KR100426952B1 - Glass Formulation for Combustible Radioactive Wastes Using Triangular Coordinate - Google Patents
Glass Formulation for Combustible Radioactive Wastes Using Triangular Coordinate Download PDFInfo
- Publication number
- KR100426952B1 KR100426952B1 KR10-2000-0075997A KR20000075997A KR100426952B1 KR 100426952 B1 KR100426952 B1 KR 100426952B1 KR 20000075997 A KR20000075997 A KR 20000075997A KR 100426952 B1 KR100426952 B1 KR 100426952B1
- Authority
- KR
- South Korea
- Prior art keywords
- glass
- waste
- composition
- solid
- ash
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
- G21F9/301—Processing by fixation in stable solid media
- G21F9/302—Processing by fixation in stable solid media in an inorganic matrix
- G21F9/305—Glass or glass like matrix
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/005—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
- Glass Compositions (AREA)
Abstract
본 발명은 삼상좌표를 이용한 가연성 방사성 폐기물의 유리고화체 제조방법에 관한 것으로 원자력발전소에서 발생하는 가연성 중·저준위 방사성 폐기물을 분해시 재(ash) 성분을 용융된 유리첨가제와 혼합시켜 비결정질의 유리고화체를 제조함에 있어서, 유리 용융로에서 방사성폐기물과 유리첨가제를 혼합하여 내침출성과 용융시 점도가 우수한 특성을 갖는 유리고화체를 제조하는 데 있다.The present invention relates to a method for producing a glass solid of combustible radioactive waste using three-phase coordinates. When the combustible medium and low level radioactive waste generated in a nuclear power plant is decomposed, an ash component is mixed with a molten glass additive to form an amorphous glass solid. In manufacturing, by mixing the radioactive waste and the glass additive in a glass melting furnace to produce a glass solid having excellent properties of leaching resistance and viscosity at the time of melting.
보다 상세하게는 모의 방사성폐기물과 유리첨가제로 서로 다른 52가지 조성의 유리고화체를 제조하여 용융물의 점도와 총 질량손실을 측정하여 데이터베이스를 제작한 후, 도 1과 같이 SiO2+Al2O3, 알칼리+B2O3및 기타 성분으로 구성되는 최적 조성영역을 삼상좌표에 표시하여, 선정된 유리첨가제를 시점으로 도 2와 같이 폐기물 종류별 함량증가에 따른 최종 유리고화체의 조성을 표시하고, 전기의 데이터베이스를 기준으로 그 최종 유리고화체의 건전성을 판정한다.More specifically, the glass solids of 52 different compositions were prepared by simulating radioactive waste and glass additives, and a database was prepared by measuring the viscosity and the total mass loss of the melt. As shown in FIG. 1, SiO 2 + Al 2 O 3 , The optimum composition area consisting of alkali + B 2 O 3 and other components is displayed in three-phase coordinates, and the composition of the final glass solidified according to the increase in the content of each waste type as shown in FIG. The integrity of the final glass solid is determined on the basis of.
본 발명의 삼상도표상에 표시한 유리고화체 조성은 일반유리를 사용할 경우에도 대표적인 잡고체에 대하여 재 형태로 30∼50% 정도 혼합하거나, 붕산폐액 건조물과 잡고체를 재 형태로 약 30∼40%정도까지 혼합하더라도 공기분위기하의 1,100∼1,200℃ 용융로에서 용융하여 우수한 유리고화체를 생산할 수 있다.The glass solid composition shown on the three-phase diagram of the present invention may be mixed in a form of 30 to 50% in the form of ash with respect to a representative glass, or about 30 to 40% in the form of a waste boric acid dried matter and the form of the ash. Even if mixed to a degree, it can be melted in a melting furnace at 1,100 ~ 1,200 ℃ under an air atmosphere to produce an excellent glass solid.
Description
본 발명은 원자력 발전소에서 발생하는 가연성 중·저준위 방사성 폐기물의 유리고화체 제조방법으로서 유리의 최적조성을 선정하는 방법을 제공한다. 보다 상세하게는 원자력발전소에서 발생하는 가연성 중 저준위 방사성 폐기물은 폐이온교환수지(폐수지I, 폐수지II), 잡고체 및 붕산폐액과 같은 가연성 폐기물을 용융유리위에서 열분해시켜 유기물은 배기체로 제거하고 미량 함유된 무기물을 유리고화체화함에 있어서, 유리첨가제(glass frit)의 조성 뿐만 아니라 폐기물의 종류 및 그 재(ash)의 함량에 따라 최종 유리고화체의 조성이 변화하게 된다.The present invention provides a method for selecting the optimum composition of glass as a method for producing a glass solid of a combustible medium-low level radioactive waste generated in a nuclear power plant. More specifically, the low-level radioactive waste from the nuclear power plant pyrolyzes flammable wastes such as waste ion exchange resins (waste I, waste resin II), scum and boric acid waste liquid on molten glass to remove organic matter as exhaust gas. In glass-solidifying the trace-containing inorganic material, the composition of the final glass solids is changed depending on the composition of the glass frit as well as the type of waste and the ash content thereof.
종래에는 폐기물의 조성을 고려하여 유리첨가제의 조성을 별도로 개발하여 유리고화체를 생산하여 왔으나 유리첨가제 생산에 많은 비용이 소요되는 단점이 있었다. 그러나 본 발명은 실제 유리고화체를 제조하기 전 유리첨가제 후보조성을 선정하여 잡고체, 폐수지 및 붕산폐액 건조물 등의 재(ash)를 혼합비율에 따라 그 최종유리의 특성을 예측하여 우수한 특성의 최종 유리고화체 조성을 만들 수 있는 유리첨가제 조성을 설계할 수 있도록 하는 데 있다.Conventionally, the glass solids have been produced by separately developing the composition of the glass additive in consideration of the composition of the waste, but there is a disadvantage in that a large cost is required for the production of the glass additive. However, in the present invention, before the actual glass solids are prepared, the candidate composition of the glass additive is selected, and the ashes of the grater, the waste resin, and the boric acid dry matter are predicted according to the mixing ratio of the final glass, and the final glass having excellent properties. It is to enable the design of a glass additive composition that can produce a solid composition.
본 발명과 관련된 종래기술은 플라이애쉬와 붕산함유 방사성 폐기물을 붕규산유리의 기본원료로 하여 유리고화체를 만드는 방법(한국특허공개 97-051470), 플라이애쉬를 사용한 고준위 폐기물의 유리고화체 제조방법(한국특허공개 97-003288), 폐기물 고화용 유리화재 및 폐기물 고화 유리(일본특허공개 98-167754) 및 방사능, 위험물 및 혼합폐액 고정화용 인산유리에 관한 미국특허 5,840,638호 등이 있으나 이들 모두는 본 발명과 기술적 구성이 다른 것 들이다.Prior art related to the present invention is a method of making a glass solid by using a fly ash and a boric acid-containing radioactive waste as a base material of borosilicate glass (Korean Patent Publication No. 97-051470), a method of manufacturing a glass solid of a high level waste using a fly ash (Korea Patent Published 97-003288), glass fire for waste solidification and glass for waste solidification (Japanese Patent Laid-Open No. 98-167754) and U.S. Patent No. 5,840,638 for radioactive, hazardous materials and mixed waste liquid immobilization. This is different things.
본 발명은 유리 용융로에 방사성폐기물의 모의 산화재와 유리첨가제를 혼합하여 내침출성이 우수하고 용융시 그 점도가 충분히 낮아 배출이 용이한 유리고화체를 제조하는 데 있다. 이를 위하여 무기 산화물 및 탄산화물을 혼합/용융하여 우수한 특성을 갖는 조성 영역에 대한 데이터베이스를 구축한다.The present invention is to prepare a glass solid body which is easy to discharge by mixing the oxidizing material of the radioactive waste and the glass additive in the glass melting furnace and excellent leaching resistance and low enough viscosity during melting. To this end, a mixture of inorganic oxides and carbonates is mixed / melted to establish a database of composition regions having excellent properties.
일반적으로 구입이 용이한 유리를 원료로 하여 폐기물별로 재(ash)의 혼합비 및 그 함량을 제시하기 위하여 광범위한 조성영역을 대상으로 한 점도를 높이는 성분(SiO2+Al2O3), 점도를 낮추는 성분(알칼리+B2O3), 그리고 폐기물에 함유된 주요성분(CaO+Ti2O+…)으로 분류하여 삼상도표를 구성하였다. 그 삼상도표를 통하여 우수한 특성을 갖는 고화체를 생산하기 위한 폐기물간 혼합비율과 폐기물과 일반유리의 배합비율 결정을 제공하고자 한다.In order to present the mixing ratio and content of ash for each waste by using glass, which is easy to purchase, it is a component that raises the viscosity for a wide range of composition (SiO 2 + Al 2 O 3 ) and lowers the viscosity. Three-phase diagrams were constructed by classifying the components (alkali + B 2 O 3 ) and the main components (CaO + Ti 2 O +…) in the waste. The three-phase chart provides the determination of the mixing ratio between wastes and the mixing ratio of waste and common glass to produce solids with good properties.
도 1은 Si, Al, B, 및 알칼리원소(Na, K, Li등)를 주성분으로 한 유리고화체 최적 조성영역을 나타낸 것이다.FIG. 1 shows an optimum composition of glass solids containing Si, Al, B, and alkali elements (Na, K, Li, etc.) as main components.
도 2는 일반유리를 기본원료로 하여 폐기물 종류 및 함량(5%씩 증가)에 따른 최종 고화체의 조성변화(예측치)와 그 실시예를 나타낸 것이다.Figure 2 shows the change in the composition (predicted value) of the final solidified body according to the type and content of the waste (increased by 5%) with the basic glass as a basic raw material and its embodiment.
<도면의 주요부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>
10: 총질량손실 5 g/m2미만의 우수고화체 조성영역10: excellent solidified composition range of less than 5 g / m 2 total mass loss
12: 용융점에서의 점도가 100 poise이하의 우수고화체 조성영역12: excellent solidified composition area with viscosity at melting point of 100 poise or less
14: 상기 조건 10과 12를 동시에 만족하는 유리고화체 조성영역14: glass solid composition composition which satisfies the conditions 10 and 12 at the same time
20: 일반유리 22: 붕산폐액 건조물20: general glass 22: boric acid waste liquid
24: 폐이온교환수지 26: 폐이온교환수지 II24: Waste Ion Exchange Resin 26: Waste Ion Exchange Resin II
28: 대표 잡고체 30: 폐기물 함량 5% 씩 증가시 유리조성들28: representative catch 30: glass compositions with an increase of 5% in waste content
32: 일반유리를 사용하여 제조한 유리고화체중 점도가 100 poise 이내 그리고 총질량손실 5 g/m2미만을 만족하는 조성32: Composition in which the glass solid produced using ordinary glass has a viscosity within 100 poise and a total mass loss of less than 5 g / m 2.
34: 일반유리를 사용하여 제조한 유리고화체중 상기 조건을 만족하지 않는 조성34: Composition which does not satisfy the above conditions among glass solid bodies prepared using ordinary glass
종래의 방사성 폐기물 처리방법은 유리첨가제를 사용하여 폐기물을 유리화시키는 유리의 혼합비율(조성) 또는 그 유리의 제조방법인데 반하여, 본 발명은 구입이 용이한 일반유리가 일정한 조성을 갖는 것에 착안하여 폐기물 종류별로 그 재 성분의 증가를 특정의 삼상도표에 표시하여 적합한 조성영역을 목표로 폐기물별 또는 혼합 폐기물별 함량의 최소 및 최대값을 예비로 선정하도록 한다.Conventional radioactive waste treatment method is the mixing ratio (composition) of the glass to vitrify the waste using a glass additive or a method for producing the glass, the present invention is focused on the type of waste by focusing on the common glass that is easy to purchase a certain composition The increase in log ash is indicated in a specific three-phase diagram to preliminarily select minimum and maximum values for each waste or mixed waste for the appropriate compositional area.
도 1의 최적조성 영역은 52개의 서로 다른 조성의 유리고화체의 점도와 침출율을 조사하여 아래의 실시예와 같은 방법으로 결정하였다. 그 52개의 유리고화체 조성에 따른 총질량손실로 대표하는 침출율과 점도(표 1)를 정리하였다.The optimum composition region of Figure 1 was determined in the same manner as in the following examples by investigating the viscosity and leaching rate of the glass solids of 52 different compositions. The leaching rate and viscosity (Table 1) represented by the total mass loss according to the 52 glass solid compositions were summarized.
도 1에서와 같이 최적조성 영역이 결정되면 도 2와 같이 유리첨가제 후보 조성(예: 일반유리)을 시작점으로 하여 폐기물의 종류별로 대표적인 조성을 이루는 재의 함량에 따른 최종 유리고화체 조성을 삼상도표에 표시할 수 있고 도 2의 목표영역(벡터) 내에 최적 조성을 갖도록 유리첨가제 조성에 따라 폐기물 종류별로 재의 함량을 설계할 수 있도록 표 1과 같이 데이터 베이스화하여 유리화를 효율적으로 수행할 수 있다.As shown in FIG. 1, when the optimum composition region is determined, the final glass solid composition according to the ash content constituting the representative composition for each type of waste may be displayed on the three-phase chart, starting with a candidate glass additive composition (eg, general glass) as shown in FIG. 2. In order to design the ash content for each type of waste according to the glass additive composition to have an optimal composition in the target region (vector) of FIG.
상기에서 최종 유리고화체라함은 기본적으로 폐기물의 재(ash)를 구성하는 무기 산화물(TiO2+CaO+B2O3+∑R2O+..)을 고려하여 우수한 유리가 되기 위해 필요한 부족성분을 추가하여 최종유리를 만들어야 함으로 가장 우선적으로 우수한 특성(점도, 침출율)을 갖는 최종 유리고화체의 조성영역을 구해야 한다. 이러한 과정이표1에 표시한 데이터베이스로서 이는 일반유리나 폐기물의 조성과는 아무런 관련이 없다.In the above, the final glass solids are basically a shortage component necessary for an excellent glass in consideration of the inorganic oxide (TiO 2 + CaO + B 2 O 3 + ∑R 2 O + ..) constituting the ash of the waste. In addition, the final glass should be made so that the composition area of the final glass solid having the best characteristics (viscosity, leaching rate) should be determined first. This process is the database shown in Table 1, which has nothing to do with the composition of ordinary glass or waste.
따라서 표 1에서 표시한 우수한 조성영역이란 단지 도 1에 국한되는 것으로 도 2에서 설명하는 벡터와는 관련이 없고 폐기물과 유리첨가제의 혼합비와 관련하여서만 벡터의 개념을 적용한다.Therefore, the superior composition region shown in Table 1 is limited to FIG. 1 and is not related to the vector described in FIG. 2 and applies the concept of the vector only in relation to the mixing ratio of waste and glass additives.
상기에서 설명한 데이터베이스라 함은 중량비로 규소ㆍ알루미늄 산화물(SiO2+Al2O3)이 약30~60%, 붕소ㆍ알칼리 산화물(B2O3+∑R2O)이 약 7~35% 그리고 기타 산화물(TiO2+CaO+…)이 약 10~50%로 구성되는 3성분계의 삼상좌표 상에 표시된 우수한 유리고화체의 조성 영역(14)을 나타낸다. 또한, 특정 유리첨가제인 일반유리에 혼합 용융할 폐기물의 적정한 함량을 도면상에서 결정하는 방법으로 그 영역(14) 안에 유리첨가제와 폐기물 재(ash)로 혼합된 최종 유리고화체의 조성이 위치하는지를 도 2에서 확인하는 과정을 설명하고 있다.The database described above is about 30 to 60% of silicon and aluminum oxide (SiO 2 + Al 2 O 3 ) and about 7 to 35% of boron and alkali oxide (B 2 O 3 + ∑R 2 O) by weight. The composition region 14 of the excellent glass solid shown on the three-phase coordinate of the three-component system composed of about 10 to 50% of other oxides (TiO 2 + CaO +...) Is shown. In addition, the composition of the final glass solid mixed with the glass additive and the ash ash is located in the region 14 by determining the appropriate content of the waste to be mixed and melted into the general glass which is a specific glass additive. This explains the process of checking.
그러므로 그 최종제품의 품질에 합격하기 위하여 원료 A (예: 일반유리)와 원료 B(예: 폐기물의 ash 함량)를 각각 얼마큼씩 첨가하여야 하는지 실시예에서 여러 가지 혼합비에 대하여 유리고화체를 만들어 그 품질을 측정하여 판정하였다. 하지만, 실제로 유리고화체를 제조하여 측정/판정하지 않고서도 삼상도표상으로 예측할 수 있다. (이후 내용 삭제)Therefore, in order to pass the quality of the final product, the amount of raw material A (e.g. general glass) and raw material B (e.g. ash content of waste) should be added to each embodiment in order to make glass solids at various mixing ratios. Was determined by measuring. In practice, however, glass solids can be produced and predicted in three-phase plots without measurement / judgement. (Delete content after this)
표 1. 유리고화체의 조성에 따른 침출율 및 점도Table 1. Leaching rate and viscosity according to the composition of glass solids
* 알칼리산화물 (Li, K, Na등)* Alkali Oxides (Li, K, Na, etc.)
표 1. 유리고화체의 조성에 따른 침출율 및 점도 측정치 (계속)Table 1. Measurement of Leaching Rate and Viscosity According to Composition of Glass Solids (Continued)
* 알칼리산화물 (Li, K, Na등)* Alkali Oxides (Li, K, Na, etc.)
<실시예><Example>
저준위 방사성 폐기물인 붕산폐액 건조물 및 잡고체 그리고 폐수지I과 잡고체의 혼합 폐기물을 열분해 후의 모의 산화물 형태로 약 10∼50g을, 유리첨가제로 일반유리(SiO273%, Al2O31%, Na2O 14%, MgO 4%,CaO 8%)를 약 50∼90g을 사용하여 다양한 배합비율로 백금도가니에서 유리화 하였던 바, 그 유리고화체의 침출율을 간이 PCT법을 사용하여 측정하였다.(표 2 및 표 3 참조) 여기서 유리고화체를 1∼2 mm 크기의 분쇄유리를 기준으로 S/V값을 1/50이 되도록 유리분말의 표면적(S) 및 침출수의 부피(V)를 결정한다. 이에 따라 준비된 시료는 70℃ 오븐에서 7일간 보관한다. 그 후 유리분말을 건조한 후 총질량손실을 측정하여 그 유리고화체의 침출율로 정하였다.Low-level radioactive waste boric acid dry matter and scum and waste resin I and scum mixed waste are about 10-50g in the form of simulated oxide after pyrolysis, and glass (SiO 2 73%, Al 2 O 3 1%) , Na 2 O 14%, MgO 4%, CaO 8%) was vitrified in the platinum crucible at various compounding ratios using about 50 ~ 90g, the leaching rate of the glass solid was measured using a simple PCT method. (See Tables 2 and 3) Here, the surface area (S) of the glass powder and the volume (V) of the leachate are determined so that the glass solids have an S / V value of 1/50 based on 1 to 2 mm crushed glass. . Thus prepared samples are stored for 7 days in a 70 ℃ oven. Thereafter, after drying the glass powder, the total mass loss was measured to determine the leaching rate of the glass solid.
표 2. 잡고체 및 붕산폐액 건조물 을 함유한 유리고화체의 침출율 비교Table 2. Comparison of Leaching Rates of Glass Solids Containing Crushed and Boric Acid Wastes
* NA: 실험데이터 없음. 70℃에서 7일간 총질량손실(g/m2)* NA: No experimental data. Total mass loss for 7 days at 70 ℃ (g / m 2 )
표 3. 폐이온교환수지의 재(ash)성분을 함유한 유리고화체의 침출율 비교Table 3. Comparison of leaching rate of glass solids containing ash of waste ion exchange resin
* NA: 실험데이터 없음. 70℃에서 7일간 총질량손실(g/m2)* NA: No experimental data. Total mass loss for 7 days at 70 ℃ (g / m 2 )
상기의 유리고화체들은 폐수지, 붕산폐액 건조물 또는 잡고체의 재 성분을 모사한 무기 산화물(oxides) 및 탄화물(carbonates)과 유리첨가제(일반유리)을 혼합하여 용융시키며 용융유리의 온도는 1,200℃이상의 고온으로 유지시켜 용융한 후, 도가니를 기울여 즉시 따르게 되며 그때의 온도는 1,150±30℃를 유지한다. 이때 배출시간과 표준점도와의 상관곡선에 의하여 점도를 예측하였다. (표 4 및 표 5 참조)The glass solids are melted by mixing inorganic oxides, carbonates and glass additives (general glass), which simulate the waste resin, boric acid waste dry matter, or ash component of the collectible, and the temperature of the molten glass is higher than 1,200 ° C. After keeping it at a high temperature and melting it, it is immediately followed by tilting the crucible and the temperature at that time is maintained at 1,150 ± 30 ° C. The viscosity was predicted by the correlation curve between discharge time and standard viscosity. (See Table 4 and Table 5)
표 4. 잡고체 및 붕산폐액 건조물을 함유한 용융 유리의 점도 비교Table 4. Viscosity Comparison of Molten Glass Containing Catch and Waste Boric Acid Dry Matter
* NA: 실험데이터 없음. G: 100 poise 이하, H: 100 poise이상* NA: No experimental data. G: 100 poise or less, H: 100 poise or more
표 5. 폐이온교환수지의 재(ash)성분을 함유한 용융 유리의 점도 비교Table 5. Viscosity Comparison of Molten Glass Containing Ash Component of Waste Ion Exchange Resin
* NA: 실험데이터 없음. G: 100 poise 이하, H: 100 poise이상* NA: No experimental data. G: 100 poise or less, H: 100 poise or more
공지된 일반유리와 같은 유리첨가제에 폐수지 또는 잡고체의 재 또는 붕산폐액 건조물의 함량을 증가시키는 데에 따라서 유리고화체의 조성변화를 예측함으로써 우수한 유리특성을 갖는 유리조성 영역내에 도달할 수 있는 유리첨가제를 선정하는 데 기여할 수 있다.A glass that can reach within a glass composition region having excellent glass properties by predicting the composition change of the glass solid body in accordance with increasing the content of the ash of the waste resin or catch body or the dry matter of the boric acid waste in a glass additive such as known glass. May contribute to the selection of additives.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0075997A KR100426952B1 (en) | 2000-12-13 | 2000-12-13 | Glass Formulation for Combustible Radioactive Wastes Using Triangular Coordinate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0075997A KR100426952B1 (en) | 2000-12-13 | 2000-12-13 | Glass Formulation for Combustible Radioactive Wastes Using Triangular Coordinate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020047530A KR20020047530A (en) | 2002-06-22 |
KR100426952B1 true KR100426952B1 (en) | 2004-04-13 |
Family
ID=27681481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0075997A Expired - Fee Related KR100426952B1 (en) | 2000-12-13 | 2000-12-13 | Glass Formulation for Combustible Radioactive Wastes Using Triangular Coordinate |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100426952B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5434333A (en) * | 1992-09-18 | 1995-07-18 | The United States Of America As Represented By The United States Department Of Energy | Method for treating materials for solidification |
JPH10167754A (en) * | 1996-12-06 | 1998-06-23 | Toshiba Glass Co Ltd | Vitrifying material for solidifying waste and waste-solidified glass |
JPH11326589A (en) * | 1998-05-18 | 1999-11-26 | Tokyo Electric Power Co Inc:The | Solidification of radioactive waste |
-
2000
- 2000-12-13 KR KR10-2000-0075997A patent/KR100426952B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5434333A (en) * | 1992-09-18 | 1995-07-18 | The United States Of America As Represented By The United States Department Of Energy | Method for treating materials for solidification |
JPH10167754A (en) * | 1996-12-06 | 1998-06-23 | Toshiba Glass Co Ltd | Vitrifying material for solidifying waste and waste-solidified glass |
JPH11326589A (en) * | 1998-05-18 | 1999-11-26 | Tokyo Electric Power Co Inc:The | Solidification of radioactive waste |
Also Published As
Publication number | Publication date |
---|---|
KR20020047530A (en) | 2002-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4580141B2 (en) | Glass fiber forming composition | |
US5880045A (en) | Phosphate glasses for radioactive, hazardous and mixed waste immobilization | |
US4418985A (en) | Multi-component glass optical fiber for optical communication | |
US2444845A (en) | ph-responsive glass electrode | |
JP2565813B2 (en) | Optical glass | |
CA2375719C (en) | Glass fiber composition | |
Sheng et al. | Production of glass from coal fly ash | |
JPH1059741A (en) | Non-alkali glass and its production | |
Jackson et al. | Roman glass‐making at Coppergate, York? Analytical evidence for the nature of production | |
JP2000159541A (en) | Non-alkali glass and its production | |
JP3247145B2 (en) | Method for producing oxide-based glass and fluorine-containing glass | |
JP2607836B2 (en) | Selenium containment composition for the production of colored glass | |
Sheng et al. | Vitrification of liquid waste from nuclear power plants | |
KR100426952B1 (en) | Glass Formulation for Combustible Radioactive Wastes Using Triangular Coordinate | |
Dungworth et al. | Seventeenth–and Eighteenth–Century English Lead Glass | |
Cassingham et al. | Property modification of a high level nuclear waste borosilicate glass through the addition of Fe2O3 | |
US4341566A (en) | Eutectic mixture as a flux for glass melts | |
Raman | The effect of mixed modifiers on nuclear waste glass processing, leaching, and Raman spectra | |
Gombert et al. | Vitrification of high-level ICPP calcined wastes | |
Spierings et al. | Refractive index and density of alkali lime borogermanosilicate glasses | |
Cole et al. | Properties of vitrified ICPP zirconia calcine | |
JPH07315867A (en) | Composition for sealing | |
Hurley et al. | The effects of atmosphere and additives on coal slag viscosity | |
Dungworth | Vauxhall, London: the scientific examination of glass and glassworking materials from the late seventeenth century glasshouse | |
Kim et al. | PNL vitrification technology development project high-waste loaded high-level waste glasses for high-temperature melter: Letter report |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
R19-X000 | Request for party data change rejected |
St.27 status event code: A-3-3-R10-R19-oth-X000 |
|
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
P14-X000 | Amendment of ip right document requested |
St.27 status event code: A-5-5-P10-P14-nap-X000 |
|
P16-X000 | Ip right document amended |
St.27 status event code: A-5-5-P10-P16-nap-X000 |
|
Q16-X000 | A copy of ip right certificate issued |
St.27 status event code: A-4-4-Q10-Q16-nap-X000 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
P14-X000 | Amendment of ip right document requested |
St.27 status event code: A-5-5-P10-P14-nap-X000 |
|
P16-X000 | Ip right document amended |
St.27 status event code: A-5-5-P10-P16-nap-X000 |
|
Q16-X000 | A copy of ip right certificate issued |
St.27 status event code: A-4-4-Q10-Q16-nap-X000 |
|
P14-X000 | Amendment of ip right document requested |
St.27 status event code: A-5-5-P10-P14-nap-X000 |
|
P16-X000 | Ip right document amended |
St.27 status event code: A-5-5-P10-P16-nap-X000 |
|
Q16-X000 | A copy of ip right certificate issued |
St.27 status event code: A-4-4-Q10-Q16-nap-X000 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 7 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 8 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R14-asn-PN2301 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20130304 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20140227 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 11 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
FPAY | Annual fee payment |
Payment date: 20150302 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20160302 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 13 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
FPAY | Annual fee payment |
Payment date: 20170302 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 14 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
FPAY | Annual fee payment |
Payment date: 20180302 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 15 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 16 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20200401 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20200401 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |