 발생하게 되며, Fe와 같은 불순물이 혼입되었을 경우, W-Cu 복합재료의 전기비저항이 증가됨은 물론 열전도도가 감소하여, 전기전도도와 열전도도가 우수한 특성을 갖는 W-Cu 복합 분말 중 Cu의 전기적 물성에 악영향을 미치게 된다.When both W and Cu are mechanically alloyed with metals to produce W-Cu composite powders, a composite powder mixed with fine grains of several tens of nanometers or less can be obtained, but it is strained by high-energy long-term ball milling. ) And accumulation of impurities. In other words, when mechanically alloying W and Cu metal powders directly, ball milling should be performed at high energy for a long time of at least about 30 to 50 hours or more in order to refine and uniformly mix up to tens of nanometers or less. Strain is accumulated, and in this process, impurities, particularly milling media, such as Fe, are mixed. When impurities, such as Fe, are mixed, the electrical resistivity of the W-Cu composite material is increased as well as thermal conductivity. As a result, the electrical properties of Cu in the W-Cu composite powder having excellent electrical conductivity and thermal conductivity are adversely affected.
W-Cu 복합분말을 제조하기 위한 액상소결법의 또다른 방법으로는, W 및 Cu의 산화물을 볼 밀링 등에 의해 기계적 혼합 및 분쇄한 후에 수소 환원하는 방법이 있다. 그러나, 이 방법의 경우 약 800 ℃ 이상의 고온에서 환원 공정을 수행해야 하므로 고에너지 고비용이 수반되는 단점이 있다. 또한, 이 방법은 미세한 복합분말을 만들 수 있어 Cu의 조성이 낮은 경우에 높은 소결 밀도를 얻을 수 있도록 하는 방법으로 이용되기도 하는데, 이같이 미세한 분말을 얻기 위해서 매우 순도가 높은 수소를 사용해야 한다.Another method of the liquid phase sintering method for producing the W-Cu composite powder is a method of hydrogen reduction after mechanical mixing and grinding of oxides of W and Cu by ball milling or the like. However, this method requires a reduction process at a high temperature of about 800 ° C. or higher, and thus has a disadvantage of high energy and high cost. In addition, this method can be used as a way to obtain a fine composite powder to obtain a high sintered density when the composition of Cu is low, it is necessary to use a very high purity hydrogen to obtain such a fine powder.
이와 같이 나노구조의 W-Cu 복합분말을 만들기 위한 종래 기술 방법에 따르면, 과도한 밀링 공정이나 높은 온도의 환원공정으로 제조 시간이 길어지며, 소요되는 제조 비용 증가도 수반된다. 또한, 금속 분말을 이용하여 기계적 합금화를 수행할 경우에, 불순물의 혼입과 축적된 내부 에너지로 인해 분말의 특성이 산화물을이용한 방법에 비해 다소 뒤떨어지는 단점이 있으며, 텅스텐과 구리 두 성분 모두 산화물로서 이용할 경우에는 생성된 복합 분말의 특성이 우수하다고 하여도 제조시 높은 환원온도를 유지해야 하는 단점이 있다.As described above, according to the prior art method for making a nanostructured W-Cu composite powder, an excessive milling process or a high temperature reduction process increases the production time, and also increases the required manufacturing cost. In addition, when mechanical alloying is performed using a metal powder, the characteristics of the powder are slightly inferior to the method using an oxide due to the incorporation of impurities and accumulated internal energy, and both tungsten and copper components are oxides. When used, even if the properties of the resulting composite powder is excellent, there is a disadvantage in maintaining a high reduction temperature during manufacturing.
따라서, 본 발명은 이상과 같은 장시간의 볼 밀링이나 고온에서의 환원 공정 등에 의해 수반되는 비용 및 시간 등의 단점을 해소함과 동시에, W과 Cu의 혼합도를 향상시키고 W의 입자 재배열을 증진시켜, 높은 소결 밀도를 갖는 W-Cu 복합 분말을 제조하는 방법을 제공하는 데 그 목적이 있다.Therefore, the present invention solves the disadvantages such as the cost and time associated with the long-term ball milling or the reduction process at a high temperature as described above, and also improves the mixing degree of W and Cu and enhances the rearrangement of W. And to provide a method for producing a W-Cu composite powder having a high sintered density.
도 1은 본 발명에 따라 텅스텐 금속 분말과 구리 산화물 분말을 1 시간 동안 볼 밀링한 후에, 각각 (a) 250 ℃, (b) 300 ℃, (c) 350 ℃ 및 (d) 400 ℃에서 30 분간 수소 환원시켜 생성된 W-Cu 복합분말의 단면 주사전자현미경 사진을 나타낸 것이다.Figure 1 shows the ball milling of tungsten metal powder and copper oxide powder for 1 hour according to the present invention, followed by 30 minutes at (a) 250 ° C, (b) 300 ° C, (c) 350 ° C and (d) 400 ° C, respectively. The cross-sectional scanning electron micrograph of the W-Cu composite powder produced by hydrogen reduction is shown.
도 2는 본 발명에 따라 텅스텐 금속 분말과 구리 산화물 분말을 5 시간 동안 볼 밀링한 후에, 각각 (a) 250 ℃, (b) 300 ℃, (c) 350 ℃ 및 (d) 400 ℃에서 30 분간 수소 환원시켜 생성된 W-Cu 복합분말의 단면 주사전자현미경 사진을 나타낸 것이다.Figure 2 is ball milling tungsten metal powder and copper oxide powder for 5 hours according to the present invention, followed by 30 minutes at (a) 250 ° C, (b) 300 ° C, (c) 350 ° C and (d) 400 ° C, respectively. The cross-sectional scanning electron micrograph of the W-Cu composite powder produced by hydrogen reduction is shown.
도 3은 본 발명에 따라 텅스텐 금속 분말과 구리 산화물 분말을 20 시간 동안 볼 밀링한 후에, 각각 (a) 250 ℃, (b) 300 ℃, (c) 350 ℃ 및 (d) 400 ℃에서 30 분간 수소 환원시켜 생성된 W-Cu 복합분말의 단면 주사전자현미경 사진을 나타낸 것이다.FIG. 3 shows ball milling of tungsten metal powder and copper oxide powder for 20 hours according to the present invention, followed by 30 minutes at (a) 250 ° C., (b) 300 ° C., (c) 350 ° C. and (d) 400 ° C., respectively. The cross-sectional scanning electron micrograph of the W-Cu composite powder produced by hydrogen reduction is shown.
도 4는 본 발명에 따라 텅스텐 금속 분말과 구리 산화물 분말을 50 시간 동안 볼 밀링한 후에, 각각 (a) 250 ℃, (b) 300 ℃, (c) 350 ℃ 및 (d) 400 ℃에서 30 분간 수소 환원시켜 생성된 W-Cu 복합분말의 단면 주사전자현미경 사진을 나타낸 것이다.FIG. 4 shows ball milling of tungsten metal powder and copper oxide powder for 50 hours according to the present invention, followed by 30 minutes at (a) 250 ° C., (b) 300 ° C., (c) 350 ° C. and (d) 400 ° C., respectively. The cross-sectional scanning electron micrograph of the W-Cu composite powder produced by hydrogen reduction is shown.
상기 목적을 달성하기 위한 본 발명은 텅스텐 금속 분말과 구리 산화물 분말을 혼합하여 질소 기체 또는 아르곤 기체 분위기 하에서 볼 밀링하는 제 1 단계; 및 상기 제 1 단계의 볼 밀링 과정에 의해 생성된 혼합 분말을 수소 분위기 하에서 250 내지 400 ℃의 온도 범위에서 환원시키는 제 2 단계를 포함한다.The present invention for achieving the above object is a first step of ball milling a mixture of tungsten metal powder and copper oxide powder in a nitrogen gas or argon gas atmosphere; And a second step of reducing the mixed powder produced by the ball milling process of the first step in a temperature range of 250 to 400 ° C. under a hydrogen atmosphere.
본 발명에 따른 W-Cu 복합분말의 제조 방법은, 크게 볼 밀링 공정과 환원공정으로 나눌 수 있다. 본 발명에서 볼 밀링 공정은 주로 혼합도의 증가를 목적으로 하고 있기 때문에 큰 분쇄 효과를 기대하지 않으며, 단순한 볼 밀러에서 최대 20 시간 이하 정도의 단시간 동안 W-CuO 분말을 혼합한다. 만약, 본 발명의 볼 밀링 공정 중에 과도한 에너지로 혼합과 분쇄를 진행한다면, 금속 W이 산화되어 오히려 환원 온도를 상승시켜야하는 문제가 발생될 수 있으므로 주의해야 한다.The manufacturing method of the W-Cu composite powder which concerns on this invention can be divided roughly into a ball milling process and a reduction process. In the present invention, the ball milling process mainly aims at increasing the degree of mixing, and thus does not expect a large grinding effect, and mixes the W-CuO powder for a short time of up to 20 hours or less in a simple ball mill. If mixing and pulverizing with excessive energy during the ball milling process of the present invention, care should be taken because the metal W may be oxidized and a problem of increasing the reduction temperature may occur.
본 발명에서 볼 밀링 정도는 장비, 볼과 분말의 장입비, 밀링시의 rpm 등에따라 달라지게 된다. 그러나, 볼 밀링 후에 텅스텐의 입자 크기가 100 nm 이하가 되도록 밀링 단계를 수행하는 것이 바람직하다.In the present invention, the degree of ball milling will vary depending on the equipment, the loading ratio of the ball and powder, rpm during milling, and the like. However, after the ball milling, it is preferable to perform the milling step so that the particle size of tungsten is 100 nm or less.
본원발명에서 텅스텐 금속 분말과 구리 산화물 분말의 배합비는 어느 용도의 W-Cu 복합 분말을 제조하느냐에 따라 결정될 수 있다. 예컨대, 마이크로 패키징용 W-Cu 복합 재료를 구성하기 위해서는 목적 조성이 W-15Cu(Wt%) 이하로 하는 것이 바람직하다.In the present invention, the compounding ratio of the tungsten metal powder and the copper oxide powder may be determined depending on the purpose of preparing the W-Cu composite powder. For example, in order to comprise the W-Cu composite material for micropackaging, it is preferable that the target composition shall be W-15Cu (Wt%) or less.
볼밀링을 수행한 후에 생성된 텅스텐과 구리 산화물의 혼합 분말을, 기존에 비해 비교적 낮은 온도범위인, CuO가 환원을 시작하는 200 ℃ 이상의 온도로 수소 분위기 하에서 환원함으로써 W-Cu 복합 분말을 제조할 수 있다. 바람직하게는, 이 환원 공정은 250 내지 400 ℃의 온도 범위에서 수행할 수 있다.W-Cu composite powder can be prepared by reducing the mixed powder of tungsten and copper oxide produced after the ball milling under a hydrogen atmosphere at a temperature of 200 ° C. or more at which CuO starts reducing, which is a relatively low temperature range. Can be. Preferably, this reduction process can be carried out in a temperature range of 250 to 400 ℃.
본원발명에서는 비교적 연성이 큰 Cu 금속 분말에 비해, 분쇄 효과가 큰 구리 산화물(CuO) 분말을 이용하여 간단한 볼 밀링 공정을 통해 미세화할 수 있도록 하였으며, 이후에 이를 환원시킴으로써 변형(strain)이 축적되지 않은 균일한 금속 Cu의 분산이 가능하도록 한 것이다. 이를 더욱 효과적으로 수행하기 위해서는 상대적으로 미세한 W 분말과 CuO 분말을 사용하는 것이 유리하며, 볼 밀링 공정 중 W의 산화를 억제하기 위해 분위기를 질소 또는 아르곤 등의 비활성 기체 분위기로 유지해주는 것이 효과적이다.In the present invention, compared to the relatively ductile Cu metal powder, the copper oxide (CuO) powder having a greater grinding effect can be refined through a simple ball milling process, and the strain is subsequently accumulated by reducing it. It is possible to disperse uniform metal Cu. In order to perform this more effectively, it is advantageous to use relatively fine W powder and CuO powder, and to maintain the atmosphere in an inert gas atmosphere such as nitrogen or argon to suppress oxidation of W during the ball milling process.
본 발명에 따라 제조된 W-Cu의 복합 분말은, 간단한 볼 밀링 공정과 낮은 온도 하에서 환원 공정을 통해 W과 Cu의 혼합도를 향상시키면 W의 입자재배열을 증진시켜서 결과적으로 높은 소결 밀도를 얻을 수 있도록 한 것으로써, W과 Cu가 미세하고 균일하게 혼합화되어 있어 매우 우수한 소결 특성을 나타낼 수 있다. 즉, 본 발명에서와 같은 W-Cu 복합 분말은 W 및 Cu가 따로따로 존재할 경우에는 그만큼 균일하지 않기 때문에 소결성은 저하되지만 하나의 응집체에 W과 Cu가 함께 미세화되어 존재한다면 소결성은 증대될 것이다.The composite powder of W-Cu prepared according to the present invention improves the re-arrangement of W and Cu through a simple ball milling process and a reduction process under low temperature, thereby increasing the particle rearrangement of the W and consequently obtaining a high sintered density. As a result, W and Cu are finely and uniformly mixed to exhibit very good sintering characteristics. That is, the W-Cu composite powder as in the present invention is not so uniform when W and Cu are present separately, so the sintering property is lowered, but the sintering property will be increased if W and Cu are micronized together in one aggregate.
다음 실시예를 통해, 본 발명을 상세히 더욱 상세히 기술하고자 하며, 본 발명을 이에 국한시키고자 하는 것이다.Through the following examples, the present invention will be described in more detail, and the present invention is intended to be limited thereto.
<실시예><Example>
금속 W 분말(대한중석, 1.87㎛, 99.9%)과 CuO(일본고순도, 1~2㎛, 99.9%) 분말을 W-15wt%Cu의 조성으로 1, 5, 20과 50시간동안 3차원 혼합기인 turbular에서 볼 밀링하였다. 볼 밀링 시간이 증가할수록 W과 CuO의 입자크기는 감소하여 20시간의 경우, 약 50nm에 이르렀다. 볼 밀링은 플라스틱 바이얼에 분말과 WC 볼을 넣고 수행하였는데 이때 볼과 분말의 무게비는 10:1로 하였다.Metal W powder (Daerostone, 1.87㎛, 99.9%) and CuO (Japan high purity, 1-2㎛, 99.9%) powder were composed of W-15wt% Cu for 3, 1, 5, 20 and 50 hours Ball milled on the turbular. As the ball milling time increased, the particle size of W and CuO decreased, reaching about 50 nm in 20 hours. Ball milling was performed by putting powder and WC balls into a plastic vial, where the weight ratio of the balls to powder was 10: 1.
이렇게 볼 밀링한 W-CuO 혼합체는 건조 수소 분위기로 250, 300, 350과 400℃에서 각각 30분간 환원하였으며 환원한 분말의 미세조직을 주사전자현미경으로 관찰하였다. 각각의 밀링 시간과 환원 온도에 따른 W-Cu 복합분말의 주사전자현미경 관찰 사진을 도 1 내지 도 4로 나타내었다. 가장 밝게 보이는 것은 W 입자이며 진한 회색으로 관찰되는 것이 Cu이다.The ball-milled W-CuO mixture was reduced for 30 minutes at 250, 300, 350 and 400 ° C. in a dry hydrogen atmosphere, and the microstructure of the reduced powder was observed with a scanning electron microscope. Scanning electron microscope observation pictures of the W-Cu composite powder according to the milling time and the reduction temperature are shown in FIGS. 1 to 4. The brightest looks are W particles and the ones observed in dark gray are Cu.
도 1 내지 4로부터 밀링 시간이 증가할수록 W과 CuO 분말은 약간의 분쇄과정이 일어났으며 혼합도가 증가하였음을 알 수 있다. 밀링 시간이 증가할수록 혼합도가 증가된 경우, Cu의 응집체에 W 입자들이 섞여서 나타나지만 밀링시간이 짧은 경우는 환원후에 W과 Cu가 독립적으로 존재함을 관찰할 수 있었다. 또한, 낮은 환원 온도에서 환원 공정을 수행한 경우, CuO가 환원되어 스폰지 형상을 가지며 환원온도가 증가될수록 환원된 Cu가 더욱 응집되어 있는 형태를 나타냄을 알 수 있었다. 환원공정이 모두 끝난 후에 X-ray 회절분석법으로 환원여부를 관찰한 결과, 모두 CuO 피크는 관찰할 수 없었으며, 모두 W-Cu 복합 분말로서 생성되었음을 알 수 있었다.It can be seen from FIGS. 1 to 4 that as the milling time increases, the grinding process of W and CuO powders occurs slightly and the degree of mixing increases. When the mixing time increased with increasing milling time, it appeared that W particles were mixed in the aggregate of Cu, but when milling time was short, it was observed that W and Cu exist independently after reduction. In addition, when the reduction process is carried out at a low reduction temperature, it was found that CuO is reduced to have a sponge shape, and as the reduction temperature is increased, the reduced Cu is more aggregated. As a result of observing the reduction by X-ray diffraction after the reduction process, all CuO peaks could not be observed, and all were formed as W-Cu composite powder.
상기 도 1 내지 도 4에서 알 수 있는 바와 같이, 본 발명의 제조 방법에 따라 텅스텐(W) 금속 분말과 구리 산화물(CuO) 분말을 이용한 경우 기존에 비해 훨씬 낮은 환원 온도에서도 W 및 Cu가 전반적으로 균일하고 미세하게 혼재되어 있는 W-Cu 복합 분말을 얻을 수 있음을 알 수 있다.As can be seen in Figures 1 to 4, in the case of using the tungsten (W) metal powder and copper oxide (CuO) powder according to the manufacturing method of the present invention W and Cu as a whole at a much lower reduction temperature than the conventional It can be seen that a uniform and finely mixed W-Cu composite powder can be obtained.
이상과 같이, 본 발명에 따르면 간단한 볼 밀링 공정과 비교적 낮은 온도 범위에서의 수소 환원 공정을 통해 더욱 손쉽고 경제적인 방법으로, 마이크로 패키징용 재료와 고부하 전기접점 재료 등에 응용이 확대되고 있는 W-Cu 복합 재료를 우수한 소결 특성을 갖는 것으로 제공할 수 있으므로, 그의 산업적 이용 가능성이 매우 크다고 할 것이다.As described above, according to the present invention, a simple ball milling process and a hydrogen reduction process at a relatively low temperature range make it easier and more economical to apply W-Cu composites, which are being applied to micro-packaging materials and high-load electric contact materials. Since the material can be provided as having good sintering properties, its industrial applicability will be very large.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0072452A KR100446985B1 (en) | 2001-11-20 | 2001-11-20 | A PREPARATION OF W-Cu COMPOSITE POWDER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0072452A KR100446985B1 (en) | 2001-11-20 | 2001-11-20 | A PREPARATION OF W-Cu COMPOSITE POWDER |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030041610A KR20030041610A (en) | 2003-05-27 |
KR100446985B1 true KR100446985B1 (en) | 2004-09-01 |
Family
ID=29570488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0072452A Expired - Fee Related KR100446985B1 (en) | 2001-11-20 | 2001-11-20 | A PREPARATION OF W-Cu COMPOSITE POWDER |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100446985B1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100779033B1 (en) * | 2006-06-05 | 2007-11-26 | (주)창성 | Method for preparing V-Cu composite powder |
JP2011171023A (en) * | 2010-02-17 | 2011-09-01 | Hitachi Ltd | Electric contact and electric power switch using it |
CN101928866B (en) * | 2010-03-23 | 2012-09-05 | 西安理工大学 | W-Cu composite material prepared from La-Ni intensified-sintered W skeleton and preparation method thereof |
CN102925727B (en) * | 2012-11-14 | 2015-03-04 | 武汉理工大学 | Preparation method of high-performance Zn@W-Cu thermal composite material |
CN111375774B (en) * | 2020-04-29 | 2023-02-21 | 西安稀有金属材料研究院有限公司 | Preparation method of graphite-copper-molybdenum-based composite material for electronic packaging |
KR102532974B1 (en) * | 2021-07-26 | 2023-05-17 | 주식회사 비츠로넥스텍 | Method of manufacturing tungsten copper composite, tungsten copper composite having high toughness and high thermal conductivity, and manufacturing method for the same |
CN114932222B (en) * | 2022-06-17 | 2023-11-07 | 合肥工业大学智能制造技术研究院 | Method for improving density of tungsten-copper alloy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950011016A (en) * | 1993-10-19 | 1995-05-15 | 주승기 | Manufacturing Method of W-Cu Alloy |
KR950011017A (en) * | 1993-10-19 | 1995-05-15 | 이재성 | Ultrafine composite powder material and its manufacturing method |
US5439638A (en) * | 1993-07-16 | 1995-08-08 | Osram Sylvania Inc. | Method of making flowable tungsten/copper composite powder |
KR19980072304A (en) * | 1997-03-04 | 1998-11-05 | 서상기 | Method for producing ultra fine W / Cu metal composite powder and high density bulk material by mechanochemical method |
-
2001
- 2001-11-20 KR KR10-2001-0072452A patent/KR100446985B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5439638A (en) * | 1993-07-16 | 1995-08-08 | Osram Sylvania Inc. | Method of making flowable tungsten/copper composite powder |
KR950011016A (en) * | 1993-10-19 | 1995-05-15 | 주승기 | Manufacturing Method of W-Cu Alloy |
KR950011017A (en) * | 1993-10-19 | 1995-05-15 | 이재성 | Ultrafine composite powder material and its manufacturing method |
KR19980072304A (en) * | 1997-03-04 | 1998-11-05 | 서상기 | Method for producing ultra fine W / Cu metal composite powder and high density bulk material by mechanochemical method |
Also Published As
Publication number | Publication date |
---|---|
KR20030041610A (en) | 2003-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100462274B1 (en) | A method of manufacturing tungsten- copper based composite powder and sintered alloy for heat sink using the same | |
KR100400356B1 (en) | Methods of Microstructure Control for Cu-Cr Contact Materials for Vacuum Interrupters | |
Maneshian et al. | Solid state and liquid phase sintering of mechanically activated W–20 wt.% Cu powder mixture | |
CN1325209C (en) | Mo-Cu composite powder | |
Cheng et al. | Fabrication and characterization of W–15Cu composite powders by a novel mechano-chemical process | |
JP5904308B2 (en) | Method for producing electrode material | |
JP5880789B1 (en) | A composite metal in which Cu is infiltrated into a compact formed from solid solution particles | |
JP5124734B2 (en) | Electrode material for vacuum circuit breaker and manufacturing method thereof | |
JP5861807B1 (en) | Method for producing electrode material | |
KR100490879B1 (en) | W-Cu ALLOY WITH HOMOGENEOUS MICRO-STRUCTURE AND THE MANUFACTURING METHOD THEREOF | |
CN106756376A (en) | tungsten-copper alloy and its processing method and application | |
KR100446985B1 (en) | A PREPARATION OF W-Cu COMPOSITE POWDER | |
JPH08109422A (en) | Method for producing alumina dispersion strengthened copper | |
WO2018168735A1 (en) | Hard sintered body | |
KR100428948B1 (en) | A production method of tungsten nano powder without impurities and its sintered part | |
KR102297806B1 (en) | Manufacturing method of Ta-Cu alloy and Ta-Cu alloy using thereof | |
KR100408647B1 (en) | Manufacturing Process of alloyed and composite nano-metal powder of a high degree of purity | |
KR970001558B1 (en) | Manufacturing method of ultra fine composite powder material | |
JP6516652B2 (en) | W-Cu-Ag alloy and method of manufacturing the same | |
JP6398415B2 (en) | Method for producing electrode material | |
WO2021131408A1 (en) | Thermoelectric conversion element, thermoelectric conversion module, joining material, and method for manufacturing thermoelectric conversion element | |
JP3443640B2 (en) | Manufacturing method of thermoelectric material | |
JP3054698B2 (en) | Method for producing particle-dispersed alloy powder | |
KR20000025229A (en) | Preparation method of thermoelectric material by mechanical grinding | |
KR20230139079A (en) | Silicon Nano-composite Structured Powders for Anode Materials Using Ternary Si Alloys and Method for Producing the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20011120 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20031121 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20040528 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20040824 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20040825 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20070626 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20080630 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20090701 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20100604 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20100604 Start annual number: 7 End annual number: 7 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |