[go: up one dir, main page]

KR100424100B1 - Photocatalytic TiO2 in the form of fiber and manufacturing method thereof - Google Patents

Photocatalytic TiO2 in the form of fiber and manufacturing method thereof Download PDF

Info

Publication number
KR100424100B1
KR100424100B1 KR10-2001-0059765A KR20010059765A KR100424100B1 KR 100424100 B1 KR100424100 B1 KR 100424100B1 KR 20010059765 A KR20010059765 A KR 20010059765A KR 100424100 B1 KR100424100 B1 KR 100424100B1
Authority
KR
South Korea
Prior art keywords
titanium oxide
titanium
photocatalyst
fibrous
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR10-2001-0059765A
Other languages
Korean (ko)
Other versions
KR20020009524A (en
Inventor
지충수
오한준
이종호
장재명
Original Assignee
오한준
지충수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오한준, 지충수 filed Critical 오한준
Priority to KR10-2001-0059765A priority Critical patent/KR100424100B1/en
Publication of KR20020009524A publication Critical patent/KR20020009524A/en
Application granted granted Critical
Publication of KR100424100B1 publication Critical patent/KR100424100B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • B01J37/0226Oxidation of the substrate, e.g. anodisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

본 발명에 의한 섬유상(화이버)의 산화티탄(TiO2) 광촉매는, 약 10 - 500㎛ 직경의 티타늄 화이버를 포함하고, 상기 티타늄 화이버의 표면에 양극산화에 의해 산화티탄 피막이 형성되어 있는 것을 특징으로 한다. 상기한 구성의 본원발명에 따른 섬유상의 산화티탄 광촉매에 의하면, 촉매반응기의 형상에 제약을 받지 않아 다양한 분야에 적용이 가능하고 비표면적을 최대화하여 반응효율이 비약적으로 향상되고 반영구적으로 사용할 수 있는 효과를 도모할 수 있다.The fibrous titanium oxide (TiO 2 ) photocatalyst according to the present invention comprises a titanium fiber having a diameter of about 10 to 500 μm, and a titanium oxide film is formed on the surface of the titanium fiber by anodization. do. According to the fibrous titanium oxide photocatalyst according to the present invention having the above-described configuration, it can be applied to various fields without being restricted by the shape of the catalytic reactor, and the reaction efficiency can be dramatically improved and used semi-permanently by maximizing the specific surface area. Can be planned.

Description

섬유상의 산화티탄 광촉매 및 이의 제조방법{Photocatalytic TiO2 in the form of fiber and manufacturing method thereof}Photocatalytic TiO2 in the form of fiber and manufacturing method

본 발명은 섬유상의 산화티탄(TiO2) 광촉매 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 비표면적을 최대화할 수 있고 반영구적으로 사용 가능한 섬유상의 산화티탄 광촉매 및 이의 제조방법에 관한 것이다.The present invention relates to a fibrous titanium oxide (TiO 2 ) photocatalyst and a method for producing the same, and more particularly, to a fibrous titanium oxide photocatalyst and a method for producing the same, which can maximize the specific surface area.

광촉매를 응용한 연구는 산화티탄이 자외선에 노출된 경우 난분해성 유기물을 분해할 수 있다는 것이 발견되면서 환경문제를 해결할 수 있는 청정기술로서의 가능성을 인정받게 되었다.Research on the application of photocatalysts has found that titanium oxides can decompose difficult-decomposable organic substances when exposed to ultraviolet light, and have been recognized as a clean technology that can solve environmental problems.

이러한 광촉매에 의한 유기물 분해는, 밴드갭(band gap) 에너지 이상의 빛에너지를 광촉매에 조사하였을 때 전자와 정공이 발생하고, 이들에 의해 생성되는 수산화 라디칼(-0H)의 강력한 산화력으로 광촉매 표면에 흡착된 기상 또는 액상의 유기물이 분해되는 산화반응에 의한 것이다.The decomposition of organic matter by the photocatalyst generates electrons and holes when light energy above band gap energy is irradiated to the photocatalyst, and is adsorbed on the surface of the photocatalyst by the strong oxidizing power of the hydroxyl radical (-0H) produced by them. This is due to the oxidation reaction in which the gaseous or liquid organic matter is decomposed.

산화티탄광촉매에 의해 유기물이 분해되는 원리에 대해 보다 구체적으로 설명하면 다음과 같다. 광촉매용 재료의 표면에 재료의 밴드갭 이상의 에너지를 갖는 UV광을 조사시키면, 광촉매 표면에서 에너지적으로 여기되어 방출된 전자는 수중의 용존 산소와 반응하여 OH 라디칼을 형성하고, 동시에 산화티탄 표면의 정공에 의해 OH 라디칼이 형성된다.The principle in which organic matters are decomposed by the titanium oxide photocatalyst will be described in more detail as follows. When the surface of the photocatalytic material is irradiated with UV light having energy above the bandgap of the material, electrons excited and released from the photocatalytic surface react with dissolved oxygen in water to form OH radicals, and at the same time Holes form OH radicals.

즉, 산화티탄의 표면에서는 TiO2+ hυ -> e-(발생) + h+이 일어난다.That is, in the surface of titanium oxide TiO 2 + hυ -> e - ( generation) + h + takes place.

이 때 전자의 반응은 다음과 같다.The reaction of the former is as follows.

e_+ O2 O2-(super oxide radical)e_+ O2 O2-(super oxide radical)

2O2-+ 2H22ㆍOH + 2OH-+ O2 And 2O 2 - + 2H 2 2 and OH + 2OH - + O 2

또한 산화티탄표면에서는 h++ OH_2ㆍOH와 같은 반응이 진행되어 형성된 OH 라디칼에 의해 유해한 유기물질이 분해된다.On the titanium oxide surface, harmful organic substances are decomposed by OH radicals formed by reactions such as h + + OH _ 2 .OH.

이러한 환경용 광촉매 재료로서는 산화티탄외에 V2O3, ZnO, ZrO2, 페로브스카이트형 복합 금속산화물(SrTiO3) 등이 있는데, 이들은 효율이 산화티탄만큼 좋지 않아서 사용분야가 매우 제한된다. 또한, 광촉매 반응에 적용되기 위해서는 광학적으로 활성이 있으면서 광부식이 없이 안정하고 생물학적으로나 화학적으로 비활성이며 가시광선이나 자외선 영역의 빛을 이용할 수 있을 뿐만 아니라 경제적 측면에서도 저렴해야 한다.In addition to titanium oxide, such environmental photocatalyst materials include V 2 O 3 , ZnO, ZrO 2 , perovskite-type composite metal oxides (SrTiO 3 ), and the like, and their efficiency is not as good as that of titanium oxide. In addition, in order to be applied to the photocatalytic reaction, it must be optically active, stable without photocorrosion, biologically and chemically inactive, and able to use visible or ultraviolet light, and also be economically inexpensive.

산화티탄은 자신이 빛을 받아도 변하지 않아 반영구적으로 사용이 가능할 뿐만 아니라 대부분의 유기물을 산화시켜 이산화탄소와 물로 분해하므로 2차 오염이 적고 표백 및 악취제거에도 효과적이다. 따라서, 상기 점들 및 광촉매 반응에 대한 산화물 피막의 활성을 고려해 볼 때 산화티탄이 광촉매 분야에서 대표적인 물질로 부각되어 현재 많은 연구가 진행되고 있다.Titanium oxide can be used semi-permanently because it does not change even when it receives light, and since it oxidizes most organic substances and decomposes them into carbon dioxide and water, it is less secondary pollution and effective for removing bleach and odor. Therefore, considering the activity of the oxide film on the above points and photocatalytic reaction, titanium oxide is emerging as a representative material in the photocatalyst field, and many studies are currently being conducted.

산화티탄은 결정형에 따라 크게 아나타제형(anatase)과 루틸형(rutile)으로 구분된다. 일반적으로 루틸형은 결정상태가 안정적이나 활성이 떨어지는 문제가 있고, 아나타제형은 광촉매 활성이 높아 광촉매 분야에서 더 바람직한 형태라 할 수 있다.Titanium oxide is largely divided into anatase and rutile according to the crystalline form. In general, the rutile type has a problem that the crystal state is stable but the activity is inferior, and the anatase type has a high photocatalytic activity and thus may be a more preferable form in the photocatalyst field.

이러한 광촉매용 산화티탄은 아나타제의 결정구조를 갖는 산화티탄 분말을 슬러리 형태로 사용하거나 또는 지지체에 표면코팅을 하여 사용하고 있으며, 최근에는 티탄금속을 고온의 열처리 통해 산화시키는 방법에 대해 연구가 진행되고 있다.Titanium oxide for photocatalyst is used in the form of a slurry of titanium oxide powder having anatase crystal structure or by surface coating on a support, and recently, researches have been conducted to oxidize titanium metal through high temperature heat treatment. have.

좀 더 상세하게 살펴보면, 산화티탄 분말을 슬러리 형태로 사용하는 방법은, 폐수처리시 주로 사용되는 방법으로서 내부에 UV램프가 설치된 광촉매 반응기의 반응셀에 산화티탄 분말에 의한 슬러리 형태의 산화티탄 광촉매를 투입하는 방법이다. 상기 광촉매 반응기는 폐수의 반응시간과 처리량에 따라 임의로 반응셀을 연결시켜 사용하고 있는데, 그 반응셀 끝단에는 촉매 회수장치가 부착되어 있다.In more detail, a method of using titanium oxide powder in the form of a slurry is a method mainly used in wastewater treatment, and a method of using titanium oxide photocatalyst in the form of slurry by titanium oxide powder in a reaction cell of a photocatalytic reactor having a UV lamp installed therein is used. It is a way to inject. The photocatalytic reactor is used by connecting the reaction cells arbitrarily according to the reaction time and the throughput of the waste water, the catalyst recovery device is attached to the end of the reaction cell.

한편, 산화티탄을 지지체에 표면 코팅하는 방법은 분말 또는 졸 상태의 산화티탄을 내열성 또는 비내열성의 박판 기판에 별도의 광물질과 혼합 고정시키는 방법이다. 유리, 금속, 세라믹과 같은 내열성 박판 기판을 이용하는 경우 일정온도로 가열시킨 박판 기판에 광물질과 산화티탄을 혼합 소성시켜 고정시킨다. 섬유 또는 수지와 같은 열에 약한 비내열성 기판을 이용하는 경우에는, 이산화티탄의 표면을 실리카 등과 같은 다공성 재료로 된 무기질의 접착제로 피복하여 비내열성 박판 기판에 접착시켜 사용한다.Meanwhile, the method of surface coating titanium oxide on a support is a method of mixing and fixing titanium oxide in a powder or sol state with a separate mineral material on a heat resistant or non-heat resistant thin substrate. In the case of using a heat-resistant thin substrate such as glass, metal or ceramic, the thin substrate heated to a constant temperature is mixed and calcined and fixed to the thin substrate. In the case of using a non-heat-resistant substrate that is weak to heat such as fibers or resins, the surface of titanium dioxide is coated with an inorganic adhesive made of a porous material such as silica, and bonded to a non-heat-resistant thin substrate.

그런데, 상술한 산화티탄을 광촉매용으로 이용하는 방법들에는 다음과 같은 문제점들이 있다.However, the above-described methods using titanium oxide for photocatalysts have the following problems.

첫째, 광촉매 반응기에 적용되기 위해 일정한 형태가 필요한 경우나 대기정화용 촉매로 사용되는 경우에는 위와 같은 일반적인 방법으로는 광촉매 적용에 제약을 받을 뿐만 아니라 가공성과 밀착성의 문제로 인하여 실제 제품에 적용하는데 어려움이 있다.First, when a certain form is required to be applied to a photocatalytic reactor or used as a catalyst for atmospheric purification, the above general method is not only limited to the photocatalytic application but also difficult to be applied to the actual product due to processability and adhesion. have.

둘째, 분말 형태의 산화티탄을 광촉매로 이용하여 폐수처리 등을 하는 경우, 처리비용을 절감하기 위해 반응이 완료된 후 사용된 산화티탄을 회수해야 한다. 따라서, 상술한 바와 같이, 반응기의 반응셀 끝단에 촉매(TiO2분말) 회수장치를 부착시키는 등 촉매인 산화티탄을 회수하여 재활용하기 위한 별도의 장치가 필요하다. 따라서, 산화티탄을 회수 재활용하는 비용이 커져서, 재활용에 따른 경제적 이득이 크지 않다. 또한 폐수의 물질 일부가 촉매의 표면에 흡착되어 재활용되는 촉매는 그 효율이 떨어지는 문제점도 있다.Second, in the case of wastewater treatment using titanium oxide in the form of a powder as a photocatalyst, it is necessary to recover the used titanium oxide after the reaction is completed in order to reduce the treatment cost. Therefore, as described above, a separate device for recovering and recycling the titanium oxide as a catalyst, such as attaching a catalyst (TiO 2 powder) recovery device to the reaction cell end of the reactor, is required. Therefore, the cost of recovering and recycling titanium oxide becomes large, so that the economic benefit of recycling is not large. In addition, a catalyst in which a part of the waste water is adsorbed on the surface of the catalyst and recycled has a problem in that its efficiency is lowered.

세째, 산화티탄이 공기 정화용 광촉매로 사용되는 경우는 슬러리 형태로서는 사용 불가능하기 때문에 현재 졸-겔 법을 이용한 코팅법이 많이 이용되고 있다. 그런데, 이 방법은 출발 물질인 금속 알콕사이드로서는 티타늄 에톡사이드(titanium ethoxide, Ti(OC2H5)4)를 이용하거나 티타늄 테트라이소프로폭사이드(titanium tetraisopropoxide)를 이용하여 산화티탄졸을 먼저 제조해야 하므로 제조방법이 복잡하여 비용이 많이 들 뿐만 아니라 지지체와 코팅된 산화티탄의 결합이 약하여 지지체에서 산화티탄광촉매가 박리되는 등 사용상의 문제점이 많이 발생되고 있다.Third, when titanium oxide is used as a photocatalyst for air purification, since it cannot be used in the form of a slurry, a coating method using a sol-gel method is now widely used. However, in this method, titanium oxide sol should be prepared first using titanium ethoxide (Ti (OC 2 H 5 ) 4 ) or titanium tetraisopropoxide as a starting metal alkoxide. Therefore, the manufacturing method is complicated and expensive, and the bonding between the support and the coated titanium oxide is weak, resulting in many problems in use such as the titanium oxide photocatalyst is peeled off from the support.

또한, 내열성 기판에 이용하는 방법은 혼합 소성된 광물질에 의해 오염된 공기와 접촉되는 이산화티탄의 표면적이 감소되기 때문에 광촉매의 효율이 저하되는 문제점이 있다. 그리고, 비내열성 기판을 이용하는 방법은 다공성 무기질로 된 접착제의 피복정도에 따라 광촉매의 활성이 크게 저하되는 등의 문제점이 있다.In addition, the method used for the heat resistant substrate has a problem that the efficiency of the photocatalyst is lowered because the surface area of titanium dioxide in contact with the air contaminated by the mixed calcined mineral material is reduced. In addition, the method using the non-heat-resistant substrate has a problem such that the activity of the photocatalyst is greatly reduced according to the coating degree of the adhesive made of porous inorganic.

네째, 산화티탄 광촉매 분말을 현탁시킨 용액에 지지체 표면을 침지시킨 후 건조시키는 산화티탄표면 코팅법도 졸겔법을 이용한 코팅방법과 동일한 문제점을 가지고 있다. 즉, 제조방법이 복잡하여 제조비용이 많이 들고, 또 지지체와 코팅된 산화티탄의 결합이 약해 밀착성이 낮기 때문에 광촉매가 표면에서 박리되는 등 사용상 문제점이 자주 발생된다. 또한 촉매가 부착되는 지지체의 형상이 복잡할 경우 제조하기 어려운 문제도 있다.Fourth, the titanium oxide surface coating method of immersing the surface of the support in a solution in which the titanium oxide photocatalyst powder is suspended and then drying has the same problem as the coating method using the sol-gel method. That is, the production method is complicated, the manufacturing cost is high, and since the bonding between the support and the coated titanium oxide is weak and the adhesion is low, problems in use often occur such that the photocatalyst is peeled off from the surface. In addition, when the shape of the support to which the catalyst is attached is complicated, there is a problem that is difficult to manufacture.

본원발명은 상기 문제점들을 해결하기 위해 안출된 것으로, 본원발명의 목적은 촉매 반응기의 형상에 제약을 받지 않아 다양한 분야에서 적용이 가능하고 비표면적이 최대화되어 반응 효율이 비약적으로 향상되고 반영구적으로 사용할 수 있는 섬유상의 산화티탄 광촉매를 제공하는 것이다.The present invention has been made to solve the above problems, the object of the present invention is not limited by the shape of the catalytic reactor can be applied in various fields and the specific surface area is maximized, the reaction efficiency can be dramatically improved and can be used semi-permanently It is to provide a fibrous titanium oxide photocatalyst.

본 발명의 또 다른 목적은, 촉매반응기의 형상에 제약을 받지 않아 다양한 분야에서 적용이 가능하고, 비표면적이 최대화되어 반응효율이 비약적으로 향상되고 반영구적으로 사용할 수 있는 섬유상의 산화티탄 광촉매를 용이하게 제조하는 방법을 제공하는 것이다.Another object of the present invention is not limited by the shape of the catalytic reactor can be applied in various fields, the specific surface area is maximized, the reaction efficiency is dramatically improved, and the fibrous titanium oxide photocatalyst which can be used semi-permanently facilitates It is to provide a method of manufacturing.

도 1은 본 발명에 따른 섬유상의 산화티탄(TiO2) 광촉매 형상을 나타내는 도면.1 is a view showing a fibrous titanium oxide (TiO 2 ) photocatalyst shape according to the present invention.

도 2는 양극산화에 의해 형성된 티타늄 화이버표면의 산화티탄의 형상을 나타내는 도 1의 부분확대도.FIG. 2 is a partially enlarged view of FIG. 1 showing the shape of titanium oxide on the titanium fiber surface formed by anodization; FIG.

도 3은 양극산화에 의해 형성된 티타늄 화이버 표면의 산화티탄피막에 대한 XRD 결과를 나타내는 그래프.Figure 3 is a graph showing the XRD results for the titanium oxide film on the surface of the titanium fiber formed by anodization.

도 4는 본 발명에 따른 섬유상의 산화티탄광촉매에 의한 아닐린 블루의 분해반응 결과를 나타내는 그래프.Figure 4 is a graph showing the decomposition of aniline blue by the fibrous titanium oxide photocatalyst according to the present invention.

상기 목적을 달성하기 위한 본원발명에 의한 섬유상의 산화티탄 광촉매는, 티타늄 화이버를 포함하고, 상기 티타늄 화이버의 표면에 산화티탄(TiO2) 피막이 형성되어 있는 것을 특징으로 한다.The fibrous titanium oxide photocatalyst according to the present invention for achieving the above object comprises a titanium fiber, and a titanium oxide (TiO 2 ) film is formed on the surface of the titanium fiber.

상기와 같이 산화티탄 광촉매를 산화티탄이 부착된 섬유상으로 하면 비표면적이 최대화할 수 있어 반응효율을 증가시킬 수 있으며, 촉매반응기의 형상에 따른 제약을 받지 않는 이점이 있다. 또한, 산화티탄은 티타늄소재의 화이버에 생성되어 있기 때문에 박리되는 위험이 없고 회수가 용이하여, 반영구적으로 사용할 수 있다.As described above, when the titanium oxide photocatalyst is formed in the form of a fiber with titanium oxide attached thereto, the specific surface area can be maximized to increase the reaction efficiency, and there is an advantage of not being restricted by the shape of the catalytic reactor. In addition, since titanium oxide is produced in the fiber of titanium material, there is no risk of peeling, and it is easy to collect and can be used semi-permanently.

본원발명에 의한 섬유상의 산화티탄 광촉매의 제조방법은, 티타늄 화이버의 표면을 양극산화에 의해 산화하여 상기 티타늄 화이버 표면에 산화티탄 피막을 형성하는 단계를 포함하여 구성되는 것을 특징으로 한다.The method for producing a fibrous titanium oxide photocatalyst according to the present invention is characterized by comprising the step of oxidizing the surface of the titanium fiber by anodization to form a titanium oxide film on the surface of the titanium fiber.

상기 구성에 의하면, 촉매반응기의 형상에 제약을 받지 않아 다양한 분야에서 적용될 수 있고 비표면적이 최대화되어 반응효율이 비약적으로 향상되고 반영구적으로 사용할 수 있는 섬유상의 산화티탄 광촉매를 용이하게 제조할 수 있는 이점이 있다.According to the above configuration, the shape of the catalytic reactor can be applied in various fields without being restricted by the shape of the catalytic reactor, and the specific surface area is maximized, thereby greatly improving the reaction efficiency and semi-permanently usable advantages in the preparation of fibrous titanium oxide photocatalyst. There is this.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본원발명에 따른 섬유상의 산화티탄광촉매 형상을 나타내는 도면(1000배)이다. 상기 도 1에 나타난 바와 같이, 본 발명에 따른 섬유상의 산화티탄 광촉매는 티타늄 화이버의 표면에 산화티탄이 생성되어 피막을 이루고 있는 형태이다.1 is a diagram (1000 times) showing the shape of a fibrous titanium oxide photocatalyst according to the present invention. As shown in FIG. 1, the fibrous titanium oxide photocatalyst according to the present invention is a form in which a titanium oxide is formed on a surface of a titanium fiber to form a film.

섬유상의 산화티탄 광촉매를 제조하기 위한 기지금속으로 사용되는 티타늄화이버는 순수한 형태 또는 합금상태를 사용하여도 무방하나, 상업용 순도(99.5%)를 갖는 티타늄 금속으로 만든 티타늄 화이버가 바람직하다.The titanium fiber used as a base metal for producing a fibrous titanium oxide photocatalyst may be in pure form or in an alloy state, but a titanium fiber made of titanium metal having commercial purity (99.5%) is preferable.

또한, 화이버의 단면형상이나 직경의 크기는 일정한 체적안에 들어가 표면적을 증대시킬 수 있는 형상이나 크기이면 사용 가능하다. 즉, 화이버의 단면의 형상은, 구형, 사각형, 삼각형 등을 이용할 수 있으며, 그 직경은 일반적으로 약 10 - 500㎛, 바람직하게는 50 - 70㎛로 한다.In addition, the cross-sectional shape and the size of the fiber can be used as long as it is a shape or size that can increase the surface area within a certain volume. That is, the shape of the cross section of the fiber can be spherical, square, triangular or the like, and its diameter is generally about 10-500 mu m, preferably 50-70 mu m.

도 2는 양극산화에 의해 형성된 티타늄 화이버표면의 산화티탄의 형상을 확대하여 보여주는 도면(3500배)이다. 도 2에 나타난 바와 같이, 상기 광촉매 표면조직은 기공과 기공벽(pore wall)의 형태를 갖는 셀 구조로 이루어져 있고 기공의 직경은 평균 0.4 - 0.8㎛이며 기공벽의 두께는 0.5 - 1.0㎛이며 인가 전압의 증가 또는 인가 시간의 증가에 비례하여 셀 구조도 성장한다.FIG. 2 is an enlarged view (3500 times) of the shape of titanium oxide on the titanium fiber surface formed by anodization. As shown in FIG. 2, the surface of the photocatalyst is composed of a cell structure having pores and a pore wall. The pore diameter is 0.4-0.8 μm on average and the thickness of the pore wall is 0.5-1.0 μm. The cell structure also grows in proportion to an increase in voltage or an increase in application time.

상기와 같은 본 발명에 따른 산화티탄 광촉매는 섬유상이기 때문에, 어떤 반응기 형태에도 사용 가능하며 특별한 가공이 필요 없다. 또한, 섬유상이기 때문에 비표면적을 최대화할 수 있어, 반응효율을 비약적으로 향상시킬 수 있다. 그리고, 본원발명에 따른 산화티탄 광촉매는 티타늄 화이버의 표면을 산화하여 형성된 것이기 때문에, 종래 코팅법에 있어서의 광촉매 분리문제가 발생되지 않고, 특별한 장치 없이 회수가 용이하여 반영구적으로 사용이 가능하다.Since the titanium oxide photocatalyst according to the present invention as described above is fibrous, it can be used in any reactor form and requires no special processing. Moreover, since it is fibrous, a specific surface area can be maximized and reaction efficiency can be improved remarkably. In addition, since the titanium oxide photocatalyst according to the present invention is formed by oxidizing the surface of the titanium fiber, the problem of photocatalyst separation in the conventional coating method does not occur, and it is easy to recover without a special device and can be used semipermanently.

다음, 본 발명에 따른 섬유상의 산화티탄 광촉매의 제조방법에 대해서 살펴본다.Next, the manufacturing method of the fibrous titanium oxide photocatalyst according to the present invention will be described.

먼저, 티타늄 화이버 표면의 유기물을 제거하기 위한 전처리로서, 40% 노르말 헥산 용액에서 약 6분간 탈지시킨 후, 증류수로 세척하고 더운 공기로 건조시킨다.First, as a pretreatment for removing organic matter on the titanium fiber surface, it is degreased in a 40% normal hexane solution for about 6 minutes, washed with distilled water and dried with hot air.

그런 다음 양극산화 피막 처리를 실시한다. 이때 양극산화피막 제작을 위한 전해액 조성으로는 0.1 - 3M 황산용액, 0.1 - 1M 인산 및 0.1 - 1M H202이며, 바람직하게는 1.5M 황산용액, 0.3M 인산 및 0.3M H202의 혼합용액을 이용하고, 이 전해액의 조성을 조정하면 피막의 생성 속도를 조절할 수 있다. 즉, 피막의 두께를 얇게 생성시킬 경우 전해액으로 황산액만을 사용하며, 두꺼운 피막을 생성시킬 경우 혼합용액을 이용한다.Then anodized film treatment is performed. At this time, the electrolyte composition for producing anodized film is 0.1-3M sulfuric acid solution, 0.1-1M phosphoric acid and 0.1-1M H 2 0 2 , preferably a mixture of 1.5M sulfuric acid solution, 0.3M phosphoric acid and 0.3MH 2 0 2 By using a solution and adjusting the composition of this electrolyte solution, the formation rate of a film can be adjusted. In other words, when producing a thin film, only the sulfuric acid solution is used as an electrolyte, and when a thick film is produced, a mixed solution is used.

표 1에는 양극산화시 양극인가 전압이 150V로 30분간 인가하였을 경우 전해액 조성에 따른 피막의 두께가 나타나 있다.Table 1 shows the thickness of the film according to the composition of the electrolyte when the anode application voltage is applied at 150V for 30 minutes during anodization.

조성Furtherance 피막두께(㎛)Film thickness (㎛) 1.5M 황산1.5M sulfuric acid 2.22.2 1.5M 황산과 0.3M 과산화수소의 혼합용액Mixed solution of 1.5 M sulfuric acid and 0.3 M hydrogen peroxide 2.332.33 1.5M 황산과 0.3M 인산의 혼합용액1.5M sulfuric acid and 0.3M phosphoric acid mixed solution 2.512.51 1.5M 황산, 0.3M 인산과 0.3M 과산화수소의 혼합용액1.5M sulfuric acid, 0.3M phosphoric acid and 0.3M hydrogen peroxide 2.712.71

산화티탄 광촉매를 제조하기 위해 음극으로서 스테인리스 스틸(STS304)이 사용되었으며 극간 거리는 5cm로 고정시켰으며 전류밀도는 20mA/㎠으로 정전류를 공급하여 일정 전압까지 도달시킨 후 정전압 방식으로 각 30분간 양극산화를 실시한다. 모두 온도조절과 용액을 교반할 수 있는 항온 전해조에서 양극산화를 한다.Stainless steel (STS304) was used as a cathode to manufacture the titanium oxide photocatalyst, and the distance between the poles was fixed at 5cm and the current density was 20mA / ㎠ to supply a constant current to reach a constant voltage. Conduct. All are anodized in a constant temperature electrolyzer with temperature control and agitation of the solution.

또한 음극으로 사용되는 스테인리스 스틸은 양극인 티타늄 화이버의 주위를원형 형태로 설치하여 전류의 흐름이 골고루 분산되게 하였으며 전해액의 온도는 35℃로 유지한다.In addition, the stainless steel used as the cathode is installed around the titanium fiber as a cathode in a circular shape to distribute the current evenly and maintain the temperature of the electrolyte at 35 ° C.

도 3에는, 티타늄 화이버 표면의 양극산화에 의해 형성된 산화티탄 피막의 결정구조를 확인하기 위하여 X-선 회절분석기를 사용하여 입사각을 1.5도 고정하고 2θ를 20도부터 80도까지의 범위에 대하여 측정한 결과가 나타나 있다. 그 외, 시험조건은 아래와 같다.In Fig. 3, in order to confirm the crystal structure of the titanium oxide film formed by the anodic oxidation of the titanium fiber surface, the angle of incidence was fixed by 1.5 degrees using an X-ray diffractometer and 2θ was measured for a range from 20 degrees to 80 degrees. One result is shown. In addition, the test conditions are as follows.

- X-선 발생기 : 18KWX-ray generator: 18KW

- 타겟 : 1.54056 Å(Cu)Target: 1.54056 C (Cu)

- 모노크로메이터(monochromator) : 사용Monochromator: Used

kV : 40.0kVkV: 40.0kV

mA : 200.0mAmA: 200.0mA

- 샘플링 폭 : 0.0200degSampling Width: 0.0200deg

도 3에 나타난 바와 같이, 티타늄 화이버 표면에서 양극산화에 의해 생성된 산화티탄의 피막은 그 결정구조가 대부분 아나타제로 형성되었음을 보여주고 있고 또한 산화피막의 하부 소지금속인 티타늄의 회절 피크도 동시에 나타나 소재인 티타늄 화이버 표면에서 아나타제형 산화피막이 형성된 것을 알 수 있었다.As shown in FIG. 3, the titanium oxide film produced by anodization on the surface of titanium fiber showed that the crystal structure was mostly formed by anatase, and also the diffraction peak of titanium, which is the lower base metal of the oxide film, appeared simultaneously. It was found that an anatase type oxide film was formed on the surface of the phosphorus titanium fiber.

도 4는 본 발명에 따른 섬유상의 산화티탄광촉매의 특성을 조사하기 위해 행한 아닐린 블루 염료(Aniline blue, Fluka)의 분해반응 결과를 나타낸 것이다. 광분해 반응실험은 원통형 파이렉스 글라스 반응기(Pyrex glass reactor, φ=7.0cm, h=2.0cm)를 제작하여 25℃에서 실험하였으며 제조된 50㎛의 섬유상 산화티탄 광촉매 0.29g을 반응기 바닥에 설치하고, 0.01mM 아닐린 블루 용액(pH 4.0) 30mL를 첨가한 후, 고압 수은등(100W)을 광원으로 사용하였다.Figure 4 shows the decomposition reaction result of the aniline blue dye (Aniline blue, Fluka) performed to investigate the properties of the fibrous titanium oxide photocatalyst according to the present invention. Photolysis reaction experiment was carried out at 25 ℃ by manufacturing a cylindrical Pyrex glass reactor (φ = 7.0cm, h = 2.0cm), 0.29g of 50㎛ fibrous titanium oxide photocatalyst was prepared at the bottom of the reactor, 0.01 After addition of 30 mL of mM aniline blue solution (pH 4.0), a high pressure mercury lamp (100 W) was used as the light source.

이때 아닐린 블루의 분해농도는 UV/Vis. 분광광도계(Unicam 8700)를 사용하여 염료의 분해량에 따라 달라지는 600nm에서의 흡광도를 비교 측정한 후, 염료분해율로 환산하였다. 도 4에 나타난 바와 같이, 염료의 광분해 효과를 측정한 결과 염료의 분해율은 1시간 동안 32.7%, 2시간 동안 41%, 3.5시간 동안 48%로 나타났다. 이 결과는 사용된 광촉매가 미량인 것을 감안할 때, 매우 우수한 염료분해율을 나타낸다.At this time, the decomposition concentration of aniline blue was UV / Vis. A spectrophotometer (Unicam 8700) was used to compare and measure the absorbance at 600 nm depending on the decomposition amount of the dye, and then converted into dye decomposition rate. As shown in FIG. 4, the photodegradation effect of the dye was measured. The degradation rate of the dye was 32.7% for 1 hour, 41% for 2 hours, and 48% for 3.5 hours. This result shows a very good dye decomposition rate, considering that the photocatalyst used is a trace amount.

상기에서는 본원발명에 따른 산화티탄 광촉매를 양극산화에 의해 제조하는 방법에 대해서 설명하였지만, 본원발명에 따른 섬유상의 산화티탄 광촉매는 고온의 전기로를 이용한 표면 산화법, 기타 CVD나 PCVD 등의 건식 표면처리법, 졸겔벌, 산화티탄 담지법 등에 의해 제조될 수 있다.In the above, the method for producing the titanium oxide photocatalyst according to the present invention by anodization has been described.However, the fibrous titanium oxide photocatalyst according to the present invention is a surface oxidation method using a high temperature electric furnace, other dry surface treatment methods such as CVD or PCVD, It can be produced by sol gel bee, titanium oxide supporting method and the like.

본원발명에 따른 산화티탄 광촉매는 섬유상이기 때문에, 반응기의 형태에 따라 자유자재로 변형이 가능하여 각종 공기 청정기, 대기정화 시스템, 수질 정화기, 폐수 처리기 등에서 각종 오염물질의 분해, 살균, 항균 및 악취제거용 촉매로서 다양하게 적용될 수 있다.Since the titanium oxide photocatalyst according to the present invention is fibrous, it can be freely transformed according to the shape of the reactor, so that various contaminants are decomposed, sterilized, antibacterial and odor removed in various air purifiers, air purification systems, water purifiers, and wastewater treatment systems. It can be applied variously as a catalyst for.

이상에서 설명한 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상에 벗어나지 않는 범위내에서 여러가지 치환 변형이 가능하므로 전술한 실시예 및 첨부된 도면에 한정되는 것은 아니다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, as various substitutions and modifications can be made by those skilled in the art without departing from the technical spirit of the present invention. .

상술한 바와 같은 구성의 본원발명의 섬유상의 산화티탄 광촉매에 의하면, 촉매반응기의 형상에 제약을 받지 않아 다양한 분야에 적용이 가능하고 비표면적이 최대화되어 반응효율이 비약적으로 향상되고 반영구적으로 사용할 수 있는 효과를 도모할 수 있다.According to the fibrous titanium oxide photocatalyst of the present invention having the above-described configuration, it is not limited by the shape of the catalytic reactor and can be applied to various fields, and the specific surface area is maximized so that the reaction efficiency can be dramatically improved and can be used semi-permanently. The effect can be aimed at.

또한, 본원발명의 섬유상의 광촉매 제조방법에 의하면, 촉매반응기의 형상에 제약을 받지 않아 다양한 분야에 적용이 가능하고 비표면적이 최대화되어 반응효율이 비약적으로 향상되고 반영구적으로 사용할 수 있는 섬유상의 산화티탄 광촉매를 용이하게 제조할 수 있다.In addition, according to the fibrous photocatalyst manufacturing method of the present invention, the shape of the catalytic reactor is not restricted, it can be applied to various fields, and the specific surface area is maximized, resulting in a remarkably improved reaction efficiency and fibrous titanium oxide that can be used semi-permanently. Photocatalysts can be easily produced.

Claims (8)

티타늄 화이버; 및Titanium fiber; And 상기 티타늄 화이버의 표면에 형성된 산화티탄 피막을 포함하는 섬유상의 산화티탄 광촉매로서,As a fibrous titanium oxide photocatalyst comprising a titanium oxide film formed on the surface of the titanium fiber, 상기 산화티탄 피막은, 그 피막조직이 기공과 기공벽(pore wall)의 형태를 갖는 셀구조로 이루어져 있으며, 그 피막결정이 아나타제형 이산화티탄(TiO2) 결정인 산화티탄 피막인 것을 특징으로 하는 섬유상의 산화티탄 광촉매.The titanium oxide film has a cell structure in which the film structure has a form of pores and a pore wall, and the film crystal is a titanium oxide film of anatase type titanium dioxide (TiO 2 ) crystals. Fibrous titanium oxide photocatalyst. 제1항에 있어서, 상기 티타늄 화이버는 순도가 99.5% 이상인 섬유상의 산화티탄 광촉매.The fibrous titanium oxide photocatalyst of claim 1, wherein the titanium fiber has a purity of 99.5% or more. 제1항에 있어서, 상기 티타늄 화이버의 직경은 10 - 500㎛인 섬유상의 산화티탄 광촉매.The fibrous titanium oxide photocatalyst of claim 1, wherein the titanium fiber has a diameter of 10 to 500 µm. 삭제delete 티타늄 화이버의 표면을 양극산화법에 의해 산화하여 상기 티타늄 화이버 표면에 산화티탄 피막을 형성하는 단계를 포함하는 섬유상의 산화티탄 광촉매 제조방법으로서,A method of manufacturing a fibrous titanium oxide photocatalyst comprising the step of oxidizing a surface of a titanium fiber by anodization to form a titanium oxide film on the surface of the titanium fiber. 상기 산화티탄 피막은, 그 피막조직이 기공과 기공벽(pore wall)의 형태를 갖는 셀구조로 이루어져 있으며, 그 피막결정이 아나타제형 이산화티탄(TiO2) 결정인 산화티탄 피막인 것을 특징으로 하는 섬유상의 산화티탄 광촉매 제조방법.The titanium oxide film has a cell structure in which the film structure has a form of pores and a pore wall, and the film crystal is a titanium oxide film of anatase type titanium dioxide (TiO 2 ) crystals. Method for producing fibrous titanium oxide photocatalyst. 제5항에 있어서, 상기 양극산화에 사용되는 전해액은 0.1 - 3M의 H2SO4, 0.1 - 1M의 H3PO4및 0.1 - 1M의 H202를 포함하는 섬유상의 산화티탄 광촉매 제조방법.The method of claim 5, wherein the electrolyte solution used for the anodization comprises 0.1-3 M H 2 SO 4 , 0.1-1 M H 3 PO 4 and 0.1-1 M H 2 O 2 . . 제6항에 있어서, 상기 전해액은 백금, 금 및 은으로 이루어진 그룹에서 선택되는 귀금속을 더 포함하는 섬유상의 산화티탄 광촉매 제조방법.The method of claim 6, wherein the electrolyte further comprises a precious metal selected from the group consisting of platinum, gold and silver. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 섬유상의 산화티탄 광촉매는 공기 청정기용, 대기 정화용, 수질 정화용, 악취 제거용 또는 항균용 광촉매로 사용되는 섬유상의 산화티탄 광촉매.The fibrous titanium oxide photocatalyst according to any one of claims 1 to 3, wherein the fibrous titanium oxide photocatalyst is used as an air purifier, an air purifier, a water purifier, an odor removal or an antibacterial photocatalyst.
KR10-2001-0059765A 2001-09-26 2001-09-26 Photocatalytic TiO2 in the form of fiber and manufacturing method thereof Expired - Fee Related KR100424100B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0059765A KR100424100B1 (en) 2001-09-26 2001-09-26 Photocatalytic TiO2 in the form of fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0059765A KR100424100B1 (en) 2001-09-26 2001-09-26 Photocatalytic TiO2 in the form of fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20020009524A KR20020009524A (en) 2002-02-01
KR100424100B1 true KR100424100B1 (en) 2004-03-22

Family

ID=19714707

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0059765A Expired - Fee Related KR100424100B1 (en) 2001-09-26 2001-09-26 Photocatalytic TiO2 in the form of fiber and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100424100B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703032B1 (en) 2005-08-29 2007-04-06 강릉대학교산학협력단 Nanoporous Photocatalyst Membrane and Manufacturing Method Thereof, Water Treatment and Air Purification System Using Nanoporous Photocatalyst Membrane

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075063A (en) * 2002-03-15 2003-09-22 지충수 Photocatalytic reactor for purification of waste water
KR100925184B1 (en) * 2007-02-26 2009-11-06 한국세라믹기술원 3D photocatalyst component manufacturing method and 3D photocatalytic reaction device
KR101031225B1 (en) * 2008-04-18 2011-04-29 한국세라믹기술원 Reactor integrated catalyst manufacturing technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223323A (en) * 1986-03-20 1987-10-01 Central Glass Co Ltd Production of titanium oxide fiber
JPH10325021A (en) * 1996-12-26 1998-12-08 Sumitomo Chem Co Ltd Titania fiber and method for producing the same
KR20000027355A (en) * 1998-10-28 2000-05-15 석창환 Metal fiber filter and device for resolving organic substance by using metal fiber filter
JP2000192336A (en) * 1998-12-21 2000-07-11 Sumitomo Chem Co Ltd Titania fiber and method for producing the same
KR20020069053A (en) * 2001-02-23 2002-08-29 화이버 텍 (주) Metal fiber filter having activated carbon fiber layers on metal fiber layers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223323A (en) * 1986-03-20 1987-10-01 Central Glass Co Ltd Production of titanium oxide fiber
JPH10325021A (en) * 1996-12-26 1998-12-08 Sumitomo Chem Co Ltd Titania fiber and method for producing the same
KR20000027355A (en) * 1998-10-28 2000-05-15 석창환 Metal fiber filter and device for resolving organic substance by using metal fiber filter
JP2000192336A (en) * 1998-12-21 2000-07-11 Sumitomo Chem Co Ltd Titania fiber and method for producing the same
KR20020069053A (en) * 2001-02-23 2002-08-29 화이버 텍 (주) Metal fiber filter having activated carbon fiber layers on metal fiber layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703032B1 (en) 2005-08-29 2007-04-06 강릉대학교산학협력단 Nanoporous Photocatalyst Membrane and Manufacturing Method Thereof, Water Treatment and Air Purification System Using Nanoporous Photocatalyst Membrane

Also Published As

Publication number Publication date
KR20020009524A (en) 2002-02-01

Similar Documents

Publication Publication Date Title
Zhang et al. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation
Shan et al. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review
Bideau et al. On the “immobilization” of titanium dioxide in the photocatalytic oxidation of spent waters
CN105597719A (en) Foamed titanium-titanium oxide composite photoelectrocatalytic material and application thereof
TW200944288A (en) Method for producing catalyst for wastewater treatment
Lee et al. OH radical generation in a photocatalytic reactor using TiO2 nanotube plates
Smirnova et al. Synthesis and characterization of photocatalytic porous Fe3+/TiO2 layers on glass
Candal et al. Titanium-supported titania photoelectrodes made by sol-gel processes
CN102744087A (en) Electrochemistry preparation method for flaky nanometer bismuth oxychloride film photocatalyst
KR100907467B1 (en) Method for producing Ti02 photocatalyst using aluminum anodized film template and Ti02 photocatalyst prepared by the above method
CN102311153B (en) Application of Fe-based Fe2O3 Nanotubes in Visible Light Catalytic Degradation of Dye Wastewater
KR100424100B1 (en) Photocatalytic TiO2 in the form of fiber and manufacturing method thereof
KR100852496B1 (en) Method for preparing titanium oxide photocatalyst using oxygen plasma and rapid heat treatment
KR100925247B1 (en) Photocatalyst, preparation method thereof and wastewater treatment method using the same
KR100803738B1 (en) Method for preparing titanium oxide photocatalyst using titanium-peroxygel
Suharyadi et al. Dye-Sensitized Solar Cell Photoelectrochemical Tandem System Performance Study: TiO 2 Nanotube/N719, BiVO 4/TiO 2 Nanotube, Ti 3+/TiO 2 Nanotube for Nitrogen Reduction Reaction to Ammonia
KR20160060191A (en) Photoelectrocatalytic Water Treatment Apparatus by Using Immobilized Nanotubular photosensized electrode
Porley et al. Substrate and support materials for photocatalysis
KR100403275B1 (en) Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same
Lim et al. Combined photocatalysis–separation processes for water treatment using hybrid photocatalytic membrane reactors
JP2001286749A (en) Chemical transducer
CN1331766C (en) Technique for treating organic substance difficukt to be degradated in water through opto-electronic electrode
JP3046581B2 (en) Method for using photolysis catalyst and method for producing hydrogen
KR101164412B1 (en) Method for producing titanium dioxide plate
Sathishkumar et al. Contemporary Achievements of Visible Light‐Driven Nanocatalysts for the Environmental Applications

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

G15R Request for early publication
A302 Request for accelerated examination
PA0302 Request for accelerated examination

St.27 status event code: A-1-2-D10-D16-exm-PA0302

St.27 status event code: A-1-2-D10-D17-exm-PA0302

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

D13-X000 Search requested

St.27 status event code: A-1-2-D10-D13-srh-X000

D14-X000 Search report completed

St.27 status event code: A-1-2-D10-D14-srh-X000

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

E13-X000 Pre-grant limitation requested

St.27 status event code: A-2-3-E10-E13-lim-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

Fee payment year number: 1

St.27 status event code: A-2-2-U10-U11-oth-PR1002

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PR1001 Payment of annual fee

Fee payment year number: 4

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 5

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 6

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 7

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 8

St.27 status event code: A-4-4-U10-U11-oth-PR1001

FPAY Annual fee payment

Payment date: 20120309

Year of fee payment: 9

PR1001 Payment of annual fee

Fee payment year number: 9

St.27 status event code: A-4-4-U10-U11-oth-PR1001

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Not in force date: 20130311

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

St.27 status event code: A-4-4-U10-U13-oth-PC1903

PC1903 Unpaid annual fee

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20130311

St.27 status event code: N-4-6-H10-H13-oth-PC1903

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000