KR100425283B1 - Topography Measurement Method using InSAR - Google Patents
Topography Measurement Method using InSAR Download PDFInfo
- Publication number
- KR100425283B1 KR100425283B1 KR1020030024546A KR20030024546A KR100425283B1 KR 100425283 B1 KR100425283 B1 KR 100425283B1 KR 1020030024546 A KR1020030024546 A KR 1020030024546A KR 20030024546 A KR20030024546 A KR 20030024546A KR 100425283 B1 KR100425283 B1 KR 100425283B1
- Authority
- KR
- South Korea
- Prior art keywords
- elevation
- pixel
- phase difference
- altitude
- insar
- Prior art date
Links
- 238000000691 measurement method Methods 0.000 title claims 2
- 238000012876 topography Methods 0.000 title description 3
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000001914 filtration Methods 0.000 claims abstract description 7
- 238000005259 measurement Methods 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005305 interferometry Methods 0.000 description 4
- 238000012952 Resampling Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60P—VEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
- B60P3/00—Vehicles adapted to transport, to carry or to comprise special loads or objects
- B60P3/32—Vehicles adapted to transport, to carry or to comprise special loads or objects comprising living accommodation for people, e.g. caravans, camping, or like vehicles
- B60P3/36—Auxiliary arrangements; Arrangements of living accommodation; Details
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G33/00—Religious or ritual equipment in dwelling or for general use
- A47G33/02—Altars; Religious shrines; Fonts for holy water; Crucifixes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60P—VEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
- B60P3/00—Vehicles adapted to transport, to carry or to comprise special loads or objects
- B60P3/025—Vehicles adapted to transport, to carry or to comprise special loads or objects the object being a shop, cafeteria or display the object being a theatre or stage
- B60P3/0255—Vehicles adapted to transport, to carry or to comprise special loads or objects the object being a shop, cafeteria or display the object being a theatre or stage the object being a display, i.e. for displaying articles
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
디지탈 고도 모형(Digital Elevation Model, 이하 'DEM'이라 함)은 특정영역에 대한 지형의 고도정보를 표현하는 데이터 형태로서, 대상지역을 일정 크기의 격자로 나누어 공간상에 나타나는 연속적인 기복의 변화값을 해당 격자에 수치적으로 표현한 것이다.Digital Elevation Model (DEM) is a data type that expresses the altitude information of the terrain for a specific area. It is a continuous change of ups and downs in space by dividing the target area into a grid of a certain size. Is a numerical representation of the grid.
DEM의 생성방법은 크게 i) 수치지도의 등고 레이어로부터 생성하는 방법, ii) 스테레오 위성영상이나 항공사진을 이용한 방법, iii) 무선망 설계 시스템과 같은 GIS 응용프로그램을 이용하는 방법 등이 있다.The method of generating a DEM includes i) a method generated from a contour layer of a digital map, ii) a method using a stereo satellite image or an aerial photograph, and iii) a method using a GIS application such as a wireless network design system.
따라서, 수치지도를 기초로 하여 수치 데이터가 고도정보를 포함하도록 DEM을 생성할 수도 있고 초광대역 초단파 합성개구레이다 (Ultra Wideband VHF SAR) 데이터를 이용하는 방법및 코로나 위성 이미지를 이용하는 방법 등 SAR 간섭(SAR Interferometry)을 이용하여 DEM을 생성할 수 있다.Therefore, SAR may be generated based on the digital map, so that the digital data may include the altitude information, and the SAR may be generated by using ultra wideband VHF SAR data and using corona satellite images. Interferometry) can be used to generate the DEM.
수치지도를 기초로한 DEM 생성 방법으로는 인버스 디스턴스 웨이팅(Inverse distance weighting), 크리깅(Krigging), 불규칙 삼각망(Triangular Network) 형성 방법 등이 사용되고 있다. 그러나, DEM 데이터를 수치지도의 등고 레이어로부터 생성하는 방법은 시간과 비용이 많이 소용되는 문제점이 있다.As a DEM generation method based on a digital map, inverse distance weighting, kriging, and triangular network formation are used. However, the method of generating the DEM data from the contour layer of the digital map has a problem that it takes a lot of time and money.
간섭측정용 합성 개구 레이다(Interferometric Synthetic Aperture Radar, 이하 InSAR이라 한다)는 공간적으로 일정거리 떨어져 있는 2개의 안테나를 가지며,이들 안테나에 수신되는 간섭신호의 위상차로부터 지형고도를 구하는 합성 개구 레이다이다. InSAR는 2 개의 복소 레이다 신호 사이의 위상차를 이용하여 지표면에 대한 정보를 검출해 낸다. InSAR 기술을 이용한 응용예로는 DEM의 생성, 지구물리학적 위험성 분석(geophysical hazard analysis), 빙하 속도 측정(glacier velocity measurement), 육지 사용 분류(land use classification) 등이 있다.Interferometric Synthetic Aperture Radar (hereinafter referred to as InSAR) is a synthetic aperture radar that has two antennas spaced apart from each other and obtains the topographic altitude from the phase difference of the interference signal received by these antennas. InSAR detects information about the earth's surface using the phase difference between two complex radar signals. Applications using InSAR technology include DEM generation, geophysical hazard analysis, glacier velocity measurement, and land use classification.
InSAR 기술을 이용한 상기 응용예들은 지구표면상의 한 목목표지점과 레이다 위치사이의 경로길이차에 비례하는 간섭측정에 의한 위상과 목표지점 특성과 관련있는 간섭측정에 의한 상관관계를 이용한다.The applications using InSAR technology utilize interferometry correlations related to phase and target point characteristics by interferometry that is proportional to the path length difference between one target point and radar position on the earth's surface.
본 발명의 목적은 2개의 안테나를 장착하며, 그중 하나는 송신기와 수신기 양쪽 모두로 사용되며 다른 하나는 바이스태틱(Bistatic) 수신기로 사용하는 단일경로(Single Pass) 항공기에 의한 InSAR 기하학적 특성을 이용한 DEM을 생성하고 위상-고도변환을 거쳐 지형고도를 구하는 방법을 제공하고자 한다.An object of the present invention is to equip two antennas, one of which is used as both a transmitter and a receiver and the other as a bistatic receiver, using a DEM using InSAR geometrical characteristics by a single pass aircraft. We will provide a method for generating the topographic elevation through the phase-altitude conversion.
[도 1]는 본 발명에서 개시한 단일경로(Single Pass) 항공기에 의한 InSAR 기하학적 특성을 이용한 DEM을 생성하는 구성도1 is a block diagram for generating a DEM using the InSAR geometric characteristics by a single pass aircraft disclosed in the present invention
[도 2]는 본 발명에서 개시하고 있는 단일경로(Single Pass) 항공기에 의한 InSAR 기하학적 특성2 is an InSAR geometrical characteristic of a single pass aircraft disclosed in the present invention.
[도 3]는 본 발명에서 개시하고 있는 단일경로(Single Pass) 항공기에 의한 InSAR 기하학적 특성을 이용해 지형고도를 측정하는 절차도FIG. 3 is a procedure diagram for measuring topographical altitude using InSAR geometric characteristics by a single pass aircraft disclosed in the present invention.
<도면의 주요 부분에 대한 부호 설명><Description of the symbols for the main parts of the drawings>
A1,A2,#1,#2 : 안테나 H : 센서들의 고도A1, A2, # 1, # 2: antenna H: altitude of sensors
B : 베이스라인 길이 D : 직사거리B: Baseline Length D: Direct Range
δD : 직사거리차 Z : 지형고도δD: Direct range difference Z: Terrain altitude
θ: 관찰각 α: 수평면에 대한 베이스라인의 방향각θ: observation angle α: direction angle of the baseline with respect to the horizontal plane
B⒳ : 베이스라인의 수평성분 B⒵ : 베이스라인의 수직성분B⒳: Horizontal component of baseline B⒵: Vertical component of baseline
P : 기준 지표면 Q : 지표면상의 목목표지점P: reference surface Q: target point on the surface
이하 본 발명의 바람직한 실시예는 상세한 설명에 첨부된 도면들을 참조하여 설명될 것이다. 또한, 하기에서 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에 그 상세한 설명은 생략될 것이다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의 내려진 용어들로서 이는 사용자의 의도 혹은 관례 등에 따라 달라질 수 있으므로, 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings in the detailed description. In addition, in the following description of the present invention, if it is determined that a detailed description of a known function or configuration related to the present invention may obscure the gist of the present invention, the detailed description will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, and may vary according to a user's intention or custom, and the definitions should be made based on the contents throughout the present specification.
[도 1]은 본 발명에서 개시한 단일경로(Single Pass) 항공기에 의한 InSAR 기하학적 특성을 이용한 DEM의 생성과정을 나타내는 구성도이다. [도 3]은 본 발명에서 개시하고 있는 단일경로(Single Pass) 항공기에 의한 InSAR 기하학적 특성을 이용해 지형고도를 측정하는 절차도이다.FIG. 1 is a block diagram illustrating a process of generating a DEM using InSAR geometric characteristics by a single pass aircraft disclosed in the present invention. FIG. 3 is a procedure for measuring topographical altitude using InSAR geometrical characteristics by a single pass aircraft disclosed in the present invention.
즉, 2개의 안테나를 장착하며, 그 중 하나는 송신기와 수신기 양쪽 모두로 사용되며, 다른 하나는 바이스태틱(Bistatic) 수신기(송수신사이에 거리를 둔 레이다 시스템에서의 수신기)로 사용하는 단일경로(Single Pass) 항공기에 의한 InSAR의 기하학적 특성을 이용하여 DEM을 생성하는 개략도이다.That is, it is equipped with two antennas, one of which is used as both a transmitter and a receiver, and the other as a single path which is used as a bistatic receiver (a receiver in a radar system with a distance between transmitting and receiving). Single Pass) A schematic diagram of generating a DEM using the geometric characteristics of InSAR by an aircraft.
[도 3]을 참조하여 먼저, S31 단계에서, 단일경로(Single Pass) 항공기에 의한 InSAR 시스템에서 송수신기용인 안테나 #1에서 지표상의 한 점에 전파를 발사하면 되돌아 오는 반사파(echoes) 신호를 안테나 #1과 안테나 #2에서 각각 수신한다. 각 안테나로부터 수신된 상기 신호는 크기와 위상을 갖는 픽셀단위로 수신되며, 각 안테나로부터 1개씩 2차원 이미지를 생성한다. 그리고 S32단계로 진입하여,상기 2개의 SAR 이미지는 레인지/도플러(Range/Doppler) 영역에 정렬하여 픽셀 단위로 간섭위상차(Interferometric Phase Difference)를 검출한다. 이렇게 검출된 간섭위상차는 위상차-지형고도의 변환을 거쳐 픽셀단위로 지형고도를 제공한다. 이 후, S33 단계에서, 하나의 픽셀을 다중시각(Multiple Look)처리하거나 하나의 지역을 다중 픽셀(Multiple Pixel)로 나누어 공간 필터링함으로써 지형고도정보의 정확성을 향상시킨다.Referring to FIG. 3, first, in step S31, an antenna # 1 returns an echoes signal returned when an electric wave is emitted to a point on the earth from antenna # 1 for a transceiver in an InSAR system by a single pass aircraft. Received at 1 and antenna # 2 respectively. The signal received from each antenna is received in units of pixels having a magnitude and a phase, and generates one two-dimensional image from each antenna. In operation S32, the two SAR images are arranged in a range / doppler area to detect an interferometric phase difference on a pixel-by-pixel basis. The detected interference phase difference is converted into a phase difference-terrain altitude to provide a terrain altitude in units of pixels. Thereafter, in step S33, the accuracy of the terrain elevation information is improved by spatially filtering one pixel or multiple filtering by dividing an area into multiple pixels.
[도 2]는 본 발명에서 개시하고 있는 단일경로(Single Pass) 항공기에 의한 InSAR 기하학적 특성을 보여 주고 있다.FIG. 2 shows InSAR geometrical characteristics by a single pass aircraft disclosed in the present invention.
단일경로(Single Pass) 항공기에 의한 InSAR 기하학적 특성을 이용해 지형고도를 측정하는 응용예로 SRTM(Shuttle Radar Topography Mission)이 있다.Shuttle Radar Topography Mission (SRTM) is an application to measure topographical altitude using InSAR geometrical characteristics by single pass aircraft.
S34 단계로 진입하여, 간섭측정 SAR기술은 2개의 SAR 복소 이미지를 결합하여 복소 간섭그림(complex interferogram)과 상기 SAR 간섭그림을 이용한 가간섭성(coherence) 맵을 제공하게 되는데, 상기 간섭그림 생성전 복소 이미지 결합은 픽셀이하의 정확도로 정합(Coregister)되며, 다시 샘플링한 후, 첫 번째 이미지에 두 번째 이미지의 복소수 쌍(Complex Conjugate)을 곱하여 간섭그림을 생성하고, 해당하는 정규화된 상관관계에 의해서 코히어런스(coherence) 이미지를 생성한다. 그리고 S35 단계로 진입하여, 간섭그림으로부터 두 이미지 사이의 위상차(modulo 2π)를 측정하여 이와 직접 관계를 갖는 경로차를 구하게 된다.In step S34, the interferometry SAR technology combines two SAR complex images to provide a coherence map using a complex interferogram and the SAR interference picture, before generating the interference picture. Complex image combining is coregistered with sub-pixel accuracy, and after resampling, the first image is multiplied by the complex conjugate of the second image to generate an interference plot, and by the corresponding normalized correlation Create a coherence image. In step S35, a path difference having a direct relationship with the phase difference between the two images is measured from the interference plot. Will be obtained.
(1) (One)
여기서,는 레이다 신호 파장이다. 지형고도는 위상차로부터 구해지는데 위상차는 궤도 파라미터(orbital parameter) 중, 특히 간섭 베이스라인에 의해 영향을 받는다.here, Is the radar signal wavelength. The topographic altitude is obtained from the phase difference, which is influenced by the interference baseline among the orbital parameters.
지표지형(Surface Topography)은 2개의 물리적인 안테나 A1과 A2로 형성된 베이스라인이 정확하게 측정되어야 역 방법(reverse algorithem)을 통해서 간섭측정 위상(Interferogram Phase)으로부터 구해진다.Surface Topography is obtained from the Interferogram Phase through the reverse algorithem only when the baseline formed by the two physical antennas A1 and A2 is accurately measured.
간섭측정 이미지기법의 기하학 특성(Interferometer Imaging Geometry)을 이용하여 궤도 파라미터(Orbital Parameter)의 함수에 의한 지표고도를 계산하는 과정은 다음과 같다.The process of calculating the surface elevation as a function of the Orbital Parameter using the Interferometer Imaging Geometry is as follows.
(2) (2)
(3) (3)
z는 안테나 A1과 A2 모두에 의해 측정된 지표고도, H는 항공기 고도, B는 베이스라인 거리, θ는 관찰각(look angle), D는 지표상의 목표지점까지의 직사거리, α는 수평면에 대한 베이스라인의 각도,δD는 레이다 A1과 A2에서의 반사파의 경로차이다.z is the surface elevation measured by both antennas A1 and A2, H is the aircraft's altitude, B is the baseline distance, θ is the look angle, D is the direct distance to the target point on the surface, and α is the horizontal plane. The angle δD of the baseline is the path difference of the reflected waves in the radars A1 and A2.
하나의 이미지상의 각 점에서의 위상을 측정하여 상기 식 (1),(2),(3)에 의해 각 점에서의 지형고도를 구한다.The phase elevation at each point on one image is measured and the topographic elevation at each point is obtained by the above equations (1), (2) and (3).
[도 3]은 본 발명에서 개시하고 있는 단일경로(Single Pass) 항공기에 의한 InSAR 기하학적 특성을 이용해 지형고도를 측정하는 절차도이다.FIG. 3 is a procedure for measuring topographical altitude using InSAR geometrical characteristics by a single pass aircraft disclosed in the present invention.
크기와 위상을 갖는 픽셀단위로 각 안테나로부터 신호를 수신하여 각 안테나로부터 하나씩 2차원 이미지를 생성하며(S31), 상기 2개의 SAR 이미지는 레인지/도플러(Range/Doppler) 영역에 정렬하여 픽셀단위로 간섭위상차(Interferometric Phase Difference)를 검출하고(S32), 위상차-지형고도의 변환을 거쳐서 지형고도를 산출하고(S33), 하나의 픽셀을 다중시각(multiple look)처리하거나 하나의 지역을 다중 픽셀(multiple pixel)로 나누어 공간 필터링하여(S34) 정확도 높은 지형고도정보를 획득하여(S36) DEM을 생성한다(S35).Receive a signal from each antenna in units of pixels having a size and phase to generate a two-dimensional image one by one from each antenna (S31), and the two SAR images are aligned in a range / doppler region in pixel units. Interferometric Phase Difference is detected (S32), topographical altitude is calculated through the conversion of phase difference-terrain altitude (S33), multiple pixels are processed in one pixel, or one region is multi-pixel ( Spatial filtering is performed by dividing the data into multiple pixels (S34) to obtain highly accurate topographical information (S36) to generate a DEM (S35).
전술한 구성의 본 발명에서는 구체적인 실시예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도내에서 여러가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시예로 국한되어 정해지는 것은 아니며, 후술되는 특허청구범위뿐만 아니라, 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.In the present invention having the above-described configuration, specific embodiments have been described, but various modifications can be made without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the claims below, but also by the equivalents of the claims.
본 발명에서 개시하는 위상차-지형고도의 변환식에 의해 정밀한 지형고도 측정이 가능하며, 구름이나 그 밖의 장애물에 의해 입체 광학 접근법을 적용할 수 없는 경우에도 DEM을 생성하여 지형고도를 측정할 수 있는 효과가 있다.The phase shift-terrain altitude conversion equation disclosed in the present invention enables accurate terrain elevation measurement, and even when a stereoscopic optical approach cannot be applied due to clouds or other obstacles, a DEM can be generated to measure terrain elevation. There is.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030024546A KR100425283B1 (en) | 2003-04-18 | 2003-04-18 | Topography Measurement Method using InSAR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030024546A KR100425283B1 (en) | 2003-04-18 | 2003-04-18 | Topography Measurement Method using InSAR |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100425283B1 true KR100425283B1 (en) | 2004-03-31 |
Family
ID=37329250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030024546A KR100425283B1 (en) | 2003-04-18 | 2003-04-18 | Topography Measurement Method using InSAR |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100425283B1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101058452B1 (en) | 2009-11-26 | 2011-08-24 | 국방과학연구소 | Antenna Radiation Pattern Synthesis Method for High Resolution Image Radar |
KR101099443B1 (en) | 2010-03-05 | 2011-12-28 | 인하대학교 산학협력단 | Binary Tree Based Spatial Segmentation and Virtual Pyramid Process |
CN102590813A (en) * | 2012-01-17 | 2012-07-18 | 中国测绘科学研究院 | Multi-model InSAR (Interferometric Synthetic Aperture Radar) phase refining method with assistance of external DEM (Dynamic Effect Model) |
CN103675790A (en) * | 2013-12-23 | 2014-03-26 | 中国国土资源航空物探遥感中心 | Method for improving earth surface shape change monitoring precision of InSAR (Interferometric Synthetic Aperture Radar) technology based on high-precision DEM (Digital Elevation Model) |
US10006995B2 (en) | 2014-08-04 | 2018-06-26 | University Of Seoul Industry Cooperation Foundation | Method and apparatus for stacking multi-temporal MAI interferograms |
KR20180115935A (en) * | 2017-04-14 | 2018-10-24 | 연세대학교 산학협력단 | System and method for altitude estimation of synthetic aperture radar using single path and single antenna |
CN108896009A (en) * | 2018-04-29 | 2018-11-27 | 天津大学 | A kind of large-scale linear structure body Monitoring method of the subsidence based on effective coherence |
KR20190043478A (en) | 2017-10-18 | 2019-04-26 | 서울대학교산학협력단 | System and method for generating high resolution digital elevation model |
KR20190115531A (en) | 2018-03-22 | 2019-10-14 | 주식회사 무림지앤아이 | Corner Reflector and Interferometric Synthetic Aperture Radar Using It |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07110377A (en) * | 1993-10-12 | 1995-04-25 | Nec Corp | Radar target searching device |
US6011505A (en) * | 1996-07-11 | 2000-01-04 | Science Applications International Corporation | Terrain elevation measurement by interferometric synthetic aperture radar (IFSAR) |
WO2000020892A1 (en) * | 1998-10-02 | 2000-04-13 | Honeywell Inc. | Interferometric synthetic aperture radar altimeter |
JP2001083243A (en) * | 1999-09-13 | 2001-03-30 | Mitsubishi Electric Corp | Extraction apparatus for three-dimensional information on landform by interference-type synthetic aperture radar |
-
2003
- 2003-04-18 KR KR1020030024546A patent/KR100425283B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07110377A (en) * | 1993-10-12 | 1995-04-25 | Nec Corp | Radar target searching device |
US6011505A (en) * | 1996-07-11 | 2000-01-04 | Science Applications International Corporation | Terrain elevation measurement by interferometric synthetic aperture radar (IFSAR) |
WO2000020892A1 (en) * | 1998-10-02 | 2000-04-13 | Honeywell Inc. | Interferometric synthetic aperture radar altimeter |
JP2001083243A (en) * | 1999-09-13 | 2001-03-30 | Mitsubishi Electric Corp | Extraction apparatus for three-dimensional information on landform by interference-type synthetic aperture radar |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101058452B1 (en) | 2009-11-26 | 2011-08-24 | 국방과학연구소 | Antenna Radiation Pattern Synthesis Method for High Resolution Image Radar |
KR101099443B1 (en) | 2010-03-05 | 2011-12-28 | 인하대학교 산학협력단 | Binary Tree Based Spatial Segmentation and Virtual Pyramid Process |
CN102590813A (en) * | 2012-01-17 | 2012-07-18 | 中国测绘科学研究院 | Multi-model InSAR (Interferometric Synthetic Aperture Radar) phase refining method with assistance of external DEM (Dynamic Effect Model) |
CN103675790A (en) * | 2013-12-23 | 2014-03-26 | 中国国土资源航空物探遥感中心 | Method for improving earth surface shape change monitoring precision of InSAR (Interferometric Synthetic Aperture Radar) technology based on high-precision DEM (Digital Elevation Model) |
US10006995B2 (en) | 2014-08-04 | 2018-06-26 | University Of Seoul Industry Cooperation Foundation | Method and apparatus for stacking multi-temporal MAI interferograms |
KR20180115935A (en) * | 2017-04-14 | 2018-10-24 | 연세대학교 산학협력단 | System and method for altitude estimation of synthetic aperture radar using single path and single antenna |
KR101958547B1 (en) * | 2017-04-14 | 2019-03-14 | 연세대학교 산학협력단 | System and method for altitude estimation of synthetic aperture radar using single path and single antenna |
KR20190043478A (en) | 2017-10-18 | 2019-04-26 | 서울대학교산학협력단 | System and method for generating high resolution digital elevation model |
KR102145991B1 (en) * | 2017-10-18 | 2020-08-19 | 서울대학교산학협력단 | System and method for generating high resolution digital elevation model |
KR20190115531A (en) | 2018-03-22 | 2019-10-14 | 주식회사 무림지앤아이 | Corner Reflector and Interferometric Synthetic Aperture Radar Using It |
CN108896009A (en) * | 2018-04-29 | 2018-11-27 | 天津大学 | A kind of large-scale linear structure body Monitoring method of the subsidence based on effective coherence |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling | |
US9417323B2 (en) | SAR point cloud generation system | |
Moreira et al. | A tutorial on synthetic aperture radar | |
CN101551455B (en) | 3D terrain imaging system of interferometric synthetic aperture radar and elevation mapping method thereof | |
JP2003500658A (en) | Procedures for radar measurements of urban area and landslide motion. | |
CN109116321B (en) | A kind of phase filtering method and height measurement method of spaceborne interference imaging altimeter | |
Ulander et al. | Ultra-wideband SAR interferometry | |
Viviani et al. | IBIS-ArcSAR: An innovative ground-based SAR system for slope monitoring | |
JP2590689B2 (en) | Interferometric synthetic aperture radar system and terrain change observation method | |
CN110068817A (en) | A kind of topographic mapping method, instrument and system based on laser ranging and InSAR | |
Magnard et al. | Analysis of a maximum likelihood phase estimation method for airborne multibaseline SAR interferometry | |
Rossi et al. | High-resolution InSAR building layovers detection and exploitation | |
KR100425283B1 (en) | Topography Measurement Method using InSAR | |
Mao et al. | Estimation and compensation of ionospheric phase delay for multi-aperture InSAR: An azimuth split-spectrum interferometry approach | |
Perissin et al. | Validating the SAR wavenumber shift principle with the ERS–Envisat PS coherent combination | |
KR100441590B1 (en) | Method of generating DEM for Topography Measurement using InSAR | |
Fang et al. | Estimation of glacier surface motion by robust phase correlation and point like features of SAR intensity images | |
CN113567942A (en) | Measurement accuracy analysis method for multi-baseline interferometric synthetic aperture radar system | |
Martone et al. | TanDEM-X performance over sandy areas | |
Xu et al. | Unwrapped phase estimation via normalized probability density function for multibaseline InSAR | |
RU2643790C1 (en) | Method of earth surface relief measurement | |
Lee et al. | A ground-based arc-scanning synthetic aperture radar (ArcSAR) system and focusing algorithms | |
Nitti et al. | Evaluation of DEM-assisted SAR coregistration | |
Moccia | Fundamentals of bistatic synthetic aperture radar | |
Wang et al. | Motion compensation technique for UGV based forward looking InSAR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20030418 |
|
PA0201 | Request for examination | ||
A302 | Request for accelerated examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20030430 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20030418 Patent event code: PA03021R01I Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20030818 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20040109 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20040318 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20040319 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20070117 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20080103 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20090121 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20100115 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20110211 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20120322 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20130110 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20130110 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20140311 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20140311 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160329 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20160329 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20170317 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20170317 Start annual number: 14 End annual number: 14 |
|
FPAY | Annual fee payment |
Payment date: 20180302 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20180302 Start annual number: 15 End annual number: 15 |
|
FPAY | Annual fee payment |
Payment date: 20190318 Year of fee payment: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20190318 Start annual number: 16 End annual number: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20200317 Start annual number: 17 End annual number: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20210311 Start annual number: 18 End annual number: 18 |
|
PR1001 | Payment of annual fee |
Payment date: 20220308 Start annual number: 19 End annual number: 19 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20231229 |