[go: up one dir, main page]

KR100446655B1 - Hydrogenation reaction catalyst for preparing gamma-butyrolactone and method for preparing thereof, and method for preparing gamma-butyrolactone using the same - Google Patents

Hydrogenation reaction catalyst for preparing gamma-butyrolactone and method for preparing thereof, and method for preparing gamma-butyrolactone using the same Download PDF

Info

Publication number
KR100446655B1
KR100446655B1 KR10-2002-0019243A KR20020019243A KR100446655B1 KR 100446655 B1 KR100446655 B1 KR 100446655B1 KR 20020019243 A KR20020019243 A KR 20020019243A KR 100446655 B1 KR100446655 B1 KR 100446655B1
Authority
KR
South Korea
Prior art keywords
catalyst
titania
gamma butyrolactone
hydrogenation
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR10-2002-0019243A
Other languages
Korean (ko)
Other versions
KR20030080555A (en
Inventor
정승문
박광천
정상윤
최정욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR10-2002-0019243A priority Critical patent/KR100446655B1/en
Publication of KR20030080555A publication Critical patent/KR20030080555A/en
Application granted granted Critical
Publication of KR100446655B1 publication Critical patent/KR100446655B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Furan Compounds (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 감마부티로락톤 제조용 수소화 반응촉매와 그의 제조방법, 및 이를 이용한 감마부티로락톤의 제조방법에 관한 것으로, 특히 감마부티로락톤 제조용 수소화 반응촉매에 있어서, 티타니아를 포함하는 실리카-티타니아 지지체 상에 팔라듐과 니켈이 담지된 감마부티로락톤 제조용 수소화 반응촉매와 그 제조방법, 및 이를 이용한 감마부티로락톤의 제조방법에 관한 것이다.The present invention relates to a hydrogenation catalyst for producing gamma butyrolactone, a method for preparing the same, and a method for producing gamma butyrolactone using the same, and particularly, in a hydrogenation catalyst for producing gamma butyrolactone, a silica-titania support including titania The present invention relates to a hydrogenation catalyst for producing gamma butyrolactone on which palladium and nickel are supported, a method for producing the same, and a method for producing gamma butyrolactone using the same.

본 발명에 따른 수소화 반응촉매는 티타니아가 첨가된 지지체를 사용하여 종래 단일성분의 지지체보다 동일 조건에서 무수말레인산(MAN)의 수소화에 있어서 높은 반응속도와 수율을 나타내며 수소화 반응시간이 단축되고 촉매의 사용량을 줄일 수 있어서 경제적으로 높은 수율의 감마부티로락톤을 얻을 수 있다.The hydrogenation catalyst according to the present invention has a higher reaction rate and yield in hydrogenation of maleic anhydride (MAN) under the same conditions than the conventional single-component support using a titania-added support, and shortens the hydrogenation reaction time and uses the catalyst. It is possible to reduce the yield of gamma butyrolactone in economically high yield.

Description

감마부티로락톤 제조용 수소화 반응촉매와 그 제조방법, 및 이를 이용한 감마부티로락톤의 제조방법{HYDROGENATION REACTION CATALYST FOR PREPARING GAMMA-BUTYROLACTONE AND METHOD FOR PREPARING THEREOF, AND METHOD FOR PREPARING GAMMA-BUTYROLACTONE USING THE SAME}HYDROGENATION REACTION CATALYST FOR PREPARING GAMMA-BUTYROLACTONE AND METHOD FOR PREPARING THEREOF, AND METHOD FOR PREPARING GAMMA-BUTYROLACTONE USING THE SAME}

본 발명은 감마부티로락톤 제조용 수소화 반응촉매와 그 제조방법, 및 이를 이용한 감마부티로락톤의 제조방법에 관한 것으로, 더욱 상세하게는 활성성분으로는 팔라듐과 니켈을 주성분으로 하고, 실리카와 티타니아의 복합화합물을 지지체로 사용하여 얻어진 촉매하에서 무수 말레인산(이하, MAN)으로부터 감마부티로락톤(이하, GBL)을 효과적으로 액상 환원하여 조업조건에 대한 광범위한 적용성을 나타내므로 상업화 공정에 적용하기에 적합한 감마부티로락톤 제조용 수소화 반응촉매와 그 제조방법, 및 이를 이용한 감마부티로락톤의 제조방법에 관한 것이다.The present invention relates to a hydrogenation catalyst for producing gamma butyrolactone, a method for producing the same, and a method for producing gamma butyrolactone using the same. More specifically, the active ingredient includes palladium and nickel as a main component, Gamma suitable for application to commercial processes because of the liquid phase reduction of gamma butyrolactone (hereinafter referred to as GBL) from maleic anhydride (hereinafter referred to as MAN) under a catalyst obtained by using the composite compound as a support. It relates to a hydrogenation reaction catalyst for producing butyrolactone, a method for producing the same, and a method for producing gamma butyrolactone using the same.

GBL은 다양한 합성방법에서 출발 물질로 사용된다. 실제로 부틸산과 유도체의 생산, 테트라하이드로퓨란 및 N-메틸피롤리돈 등과 같은 물질의 생산에 있어 중요한 역할을 한다. 또한, GBL 자체는 아크릴레이트, 폴리머, 합성수지의 제조에 있어 중요한 용매로도 알려져 있다.GBL is used as a starting material in various synthetic methods. In fact, it plays an important role in the production of butyric acid and derivatives, and the production of substances such as tetrahydrofuran and N-methylpyrrolidone. GBL itself is also known as an important solvent in the production of acrylates, polymers and synthetic resins.

현재, 상기 GBL의 제조방법은 주로 MAN으로부터 일차 수소화된 호박 무수산 (이하, SAN)을 이차 수소화 방법을 통해 촉매 존재하에서 GBL로 전환시킨다.At present, the method of preparing GBL mainly converts primary hydrogenated amber anhydrous acid (hereinafter, SAN) from MAN to GBL in the presence of a catalyst through a secondary hydrogenation method.

상기 MAN의 구조는 불포화된 2개의 C=O 와 1개의 C=C 결합이 존재하며 수소화 과정에서 이러한 불포화된 결합이 단일결합으로 포화된다. SAN으로의 수소화는 불포화된 C=C 이중결합을 C-C 단일결합으로 전환시키는 과정이다. 이 과정은 발열반응으로 약 32 kcal/mol의 반응열이 발산되고, 반응 중에 물이 생성되지 않는다. 일반적으로 무촉매 상태에서도 반응이 완결되는 것으로 보고되고 있으며, 촉매를 사용하는 경우는 반응조건의 완화가 나타나서, 약 110 내지 140 ℃에서 반응이 진행된다. 상기 수소화 반응으로 얻어진 부반응물로는 부탄올, 프로판올, 아세톤 등이 있으며, 부반응물의 정도는 촉매의 존재하에서 반응조건이 고온일 경우에 더욱 심화되는 것으로 보고되어 진다.In the structure of MAN, two unsaturated C═O and one C═C bond are present and the unsaturated bond is saturated with a single bond during hydrogenation. Hydrogenation to SAN is the process of converting unsaturated C═C double bonds to C—C single bonds. This process is exothermic, resulting in about 32 kcal / mol of heat dissipating and no water is produced during the reaction. In general, it is reported that the reaction is completed even in the non-catalyst state, and when the catalyst is used, the reaction conditions are relaxed, and the reaction proceeds at about 110 to 140 ° C. The side reactions obtained by the hydrogenation reaction include butanol, propanol, acetone, and the like, and the degree of side reactions is reported to be intensified when the reaction conditions are high in the presence of a catalyst.

상기 2차 수소화 방법인 화합물내의 두개의 C=O 이중결합의 수소화는 1차 수소화에 비해 반응속도에 있어 매우 느리고, 반응조건에 따라 많은 부반응 및 과수소화에 의한 테트라하이드로퓨란과 1,4 부탄디올의 생성을 야기하기 때문에 많은 연구자들이 이러한 반응조건을 완화시키고, GBL로의 선택도를 향상시키기 위해 노력하고 있다. 상기 2차 수소화는 26 kcal/mol의 반응열이 발생하고 1차 수소화와는 달리 산소원자의 수소화를 통해 물이 발생한다. 상기 물의 생성은 필연적인 호박산 (이하, SA)의 생성을 이끌게 되고, 수율 측면과 공정효율 면에서 부정적인 영향을 미치게 된다.The hydrogenation of two C═O double bonds in the compound, which is the secondary hydrogenation method, is very slow in the reaction rate compared to the primary hydrogenation, and the reaction of tetrahydrofuran and 1,4 butanediol by many side reactions and perhydrogenation depending on the reaction conditions. Many researchers are working to alleviate these reaction conditions and improve the selectivity to GBL because they cause production. The secondary hydrogenation generates heat of reaction of 26 kcal / mol, and unlike primary hydrogenation, water is generated through hydrogenation of oxygen atoms. The production of water leads to the inevitable production of succinic acid (hereinafter, SA), which has a negative effect on yield and process efficiency.

상기 액상 수소화 반응은 약 700 내지 1500 psig, 180 내지 250 ℃의 온도에서 진행된다. 부반응물의 경로는 반응조건, 특히 반응온도에 민감하다. 반응온도 180 ℃ 이하에서는 반응속도의 저하가 두드러지고 축합, 흡착에 의한 촉매활성 감소 등의 효과가 동반된다. 또한 수소화로 생성된 물에 의한 SA 생성속도가 두드러지게 증가한다. 이는 SAN과 물 및 수소 상호간의 반응속도차이에 의해 발생하는 것으로 SAN이 빠른 속도로 GBL로 전환되지 않으면 반응물중의 SAN은 물과의 반응을 선호하게 되기 때문이다. 한편, 250 ℃ 이상의 온도에서는 GBL의 생성속도가 증가하나, 부반응 속도, 역시, 증가하게 된다. 지금까지의 연구 결과를 바탕으로 볼 때, MAN, SAN 과 GBL은 수소화 반응촉매 및 조건 하에서 분해반응 또한 일어날 수 있음이 주지되어 있고, 실제로, C2-C3를 가지는 물질들이 생성물 중에 존재하게 된다. 소위, 가수소분해 반응(hydrogenolysis)은 이러한 물질의 생성과정을 설명하는 반응기구 (mechanism)로 설명된다. 부가적으로, 분해반응의 2차 결과로서, 축합 및 중합이 발생하며, 이러한 연속적 영향은 다양한 고비점 물질을 생성하게 된다.The liquid phase hydrogenation reaction is carried out at a temperature of about 700 to 1500 psig, 180 to 250 ℃. The route of the side reactants is sensitive to the reaction conditions, in particular the reaction temperature. When the reaction temperature is 180 ° C. or lower, the reaction rate is remarkably lowered, and the effects of condensation and adsorption decrease the catalytic activity. In addition, the rate of SA production by water produced by hydrogenation is significantly increased. This is caused by the difference in reaction rate between SAN, water, and hydrogen, because the SAN in the reactant prefers the reaction with water unless the SAN is rapidly converted to GBL. On the other hand, at a temperature of 250 ° C or higher, the production rate of GBL increases, but the side reaction rate also increases. Based on the research results thus far, it is well known that MAN, SAN and GBL can also undergo decomposition reactions under hydrogenation catalysts and conditions, and in fact, substances containing C 2 -C 3 are present in the product. . So-called hydrogenolysis is described as a mechanism that explains the production of these substances. In addition, as a secondary result of the decomposition reaction, condensation and polymerization occur, and this continuous effect produces various high boiling materials.

한편, MAN으로부터 효과적으로 수소화를 통해 GBL을 얻기 위해 다양한 촉매의 적용사례가 알려져 있다. 지금까지 알려진 효과적인 촉매로는 팔라듐을 중심으로 하는 귀금속류와 전이금속으로 이루어진 다성분계 촉매가 알려져 있다. 예를 들어, 미국특허 제5,536,849호는 구리를 주성분으로 하여 크롬과 실리카를 보조성분으로 하는 촉매를 제안하였으며, 이러한 촉매는 지금까지 문제가 되던 다량의 SAN의 미 환원의 문제점을 개선하였다. 그러나 크롬의 환경적인 치명적인 단점은폐 촉매의 처리에 있어 문제점을 나타내었다. 최근에는 미국특허 제6,008,375호에서 크롬대신에 알루미늄과 흑연(graphite)으로 대치된 촉매를 소개하였다.On the other hand, there are known applications of various catalysts to effectively obtain GBL through hydrogenation from MAN. As an effective catalyst known to date, a multicomponent catalyst composed of noble metals and transition metals based on palladium is known. For example, U.S. Patent No. 5,536,849 proposed a catalyst having chromium and silica as a main component of copper as a main component, and this catalyst improves the problem of unreduction of a large amount of SAN, which has been a problem until now. However, the environmentally fatal disadvantage of chromium has shown problems in the treatment of waste catalysts. Recently, US Pat. No. 6,008,375 introduced a catalyst substituted with aluminum and graphite instead of chromium.

상기 귀금속류 수소화 촉매로는 미국특허 제5,118,821호에서 언급된 바와 같이, Pd/Ni의 활성 성분을 기초로 하여 지지체로는 실리카(SiO2) 또는 활성탄이 주로 사용된다. 최근에는 몰리브데늄을 제 3성분으로 추가하여 활성 및 선택도를 향상시킨 경우가 보고된 바 있다(대한민국 특허출원 제2001-95500호). 그러나, 지금까지의 결과에서는 MAN으로부터 GBL로의 반응시간이 3시간 이상이 소요되며, 반응물에 대한 촉매량이 10 내지 15 중량%를 차지하여 실질방법의 적용성에 한계가 있을 뿐만 아니라 감마부티로락톤 제조후 용매로 사용된 THF를 분리해야 하는 공정상 번거롭고 복잡하였다.As mentioned in US Pat. No. 5,118,821, as the noble metal hydrogenation catalyst, silica (SiO 2 ) or activated carbon is mainly used as a support based on the active component of Pd / Ni. Recently, it has been reported that the addition of molybdenum as a third component improves the activity and selectivity (Korean Patent Application No. 2001-95500). However, in the results so far, the reaction time from MAN to GBL takes more than 3 hours, and the amount of catalyst to the reactants occupies 10 to 15% by weight, thus limiting the applicability of the practical method and after preparing gamma butyrolactone. It was cumbersome and complicated in the process to separate the THF used as solvent.

상기와 같은 종래 기술에서의 문제점을 고려하여, 본 발명은 무수말레인산(MAN)을 액상수소화하여 감마부티로락톤(GBL)을 제조하기 위한 방법에서 티타니아의 첨가로 변형된 표면 성질을 갖는 실리카 지지체의 적용을 통해 가혹 조건에서 향상된 활성과 선택도를 가지는 감마부티로락톤 제조용 수소화 반응촉매 및 그 제조방법을 제공하는 것을 목적으로 한다.In view of the above problems in the prior art, the present invention provides a silica support having a surface property modified by the addition of titania in a method for producing gamma butyrolactone (GBL) by liquid-hydrogenating maleic anhydride (MAN). It is an object of the present invention to provide a hydrogenation catalyst for producing gamma butyrolactone having improved activity and selectivity under harsh conditions and a method of preparing the same.

본 발명의 다른 목적은 상기 수소화 반응촉매를 이용하여 반응물에 대한 촉매의 사용량과 반응시간을 최소화하여 경제적으로 감마부티로락톤을 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for economically producing gamma butyrolactone by minimizing the amount of reaction and reaction time of the catalyst for the reactants using the hydrogenation reaction catalyst.

본 발명은 상기 목적을 달성하기 위하여, 감마부티로락톤 제조용 수소화 반응촉매에 있어서,The present invention, in order to achieve the above object, in the hydrogenation catalyst for producing gamma butyrolactone,

티타니아를 포함하는 실리카-티타니아 지지체 상에 팔라듐과 니켈이 담지된 감마부티로락톤 제조용 수소화 반응촉매를 제공한다.Provided is a hydrogenation catalyst for preparing gamma butyrolactone on which a palladium and nickel are supported on a silica-titania support including titania.

또한, 본 발명은 a) 티타니아를 포함하는 알코올 전구체를 비수용성 용매에 용해시키고 중간세공(mesoporous)의 실리카에 담지시킨 후 소성시켜 실리카-티타니아 지지체를 제조하는 단계; 및In addition, the present invention comprises the steps of a) dissolving an alcohol precursor comprising titania in a non-aqueous solvent, supported on mesoporous silica and calcined to prepare a silica-titania support; And

b) 상기 a)의 실리카-티타니아 지지체를 팔라듐과 니켈의 전구체가 용해된 수용액에 첨가하고 교반한 후 용매를 제거하고 건조 및 소성시키는 단계b) adding the silica-titania support of a) to an aqueous solution in which the precursors of palladium and nickel are dissolved, stirring, removing the solvent, drying and calcining

를 포함하는 감마부티로락톤 제조용 수소화 반응촉매의 제조방법을 제공한다.It provides a method for producing a hydrogenation catalyst for producing gamma butyrolactone comprising a.

또한, 본 발명은 액상에서 무수말레인산을 수소화반응시키는 단계를 포함하는 감마부티로락톤의 제조방법에 있어서,In addition, the present invention provides a method for producing gamma butyrolactone comprising the step of hydrogenating maleic anhydride in a liquid phase,

상기 수소화 반응은 티타니아를 포함하는 실리카-티타니아 지지체 상에 팔라듐과 니켈이 담지된 수소화 반응촉매 및 감마부티로락톤 용매하에서 실시되는 것인 감마부티로락톤의 제조방법을 제공한다.The hydrogenation reaction provides a method for preparing gamma butyrolactone, which is carried out under a hydrogenation reaction catalyst and a gamma butyrolactone solvent in which palladium and nickel are supported on a silica-titania support including titania.

이하에서 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 티타니아가 첨가된 지지체를 사용하여 제조된 감마부티로락톤 제조용 수소화 반응촉매 및 그의 제조방법과, 이를 이용하여 무수말레인산(MAN)으로부터 감마부티로락톤을 제조하는 방법에 관한 것이다.The present invention relates to a hydrogenation catalyst for producing gamma butyrolactone prepared using a support added with titania, and a method for preparing the same, and a method for producing gammabutyrolactone from maleic anhydride (MAN) using the same.

본 발명의 수소화 반응촉매의 제조방법은 티타니아에 의해 변형된 실리카 지지체를 사용하여 팔라듐과 니켈을 담지하는 과정으로 이루어진다. 본 발명에서 사용하는 수소화 반응촉매는 티타니아가 첨가된 지지체를 사용하여 종래 단일성분의 지지체보다 동일 조건에서 무수말레인산(MAN)의 수소화에 있어서 높은 반응속도와 수율을 나타내는 특징이 있다.The method for producing a hydrogenation catalyst of the present invention consists of a process of supporting palladium and nickel using a silica support modified by titania. The hydrogenation catalyst used in the present invention is characterized by showing a higher reaction rate and yield in hydrogenation of maleic anhydride (MAN) under the same conditions than a conventional single-component support using a titania-added support.

이러한 본 발명의 실리카-티타니아 지지체는 티타니아를 포함하는 알코올성 전구체를 톨루엔과 같은 비수용성 용매에 용해시키고 중간세공을 가진 실리카에 부착하여 세공내 표면을 포함하는 모든 표면에 티타니아와 실리카의 복합물을 형성한 후에 소성을 통해 제조된다.The silica-titania support of the present invention dissolves an alcoholic precursor containing titania in a non-aqueous solvent such as toluene and attaches to silica having mesopores to form a composite of titania and silica on all surfaces including the pore surface. It is then produced by firing.

그런 다음, 상기에서 제조된 실리카-티타니아 지지체는 팔라듐과 니켈의 질산염, 염산염 등의 전구체의 수용액에 담지하고 소성함으로써 수소화 반응촉매를 제조한다. 상기 팔라듐과 니켈의 담지 방법은 팔라듐과 니켈을 포함하는 수용액을 50 내지 80 ℃의 온도에서 제조한 이후에 실리카-티타니아 지지체에 첨가하여 혼합하고, 용매인 물을 진공하에서 제거한다. 상기에서 얻어진 고체는 건조시킨 후, 400 내지 500 ℃의 온도에서 소성시킨다. 이러한 과정으로 얻어진 촉매는 수소화 반응 전에 350 내지 600 ℃ 온도와 수소 존재하에서 환원시킨 후 사용하는 것이 바람직하다.Then, the silica-titania support prepared above is supported by an aqueous solution of precursors such as nitrate and hydrochloride of palladium and nickel to prepare a hydrogenation catalyst. In the method of supporting palladium and nickel, an aqueous solution containing palladium and nickel is prepared at a temperature of 50 to 80 ° C., and then added to and mixed with a silica-titania support, and water, which is a solvent, is removed under vacuum. The solid obtained above is dried and then calcined at a temperature of 400 to 500 ° C. The catalyst obtained by such a process is preferably used after reduction in the presence of hydrogen and 350 to 600 ℃ temperature before the hydrogenation reaction.

본 발명의 지지체에 사용되는 티타니아는 실리카 100 중량부에 대하여 1 내지 50 중량부로 사용하며, 바람직하게는 2 내지 10 중량부로 사용한다. 상기 티타니아의 사용량이 1 중량부 미만이면 분산도는 커지나 티타니아의 이점이 나타나지 않는 문제가 있고, 50 중량부를 초과하면 티타니아의 결정 형성이 되는 문제가 있다.Titania used in the support of the present invention is used in 1 to 50 parts by weight, preferably 2 to 10 parts by weight based on 100 parts by weight of silica. If the amount of titania is less than 1 part by weight, the degree of dispersion becomes large, but there is a problem in that the benefits of titania do not appear. If the amount of titania exceeds 50 parts by weight, there is a problem in that titania crystals are formed.

또한, 본 발명에서 지지체로 사용되는 실리카는 200 내지 1500 ㎡의 표면적과 2 내지 50 nm의 세공조건을 가진 중간세공(mesoporous)의 실리카를 사용하는 것이 바람직하다.In addition, the silica used as the support in the present invention is preferably used mesoporous silica having a surface area of 200 to 1500 m 2 and pore conditions of 2 to 50 nm.

또한, 본 발명의 촉매에서 활성 성분으로 사용되는 팔라듐은 지지체와 촉매성분을 합한 전체 촉매 중량에 대하여 0.1 내지 5 중량%, 바람직하게는 0.5 내지 3 중량%로 사용한다. 상기 팔라듐의 사용량이 0.1 중량% 미만이면 수소화능력이 미미해 활성이 떨어지는 문제가 있고, 5 중량%를 초과하면 활성증가는 거의 없으면서도 귀금속사용에 의한 촉매생산 비가 증가하는 문제가 있다.In addition, palladium used as an active ingredient in the catalyst of the present invention is used in an amount of 0.1 to 5% by weight, preferably 0.5 to 3% by weight, based on the total catalyst weight of the support and the catalyst component. If the amount of the palladium is less than 0.1% by weight, there is a problem in that the activity is poor due to the insignificant hydrogenation ability, and when the amount of the palladium is used in excess of 5% by weight, there is a problem in that the catalyst production ratio due to the use of precious metals is increased while there is almost no increase in activity.

상기 니켈의 함량은 지지체와 촉매성분을 합한 전체 촉매 중량에 대하여 5 내지 30 중량%로 사용하며, 바람직하게는 15 내지 25 중량%로 사용한다. 상기 니켈의 사용량이 5 중량% 미만이면 수소화능력이 미미해 활성이 떨어지는 문제가 있고, 30 중량%를 초과하면 활성증가는 미미하면서 촉매세공을 막는 문제가 있다.The nickel content is used in an amount of 5 to 30% by weight, preferably 15 to 25% by weight, based on the total catalyst weight of the support and the catalyst component. If the amount of the nickel is less than 5% by weight, there is a problem in that the activity is poor because the hydrogenation capacity is insignificant.

한편, 본 발명은 상기에서 얻은 수소화 반응촉매를 이용하여 수소화 반응을 통해 감마부티로락톤(GBL)을 제조할 수 있다.On the other hand, the present invention can produce gamma butyrolactone (GBL) through the hydrogenation reaction using the hydrogenation reaction catalyst obtained above.

종래에는 감마부티로락톤 제조후 THF와 같은 용매를 재분리 회수하여 사용하여 방법이 복잡하였지만, 본 발명은 감마부티로락톤 제조시 생성물인 감마부티로락톤을 용매로 사용하여, 용매분리 방법이 불필요하여 경제적이다. 또한, 본 발명은수소화 반응시 촉매 g당의 활성도를 증가시켜 반응시간을 단축시킬 수 있다. 따라서, 본 발명은 반응결과에서 월등한 결과를 얻을 수 있을 뿐만 아니라 종래 방법들에 비해 반응시간을 단축하여 실질적인 반응공정의 적용부분에서 큰 장점이 있다.Conventionally, the method is complicated by re-separating and recovering a solvent such as THF after preparing gamma-butyrolactone, but the present invention does not require a solvent separation method by using gamma-butyrolactone, which is a product of gamma-butyrolactone, as a solvent. It is economical. In addition, the present invention can shorten the reaction time by increasing the activity per g catalyst during the hydrogenation reaction. Therefore, the present invention not only obtains excellent results in the reaction results but also has a great advantage in the application part of the actual reaction process by shortening the reaction time compared to the conventional methods.

본 발명에서 GBL을 수득하기 위한 무수말레인산(MAN)의 수소화 반응은 180 내지 250 ℃의 온도, 700 내지 1500 psig의 압력, 및 반응시간 1 내지 2시간의 조건하에 실시되는 것이 바람직하다.Hydrogenation of maleic anhydride (MAN) to obtain GBL in the present invention is preferably carried out under the conditions of temperature of 180 to 250 ℃, pressure of 700 to 1500 psig, and reaction time of 1 to 2 hours.

특히, 본 발명의 수소화 반응촉매의 투입량은 반응물인 무수말레인산 100 중량부에 대하여 3 내지 10 중량부로 사용하는 것이 바람직하며, 보다 바람직하게는 촉매의 높은 활성에 기인하여 3 내지 5 중량부로 사용한다. 상기 촉매의 사용량이 3 중량부 미만이면 반응시간의 증가로 인한 중합물의 증가 문제가 있고, 10 중량부를 초과하면 전체 탄소 함량이 급격히 감소하는 문제가 있다.In particular, the amount of the hydrogenation reaction catalyst of the present invention is preferably used in an amount of 3 to 10 parts by weight based on 100 parts by weight of maleic anhydride as a reactant, and more preferably 3 to 5 parts by weight due to the high activity of the catalyst. If the amount of the catalyst is less than 3 parts by weight, there is a problem of increasing the polymer due to the increase of the reaction time, and if it exceeds 10 parts by weight, there is a problem that the total carbon content is sharply reduced.

이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것이지 이들만으로 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, an Example is for illustrating this invention and is not limited only to these.

[실시예 1]Example 1

10 중량%의 티타니아를 함유하는 티타니아 이소프로필 옥사이드를 정량하여 톨루엔의 용제에 녹이고 중간세공(mesoporous)을 가진 실리카 20g에 담지시킨 후에 450 ℃에서 소성시켰다.Titania isopropyl oxide containing 10% by weight of titania was quantified, dissolved in a solvent of toluene, supported on 20 g of mesoporous silica and calcined at 450 ° C.

소성된 티타니아가 첨가된 실리카 지지체를 팔라듐 나이트레이트 1.26g과 니켈나이트레이트 14.23g의 전구체가 녹아 있는 수용액에 넣고 교반한 후에, 용매를 제거하였다. 이후, 110 ℃의 온도에서 건조한 후에 450 ℃에서 소성하고 동일온도에서 수소를 이용하여 촉매를 환원시켰다. 촉매상에서의 팔라듐과 니켈의 최종 조성은 각각 2.0 중량%과 16.3 중량%이다.The calcined titania-added silica support was placed in an aqueous solution in which 1.26 g of palladium nitrate and 14.23 g of nickel nitrate were dissolved, followed by stirring. Then, the solvent was removed. Then, after drying at a temperature of 110 ℃ calcined at 450 ℃ and the catalyst was reduced by using hydrogen at the same temperature. The final compositions of palladium and nickel on the catalyst are 2.0% and 16.3% by weight, respectively.

300 ml의 고압반응기에, 80 g의 무수말레인산(MAN), 120 g의 GBL과 4g의 상기 촉매를 투입한 후에, 1300 psig의 압력 조건에서 20 ℃/min의 승온 속도로 230 ℃로 온도를 올려 반응을 진행하였다. 반응물 분석은 불꽃이온화 검출기가 부착된 가스크로마토그래피로 분석하였으며, 반응후 2시간 경과후에, 무수말레인산(MAN)의 전환율은 100%이었으며, 감마부티로락톤(GBL)의 수율은 74%를 나타내었다.Into a 300 ml high-pressure reactor, 80 g of maleic anhydride (MAN), 120 g of GBL, and 4 g of the catalyst were added, followed by raising the temperature to 230 ° C. at a temperature rising rate of 20 ° C./min at a pressure of 1300 psig. The reaction proceeded. The reactants were analyzed by gas chromatography with a flame ionization detector. After 2 hours, the conversion of maleic anhydride (MAN) was 100% and the yield of gamma butyrolactone (GBL) was 74%. .

[실시예 2]Example 2

실시예 1과 동일한 방법으로 실시하되, 200 ℃의 온도에서 수소화 반응을 실시하였다. 2시간 반응후에 무수말레인산(MAN)의 전환율은 100%이었으며, GBL의 수율은 14%를 나타내었다.It carried out in the same manner as in Example 1, but carried out a hydrogenation reaction at a temperature of 200 ℃. After 2 hours, the maleic anhydride (MAN) conversion was 100% and the yield of GBL was 14%.

[비교예 1]Comparative Example 1

본 비교예는 지지체에 첨가된 티타니아의 효과를 나타내기 위해 이루어졌다. 티타니아가 배제된 중간세공(mesoporous) 실리카 지지체를 사용하여, 실시예 1에 기술된 방법과 같이 팔라듐과 니켈을 담지하여 촉매를 제조하였다. 촉매상에서의 팔라듐과 니켈의 조성은 각각 2.0 중량%과 16.3 중량%이다.This comparative example was made to show the effect of titania added to the support. A catalyst was prepared by supporting palladium and nickel as in the method described in Example 1, using a titania-free mesoporous silica support. The compositions of palladium and nickel on the catalyst are 2.0% and 16.3% by weight, respectively.

실시예 1과 동일조건에서 2시간 반응후에 MAN의 전환율은 100%이었으며, GBL의 수율은 7%를 나타내었다.After 2 hours of reaction under the same conditions as in Example 1, the conversion of MAN was 100% and the yield of GBL was 7%.

[비교예 2]Comparative Example 2

본 비교예에서는 지지체에 사용된 실리카 지지체의 효과를 나타내기 위해 이루어졌다. 티타니아가 배제된 상업 실리카 지지체(Junsei Co.)를 사용하여, 실시예 1에 기술된 방법과 같이 팔라듐과 니켈을 담지하여 촉매를 제조하였다. 촉매상에서의 팔라듐과 니켈의 조성은 각각 2.0 중량%과 16.3 중량%이다.In this comparative example, it was made to show the effect of the silica support used in the support. Using a commercial silica support (Junsei Co.) excluding titania, a catalyst was prepared by supporting palladium and nickel as in the method described in Example 1. The compositions of palladium and nickel on the catalyst are 2.0% and 16.3% by weight, respectively.

실시예 1과 동일조건에서 2시간 반응후에, MAN의 전환율은 100%이었으며, GBL의 수율은 4%를 나타내었다.After 2 hours of reaction under the same conditions as in Example 1, the conversion of MAN was 100% and the yield of GBL was 4%.

이상에서 설명한 바와 같이, 본 발명에 따른 수소화 반응촉매는 티타니아가 첨가된 지지체를 사용하여 종래 단일성분의 지지체보다 동일 조건에서 무수말레인산(MAN)의 수소화에 있어서 높은 반응속도와 수율을 나타내며 수소화 반응시간이 단축되고 촉매의 사용량을 줄일 수 있어서 경제적으로 높은 수율의 감마부티로락톤을 얻을 수 있다. 또한, 감마부티로락톤 제조시 상기 수소화 반응촉매를 이용하고 용매로 동일한 감마부티로락톤을 사용하여 용매분리의 번거로움이 없으며, 특히 촉매 g당의 활성도를 증가시켜 반응시간을 단축시킬 수 있다.As described above, the hydrogenation catalyst according to the present invention shows a higher reaction rate and yield in hydrogenation of maleic anhydride (MAN) under the same conditions than the conventional single-component support using a titania-added support. It is possible to shorten the amount of the catalyst used and to obtain economically high yield of gamma butyrolactone. In addition, when the gamma butyrolactone is prepared using the hydrogenation reaction catalyst and using the same gamma butyrolactone as a solvent, there is no hassle of solvent separation, and in particular, the reaction time can be shortened by increasing the activity per g of catalyst.

Claims (7)

감마부티로락톤 제조용 수소화 반응촉매에 있어서,In the hydrogenation catalyst for producing gamma butyrolactone, 티타니아를 포함하는 실리카-티타니아 지지체 상에 팔라듐과 니켈이 담지된 감마부티로락톤 제조용 수소화 반응촉매.A hydrogenation catalyst for preparing gamma butyrolactone, in which palladium and nickel are supported on a silica-titania support including titania. 제 1 항에 있어서, 상기 실리카-티타니아 지지체의 티타니아 함량이 실리카 100 중량부에 대하여 1 내지 50 중량부인 감마부티로락톤 제조용 수소화 반응촉매.The hydrogenation catalyst for producing gamma butyrolactone according to claim 1, wherein the titania content of the silica-titania support is 1 to 50 parts by weight based on 100 parts by weight of silica. 제 1 항에 있어서, 상기 실리카-티타니아 지지체는 비수성 용매에 용해된 티타니아를 포함하는 알코올 전구체를 200 내지 1500 ㎡의 표면적과 2 내지 50 nm의 기공을 가지는 중간세공 실리카에 담지시키고 소성시켜 제조된 것인 감마부티로락톤 제조용 수소화 반응촉매.The method of claim 1, wherein the silica-titania support is prepared by supporting and firing an alcohol precursor including titania dissolved in a non-aqueous solvent in mesoporous silica having a surface area of 200 to 1500 m 2 and pores of 2 to 50 nm. A hydrogenation catalyst for producing gamma butyrolactone. 제 1 항에 있어서, 상기 팔라듐의 함량은 지지체와 촉매성분을 합한 전체 촉매 중량에 대하여 0.1 내지 5 중량%이고, 니켈의 함량은 지지체와 촉매성분을 합한 전체 촉매 중량에 대하여 5 내지 30 중량%인 감마부티로락톤 제조용 수소화 반응촉매.According to claim 1, wherein the content of the palladium is 0.1 to 5% by weight based on the total catalyst weight of the support and the catalyst component, the nickel content is 5 to 30% by weight relative to the total catalyst weight of the support and the catalyst component Hydrogenation catalyst for producing gamma butyrolactone. a) 티타니아를 포함하는 알코올 전구체를 비수용성 용매에 용해시키고 중간세공(mesoporous)의 실리카에 담지시킨 후 소성시켜 실리카-티타니아 지지체를 제조하는 단계; 및a) preparing a silica-titania support by dissolving an alcohol precursor comprising titania in a non-aqueous solvent, immersing in mesoporous silica, and calcining; And b) 상기 a)의 실리카-티타니아 지지체를 팔라듐과 니켈의 전구체가 용해된 수용액에 첨가하고 교반한 후 용매를 제거하고 건조 및 소성시키는 단계b) adding the silica-titania support of a) to an aqueous solution in which the precursors of palladium and nickel are dissolved, stirring, removing the solvent, drying and calcining 를 포함하는 감마부티로락톤 제조용 수소화 반응촉매의 제조방법.Method for producing a hydrogenation catalyst for producing gamma butyrolactone comprising a. 액상에서 무수말레인산을 수소화 반응시키는 단계를 포함하는 감마부티로락톤의 제조방법에 있어서,In the manufacturing method of gamma butyrolactone comprising the step of hydrogenating maleic anhydride in a liquid phase, 상기 수소화 반응은 티타니아를 포함하는 실리카-티타니아 지지체 상에 팔라듐과 니켈이 담지된 수소화 반응촉매 및 감마부티로락톤 용매하에서 실시되는 것인 감마부티로락톤의 제조방법.The hydrogenation reaction is a method for producing gamma butyrolactone, which is carried out under a hydrogenation catalyst and a gamma butyrolactone solvent in which palladium and nickel are supported on a silica-titania support including titania. 제 6 항에 있어서, 상기 수소화 반응촉매는 사용량이 무수말레인산(MAN) 100 중량부에 대하여 3 내지 10 중량부인 것인 감마부티로락톤의 제조방법.The method of claim 6, wherein the hydrogenation reaction catalyst is used in an amount of 3 to 10 parts by weight based on 100 parts by weight of maleic anhydride (MAN).
KR10-2002-0019243A 2002-04-09 2002-04-09 Hydrogenation reaction catalyst for preparing gamma-butyrolactone and method for preparing thereof, and method for preparing gamma-butyrolactone using the same Expired - Fee Related KR100446655B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0019243A KR100446655B1 (en) 2002-04-09 2002-04-09 Hydrogenation reaction catalyst for preparing gamma-butyrolactone and method for preparing thereof, and method for preparing gamma-butyrolactone using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0019243A KR100446655B1 (en) 2002-04-09 2002-04-09 Hydrogenation reaction catalyst for preparing gamma-butyrolactone and method for preparing thereof, and method for preparing gamma-butyrolactone using the same

Publications (2)

Publication Number Publication Date
KR20030080555A KR20030080555A (en) 2003-10-17
KR100446655B1 true KR100446655B1 (en) 2004-09-04

Family

ID=32378295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0019243A Expired - Fee Related KR100446655B1 (en) 2002-04-09 2002-04-09 Hydrogenation reaction catalyst for preparing gamma-butyrolactone and method for preparing thereof, and method for preparing gamma-butyrolactone using the same

Country Status (1)

Country Link
KR (1) KR100446655B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118821A (en) * 1988-04-22 1992-06-02 U C B, S.A. Process for the production of gamma-butyrolactone
JPH069601A (en) * 1992-06-23 1994-01-18 Tosoh Corp Production of lactones by hydrogenation
KR20010103947A (en) * 2000-05-12 2001-11-24 김이환 Catalyst for the hydrogenation and method for preparing r-butyrolactone using the same catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118821A (en) * 1988-04-22 1992-06-02 U C B, S.A. Process for the production of gamma-butyrolactone
KR0131203B1 (en) * 1988-04-22 1998-04-17 알.뒤셀도르프 아이.씨.아이.에이 Process for the production of ñò-butyrolactone
JPH069601A (en) * 1992-06-23 1994-01-18 Tosoh Corp Production of lactones by hydrogenation
KR20010103947A (en) * 2000-05-12 2001-11-24 김이환 Catalyst for the hydrogenation and method for preparing r-butyrolactone using the same catalyst

Also Published As

Publication number Publication date
KR20030080555A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
US6291725B1 (en) Catalysts and process for hydrogenolysis of sugar alcohols to polyols
EP1109767B1 (en) Two-stage process for the production of 1,3-propanediol by catalytic hydrogenation of 3-hydroxypropanal
JP5478504B2 (en) Method for producing N-methylpyrrolidone
JPH03167157A (en) Production of unsaturated carboxylic ester
JP6718017B2 (en) Method for producing 1,3-cyclohexanedimethanol
JPH01168345A (en) Hydrogenating catalyst, production thereof and hydrogenation using said catalyst
JP2543929B2 (en) Method for hydrogenating citric acid and substituted citric acid to 3-substituted tetrahydrofuran, 3- and 4-substituted butyrolactone and mixtures thereof
US7465816B2 (en) Production of tetrahydrofuran from 1,4-butanediol
JPS63255253A (en) Production of amines
US5990323A (en) Preparation of amines
KR100809133B1 (en) Porous catalyst for hydrogenating maleic anhydride with tetrahydrofuran
KR100841604B1 (en) How to prepare tetrahydrofuran
KR100446655B1 (en) Hydrogenation reaction catalyst for preparing gamma-butyrolactone and method for preparing thereof, and method for preparing gamma-butyrolactone using the same
JP3411285B2 (en) Production method of γ-butyrolactone
US4185022A (en) Furfuryl alcohol production process
KR101088100B1 (en) Method for preparing gamma butyrolactone by hydrogenation of palladium supported catalyst supported on alumina control gel carrier with controlled acid properties and succinic acid using the catalyst
KR100490838B1 (en) Praparation of gamma-butyrolactone using noble metal catalyst
US20060100449A1 (en) Integrated two-step process for the production of gamma-methyl-alpha-methylene-gamma-butyrolactone from levulinic acid and hydrogen
KR100490841B1 (en) Hydrogenation catalyst reaction and the process for the production of gammabutrolactone using the same
JPH0248541A (en) Production of terpene alcohol
KR100230831B1 (en) A process for preparing gamma-butyrolactone
KR20050024230A (en) Method for Preparing Sugar Alcohols by Catalytic Hydrogenation of Sugars
JPH03167156A (en) Production of unsaturated carboxylic ester
KR100710543B1 (en) Continuous production process of pure (S) -beta-hydroxy-gamma-butyrolactone with high optical purity
KR100774629B1 (en) Continuous production method of pure 2,3-dihydrobenzofuran

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20020409

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20040727

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20040823

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20040824

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20070626

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20080709

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20090720

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20090720

Start annual number: 6

End annual number: 6

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee