KR100425673B1 - Method for operating multiplication based on ppr scheme - Google Patents
Method for operating multiplication based on ppr scheme Download PDFInfo
- Publication number
- KR100425673B1 KR100425673B1 KR1019960039085A KR19960039085A KR100425673B1 KR 100425673 B1 KR100425673 B1 KR 100425673B1 KR 1019960039085 A KR1019960039085 A KR 1019960039085A KR 19960039085 A KR19960039085 A KR 19960039085A KR 100425673 B1 KR100425673 B1 KR 100425673B1
- Authority
- KR
- South Korea
- Prior art keywords
- adder
- bit
- array
- carry
- row
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/53—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
- G06F7/5318—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with column wise addition of partial products, e.g. using Wallace tree, Dadda counters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/53—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
- G06F7/5306—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with row wise addition of partial products
- G06F7/5312—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with row wise addition of partial products using carry save adders
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
본 발명은 곱셈기에 있어서 최적의 PPR(PPR: Partial Product Reduction) 기법을 이용하여 곱셈을 수행하는 기술에 관한 것으로, 특히 곱셈기내의 규칙성을 향상시켜 라우팅 팩터(Ruting Factor)를 최소화 하고, 피피알티(PPRT: Partial Product Reduction Tree)내에서 발생하는 엑스트라 로우(Extra Row)를 제거하여 속도를 증가시키고 레이아웃 면적을 저감하는데 적당하도록한 피피알 기법을 이용한 곱셈방법에 관한 것이다.The present invention relates to a technique for performing multiplication using an optimal PPR (Partial Product Reduction) technique in the multiplier, in particular, to improve the regularity in the multiplier to minimize the routing factor (Ruting Factor), The present invention relates to a multiplication method using the PPI technique that eliminates extra rows generated in a Partial Product Reduction Tree (PPRT) to increase speed and reduce layout area.
일반적으로, 곱셈기는 제1도에서와 같이 부스엔코더(1), 피피알티(PPRT)(2), 출력단 가산기(3)로 구성된다. 여기서, 피피알티(2)는 부스엔코더(1)에서 발진된 부분 곱셈결과치(PP)를 줄여가면서 최종적으로 두개의 PP 어레이를 출력하는 부분으로서 이는 곱셈기 전체의 면적과 속도측면에서 매우 큰 비중을 차지하게 되는데, 종래에 있어서 이의 구현예를 제2도 내지 제7도를 참조하여 설명하면 다음과 같다.In general, the multiplier is composed of a bus encoder 1, a PPRT 2, and an output adder 3, as in FIG. Here, PPI2 is a part which finally outputs two PP arrays while reducing the partial multiplication result PP generated by the bus encoder 1, which takes up a very large part in the area and speed of the multiplier. In the related art, an embodiment thereof will be described with reference to FIGS. 2 to 7 as follows.
먼저, 제2도는 앤드게이트(AD)와 가산기(ADD)를 매트릭스 형태로 설계되어 구성된 4×4 어레이 곱셈기의 구현예를 보인 것으로, 이는 구성 및 확장이 자유로운 반면, 처리 속도가 느리고 면적을 많이 차지하게 되는 결함이 있다.First, FIG. 2 shows an implementation of a 4x4 array multiplier in which the AND gate AD and the adder ADD are designed in a matrix form, which is free to configure and expand, but has a low processing speed and a large area. There is a fault made.
제3도는 Wallace에 의해 제안된 것을 보인으로, 이는 가산기(31)가 트리형태로 구성되는데, 이와 같이 구성되는 경우 속도가 빠르다는 장점이 있기는 하지만비교적 라우팅팩터(Routing Factor)가 커서 와이어링(Wiring)에 의해 면적이 커지게 되는 단점이 있고, 규칙성이 저하되어 확장에 어려움이 따른다.Figure 3 shows that proposed by Wallace, which adder 31 is configured in the form of a tree, which has the advantage that the speed is fast, but the comparative routing factor (Routing Factor) is large, the wiring ( Wiring) has a disadvantage in that the area becomes large, and regularity is lowered, which causes difficulty in expansion.
제4도는 4:2 트리 압축기를 이용하여 구현한 예를 보인 것으로, 여기서, 41은 수직 슬라이스, 42는 캐리전달용 가산기이다. 이의 곱셈원리는 제3도와 거의 유사하다. 즉, 수평과 수직방향으로 캐리를 전달하여 속도향상을 시도하였지만 제3도와 유사하며, 4:2 압축기에 의해 라우팅팩터가 감소되었다.4 shows an example implemented using a 4: 2 tree compressor, where 41 is a vertical slice and 42 is an adder for carry delivery. Its multiplication principle is almost similar to the third figure. That is, attempts were made to improve the speed by transferring the carry in the horizontal and vertical directions, but similar to those of FIG.
제5도는 각종 압축기들의 압축비를 보인 것이다. 제6도의 (가)는 4bit 가산기(61-64)를 이용하여 구현한 피피알티(2)의 작용 원리를 보인 것이고, 제6도의 (나)는 24×24bit 곱셈기 피피알티의 임계 패스(Critical Path) 검증 설명도이다.5 shows the compression ratio of various compressors. Fig. 6A shows the principle of the operation of PPI2 implemented using the 4-bit adders 61-64, and Fig. 6B shows the critical path of the 24 × 24-bit multiplier PIPALTI. ) Verification explanatory diagram.
제7도는 제6도의 알고리즘을 이용하여 24×24bit 곱셈기의 PP 저감방법을 보인 설명도이다.7 is an explanatory diagram showing a PP reduction method of a 24x24 bit multiplier using the algorithm of FIG.
제4도와 같이 캐리전달용 가산기(42)를 사용한 피피알티(2)는 압축비 Cr= 2, Cr= 1.0으로서 제5도에 도시한 다른 압축기들에 비해 매우 높으며, 캐리 전파 지연시간(TC)은 합계 전파 지연시간(TS)보다 빠른 가산기로 구현하는 경우 속도가 향상된다.As shown in FIG. 4, the PPI2 using the carry transfer adder 42 has a compression ratio C r = 2 and C r = 1.0, which is much higher than those of the other compressors shown in FIG. 5, and the carry propagation delay time T C ) improves speed when implemented with an adder that is faster than the total propagation delay time T S.
하지만, 제7도에 보인 바와 같이, 압축과정에서 각각 4bit 가산기로 부터 캐리가 배출되어 엑스트라 로우가 발생된다. 즉, 캐리의 중복을 피해 가산기를 구성하더라도 4 로우당 한개의 엑스트라 로우가 발생된다. 그 엑스트라 로우를 처리하기 위해 피피알티(2) 전체의 규칙성이 저하되며, 라우팅에 의한복잡도(Complexity)가 증가되어 면적손실이 커진다. 또한, 그 엑스트라 로우로 인하여 압축 스테이지가 증가되어 처리속도가 늦어지게 된다.However, as shown in FIG. 7, the carry is discharged from each of the 4-bit adders in the compression process to generate an extra low. That is, even if the adder is configured to avoid the overlap of the carry, one extra row is generated per four rows. In order to process the extra row, the regularity of the entire PPI 2 is lowered, and the complexity due to routing is increased to increase the area loss. In addition, the extra low increases the compression stage, which slows down the processing speed.
그러나, 이와 같은 피피알티가 적용되는 종래의 곱셈에 있어서는 규칙성이 저하되어 라우팅 팩터가 증가되고, 피피알티내에서 발생하는 엑스트라 로우에 의하여 속도가 저하되고 레이아웃 면적이 증가되는 결함이 있었다.However, in the conventional multiplication to which the PPI has been applied, there is a defect that the regularity is lowered, the routing factor is increased, and the speed is decreased and the layout area is increased by the extra rows generated in the PPI.
따라서, 본 발명의 목적은 4비트 가산기를 사용하여 발생되는 캐리로 이루어진 엑스트라 로우를 제거하기 위하여, 기존의 4비트 가산기를 6비트 가산기와 3비트 가산기로 대체한 피피알 기법을 이용한 곱셈방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a multiplication method using a PPI method in which a conventional 4-bit adder is replaced with a 6-bit adder and a 3-bit adder to remove an extra row consisting of a carry generated using a 4-bit adder. Is in.
상기의 목적을 달성하기 위한 본 발명 피피알 기법을 이용한 곱셈방법은 6bit의 가산기(91)를 이용하여 2줄의 PP어레이를 한줄의 새로운 PP 어레이로 재구성하는 제1단계(S1)와; 상기 제1단계(S1)에서의 처리 결과를 캐리입력(Cin)이 있는 3bit 가산기(92)를 이용하여 재구성하는 제2단계(S2)와; 상기 제2단계(S2)의 결과를 직접 통과기(93A), (93F), (93H), 1bit 전가산기(93B), (93D), 4:2압축기(93C), 1bit 반가산기(93E)를 이용하여 출력단 가산기(3)의 입력으로 제공되는 두개의 PP어레이로 재구성하는 제3단계(S3)로 이루어지는 것으로, 이와 같이 이루어지는 본 발명의 작용 및 효과를 첨부한 제1도, 제8도 내지 제10도를 참조하여 상세히 설명하면 다음과 같다.Multiplication method using the present invention PPI method for achieving the above object is a first step (S1) to reconstruct two lines of PP array to a new line of PP array using a 6-bit adder (91); A second step (S2) of reconstructing the processing result in the first step (S1) by using a 3-bit adder (92) with a carry input (C in ); The results of the second step (S2) are directly passed through (93A), (93F), (93H), 1bit full adder (93B), (93D), 4: 2 compressor (93C), 1bit half adder (93E). It consists of a third step (S3) of reconstructing into two PP arrays provided to the input of the output stage adder (3) by using the first and eighth to the appended action and effect of the present invention The detailed description with reference to FIG. 10 is as follows.
부스엔코더(1)에서 엔코딩되어 피피알티(2)측으로 입력되는 부분 곱셈결과치(PP) 즉, PP 어레이는 제8도와 같으며, 여기에는 부스 엔코딩기법에 의해 사인비트(Sign bit)와 부가엘리멘트(Additive Element)가 포함된다. 이와 같은 PP 어레이(Partial Products Arrays)를 재정리하여 피피알티(2)의 최종 결과치를 연산하는 과정을 제9도를 참조하여 설명한다.The partial multiplication result value PP, which is encoded by the bus encoder 1 and input to the PPI2 side, that is, the PP array is as shown in FIG. 8, which includes a sign bit and an additional element by a booth encoding technique. Additive Element) is included. The process of rearranging the PP arrays (Partial Products Arrays) and calculating the final result of PPI2 will be described with reference to FIG.
먼저, 제1단계(S1)에서는 6bit의 가산기(91)를 이용하여 2줄의 PP어레이를 한줄의 새로운 PP 어레이로 재구성한다.(12PPA'S → 6PPA'S)First, in the first step S1, a 6-row adder 91 is used to reconstruct two rows of PP arrays into a single row of new PP arrays (12PPA'S → 6PPA'S).
여기서, 부가엘리먼트를 처리하기 위해 실선으로 표시된 두개의 가산기는 캐리입력(Cin)이 있는 6bit 가산기를 사용하였으며, 그 이외의 가산기는 캐리입력(Cin)이 없는 가산기(점선으로 표시)를 사용하였다. 이때, 상기 6bit 가산 어레이를 구성함에 있어서 출력 캐리가 중복되지 않도록 자리수를 배정하였다.Here, two adders indicated by the solid line in order to process the additional element is used with the carry input (C in) was used for 6bit adder in the adder of the other is the carry input (C in) is not an adder (shown by dashed lines) It was. At this time, in configuring the 6-bit addition array, the number of digits is allocated so that the output carry does not overlap.
제2단계(S2)에서는 상기 제1단계(S1)에서의 처리 결과를 캐리입력(Cin)이 있는 3bit 가산기(92)를 이용하여 재구성한다. (6PPA'S → 3PPA'S)In the second step S2, the processing result of the first step S1 is reconstructed using the 3-bit adder 92 having the carry input C in . (6PPA'S → 3PPA'S)
즉, 종래기술 제6도, 제7도에서 발생하는 엑스트라 캐리 로우를 3bit 가산기(92)의 캐리입력(Cin)으로 처리하여 제거되도록 하였다.That is, the extra carry row generated in FIGS. 6 and 7 of the prior art is processed by the carry input C in of the 3-bit adder 92 to be removed.
제3단계(S3)에서는 상기 제2단계(S2)의 결과를 직접 통과기(93A),(93F),(93H), 1bit 전가산기(93B),(93D), 4:2압축기(93C), 1bit 반가산기(93E)를 이용하여 출력단 가산기(3)의 입력으로 제공되는 두개의 PP어레이로 재구성한다.In the third step S3, the result of the second step S2 is directly passed through 93A, 93F, 93H, 1 bit full adder 93B, 93D, and 4: 2 compressor 93C. 1 bit half adder 93E is used to reconstruct two PP arrays provided as inputs of the output adder 3.
상기 4:2압축기(93C)는 제10도에서와 같이 2개의 1bit 전가산기(101),(102)를 이용하여 용이하게 구현할 수 있다.The 4: 2 compressor 93C can be easily implemented using two 1-bit full adders 101 and 102 as shown in FIG.
이상에서 상세히 설명한 바와 같이 본 발명은 기존의 4비트 가산기를 6비트 가산기와 3비트 가산기로 대체한 피피알 기법의 곱셈방법을 적용함으로써 기존의 167개의 4bit 가산기를 30개의 6bit 가산기와 26개의 3bit 가산기로 줄일 수 있으며, 압축단수도 5단에서 3단으로 줄일 수 있다. 또한, 엑스트라 로우를 제거함으로써 엑스트라 로우를 구성하는 와이어링등의 하드웨어가 제거되어 레이아웃 면적이 줄어들고, 지연시간을 줄일 수 있어 고속화에 이바지할 수 있는 등의 효과가 있다.As described in detail above, the present invention applies the multiplication method of the PIRP method in which the existing 4-bit adder is replaced with a 6-bit adder and a 3-bit adder. The number of compression stages can be reduced from five to three stages. In addition, by eliminating the extra row, hardware such as wiring constituting the extra row is removed, thereby reducing layout area and reducing delay time, thereby contributing to high speed.
제1도는 일반적인 곱셈기의 블록도.1 is a block diagram of a general multiplier.
제2도는 제1도에서 피피알티의 회로도.FIG. 2 is a circuit diagram of PPI in FIG.
제3도는 Wallace에 의해 제안된 피피알티의 구현 예시도.3 is a diagram illustrating an implementation of PPI Alti proposed by Wallace.
제4도는 4:2압축기를 이용한 피피알티의 또 다른 구현 예시도.4 is a diagram showing another embodiment of pipialti using a 4: 2 compressor.
제5도는 각종 압축기의 압축비율을 보인 표.5 is a table showing the compression ratio of the various compressors.
제6도의 (가)는 4bit 가산기를 이용한 일반적인 피피알티의 구현 예시도.Figure 6 (a) is an illustration of the implementation of the general PPI Alti using a 4-bit adder.
(나)는 24×24bit 곱셈기 피피알티의 임계패스 검증 예시도.(B) is an example of critical path verification of a 24 × 24-bit multiplier PPI.
제7도는 24×24bit 곱셈기 피피알티의 일실시 예시도.7 is a diagram illustrating an embodiment of a 24 × 24 bit multiplier PPI.
제8도는 본 발명의 곱셈입력을 설명하기 위한 피피 어레이 설명도.8 is an explanatory diagram of a PPI array for explaining the multiplication input of the present invention.
제9도는 본 발명에 의한 피피알티의 데이타 연산처리 설명도.Fig. 9 is an explanatory diagram of the data operation processing of PPITI according to the present invention.
제10도는 제9도에서 4:2압축기의 일실시 구현 예시도.FIG. 10 illustrates one embodiment implementation of a 4: 2 compressor in FIG.
*** 도면의 주요부분에 대한 부호의 설명 ****** Explanation of symbols for main parts of drawing ***
1 : 부스 엔코더 2 : 피피알티1: Booth Encoder 2: PPI Alti
3 : 출력단 가산기 91 : 6bit 가산기3: output adder 91: 6bit adder
92 : 3bit 가산기 93A,93F,93H : 직접 통과기92: 3-bit adder 93A, 93F, 93H: Direct pass-through
93B,93D : 1bit 전가산기 93C : 4:2 압축기93B, 93D: 1bit Full Adder 93C: 4: 2 Compressor
93E : 1bit 반가산기93E: 1-bit half adder
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960039085A KR100425673B1 (en) | 1996-09-10 | 1996-09-10 | Method for operating multiplication based on ppr scheme |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960039085A KR100425673B1 (en) | 1996-09-10 | 1996-09-10 | Method for operating multiplication based on ppr scheme |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980020575A KR19980020575A (en) | 1998-06-25 |
KR100425673B1 true KR100425673B1 (en) | 2004-06-12 |
Family
ID=37329275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960039085A Expired - Fee Related KR100425673B1 (en) | 1996-09-10 | 1996-09-10 | Method for operating multiplication based on ppr scheme |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100425673B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4879677A (en) * | 1987-03-30 | 1989-11-07 | Kabushiki Kaisha Toshiba | Parallel adder circuit with sign bit decoder for multiplier |
US4965762A (en) * | 1989-09-15 | 1990-10-23 | Motorola Inc. | Mixed size radix recoded multiplier |
JPH03164932A (en) * | 1989-09-05 | 1991-07-16 | Cyrix Corp | Arithmetic circuit and method of processing data by the same |
KR910020549A (en) * | 1990-05-31 | 1991-12-20 | 김광호 | Parallel Multiplier Using Booth Algorithm |
KR950033806A (en) * | 1994-05-17 | 1995-12-26 | 배순훈 | Multiplier Using Booth Algorithm |
-
1996
- 1996-09-10 KR KR1019960039085A patent/KR100425673B1/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4879677A (en) * | 1987-03-30 | 1989-11-07 | Kabushiki Kaisha Toshiba | Parallel adder circuit with sign bit decoder for multiplier |
JPH03164932A (en) * | 1989-09-05 | 1991-07-16 | Cyrix Corp | Arithmetic circuit and method of processing data by the same |
US4965762A (en) * | 1989-09-15 | 1990-10-23 | Motorola Inc. | Mixed size radix recoded multiplier |
KR910020549A (en) * | 1990-05-31 | 1991-12-20 | 김광호 | Parallel Multiplier Using Booth Algorithm |
KR950033806A (en) * | 1994-05-17 | 1995-12-26 | 배순훈 | Multiplier Using Booth Algorithm |
Also Published As
Publication number | Publication date |
---|---|
KR19980020575A (en) | 1998-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5787029A (en) | Ultra low power multiplier | |
US6978426B2 (en) | Low-error fixed-width modified booth multiplier | |
WO1984002019A1 (en) | Image processing method using a block overlap transformation procedure | |
WO1999022292A1 (en) | Fast regular multiplier architecture | |
US5343417A (en) | Fast multiplier | |
Salomon et al. | General algorithms for a simplified addition of 2's complement numbers | |
US6603812B1 (en) | Hardware implementation of a decimating finite impulse response filter | |
EP0862110A2 (en) | Wallace-tree multipliers using half and full adders | |
US5036483A (en) | Binary adding apparatus | |
KR100425673B1 (en) | Method for operating multiplication based on ppr scheme | |
US5867415A (en) | Multiplication element including a wallace tree circuit having adders divided into high and low order adders | |
JP2803601B2 (en) | Inversion circuit of finite field element | |
EP0332845A2 (en) | Dual look ahead mask generator | |
US5477479A (en) | Multiplying system having multi-stages for processing a digital signal based on the Booth's algorithm | |
Pathan et al. | An optimised 3× 3 shift and add multiplier on FPGA | |
US6183122B1 (en) | Multiplier sign extension | |
Patel et al. | Efficient Tree Multiplier Design by using Modulo 2 n+ 1 Adder | |
US5922043A (en) | Reduced hardware linear interpolator | |
EP0326182A2 (en) | High speed digital signal processor for signed digit numbers | |
US5327368A (en) | Chunky binary multiplier and method of operation | |
US5691930A (en) | Booth encoder in a binary multiplier | |
US20020038327A1 (en) | Carry save adders | |
US6127842A (en) | Modified adder tree structure and method using logic and gates to generate carry-in values | |
JP3558436B2 (en) | Multiplier and product-sum operation unit | |
JP3123060B2 (en) | Digital arithmetic circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19960910 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20010907 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 19960910 Comment text: Patent Application |
|
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20020603 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20030630 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20040206 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20040322 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20040323 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20080209 |