KR100419174B1 - Temperature measuring method for the tuyere combustion zone in melting reduction furnace - Google Patents
Temperature measuring method for the tuyere combustion zone in melting reduction furnace Download PDFInfo
- Publication number
- KR100419174B1 KR100419174B1 KR10-1999-0063246A KR19990063246A KR100419174B1 KR 100419174 B1 KR100419174 B1 KR 100419174B1 KR 19990063246 A KR19990063246 A KR 19990063246A KR 100419174 B1 KR100419174 B1 KR 100419174B1
- Authority
- KR
- South Korea
- Prior art keywords
- reduction furnace
- combustion zone
- temperature
- wavelength
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000002844 melting Methods 0.000 title claims abstract description 9
- 230000008018 melting Effects 0.000 title claims abstract description 9
- 239000000155 melt Substances 0.000 claims abstract description 11
- 239000013307 optical fiber Substances 0.000 claims abstract description 7
- 230000005855 radiation Effects 0.000 claims abstract description 7
- 238000005259 measurement Methods 0.000 claims abstract description 6
- 239000000428 dust Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- -1 moisture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0815—Light concentrators, collectors or condensers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0853—Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
Abstract
본 발명은 용융 환원로 풍구 연소대의 온도를 열악한 주변환경으로부터 안정적으로 측정할 수 있는 용융환원로 풍구 연소대의 온도 측정방법에 관한 것으로,The present invention relates to a method for measuring the temperature of the melt reduction furnace tuyebe combustion zone that can stably measure the temperature of the melt reduction furnace tuyebe combustion zone from poor surrounding environment,
용융환원로의 풍구(4)에 설치된 빛살가르게(6)를 투과하여 광섬유를 통하여 전달되는 용융환원로 연소대 내의 빛을 소형 분광계(10)에서 0.4-1.0㎛ 대역 파장 영역을 파장별로 분할하고, 상기 소형 분광계(10)와 연결된 신호처리계(11)에서 상기 소형 분광계(10)에 의하여 측정된 0.4-1.0㎛ 대역 파장에 대하여 프랭크 복사 법칙에 의한 곡선과의 비교 측정에 의하여 특정 파장의 강도 비교에 의하여 측정물의 온도를 측정할 수 있도록 하는 것을 특징으로 한다.The light in the melting reduction furnace combustion zone transmitted through the optical fiber 6 transmitted through the optical fiber through the light paths 6 of the melting hole 4 of the melting reduction furnace is divided by the wavelength in the 0.4-1.0 μm band wavelength region by the small spectrometer 10, Comparison of the intensity of a specific wavelength by a comparison measurement with the curve according to the Frank radiation law for the 0.4-1.0 ㎛ wavelength measured by the small spectrometer 10 in the signal processing system 11 connected to the small spectrometer 10 It characterized in that to be able to measure the temperature of the workpiece.
Description
본 발명은 용융 환원로 풍구 연소대의 온도를 열악한 주변환경으로부터 안정적으로 측정할 수 있는 용융환원로 풍구 연소대의 온도 측정방법에 관한 것이다.The present invention relates to a method for measuring the temperature of the melt reduction furnace tuyebe combustion zone that can stably measure the temperature of the melt reduction furnace tuyebe combustion zone from poor surrounding environment.
신제선 용융환원로의 풍구는 26개로서, 일반적으로 조업자가 노열 예측을 위하여 풍구를 직접 들여다 보면서 노열을 예측하고 있다. 이는 풍구에 설치된 관측창을 통하여 용융환원노 내 열저장 상태 및 연소 상태를 감시하기 위한 작업이다.There are 26 blowholes in the new steel melting furnace, and in general, the operator predicts the burnout by looking directly at the blowhole to predict the heat. This is to monitor the heat storage state and combustion state in the melt reduction furnace through the observation window installed in the tuyere.
그런데 현재까지 조업자 각각이 목측으로 판단하는 방법이외에는 별다른 방법이 없기 때문에, 각 조업자의 목측에 의한 오차가 심하고, 노열에 대한 정량적 값을 산출하지 못하는 단점이 있어 왔다.By the way, since there is no method other than the method judged by the respective operators to the neck side, the error by the neck side of each worker is severe, and there has been a disadvantage in that it cannot calculate a quantitative value for the heat.
또한, 기존의 광 고온계에 의한 측정은 풍구의 조업자 관측창이 매우 좁고, 먼지, 수분, 가스 등이 상시 존재하기 때문에 안정적 온도측정이 불가능하였다.In addition, the measurement by the conventional optical pyrometer was not possible to measure the stable temperature because the operator observation window of the wind hole is very narrow and dust, moisture, gas, etc. are always present.
즉, 조업자 각각에 따라 풍구 밝기를 판단하여 노열을 예측함에 따라 개인 오차가 발생하고 있으며, 풍구 밝기와 출선구 온도에 대한 상관 관계의 규명이 불가능한 실정이다. 또한, 용융환원로의 휘도에 따른 다른 제어 변수와의 관계 및 데이터의 종합적 통계 관리가 어려운 실정이다.That is, personal error is generated by judging the brightness of the tuyere by predicting the brightness of the tuyere, and it is impossible to identify the correlation between the tuyere brightness and the exit temperature. In addition, comprehensive statistical management of data and relationships with other control variables according to the brightness of the melt reduction furnace is difficult.
따라서, 분진 및 수분 등이 상시 존재하는 열악한 조건에서도 작동이 가능한 안정적인 측온방법의 개발이 필요하며, 이는 연소대 내 온도에 대한 정량적 측정으로 인하여 출선 온도 적정화에 크게 기여할 것으로 예상되고 있다.Therefore, it is necessary to develop a stable temperature measuring method that can operate even in the harsh conditions where dust and moisture are always present, which is expected to contribute greatly to the optimization of the shipboard temperature due to the quantitative measurement of the temperature in the combustion zone.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 발명된 것으로, 온도를 정량적으로 검출하여 노항 판단의 주요 변수로서 관리할 수 있도록 분진, 진동, 수분 및 가스 등에 항상 노출되어야 하는 조업 상황에서도 온도 측정이 가능한 용융환원로 풍구 연소대의 온도 측정방법을 제공함을 그 목적으로 한다.The present invention has been invented to solve the problems of the prior art as described above, even in the operating conditions that must be constantly exposed to dust, vibration, moisture and gas so that the temperature can be quantitatively detected and managed as the main variable of the furnace determination. It is an object of the present invention to provide a method for measuring the temperature of a blast furnace combustion zone that can be measured.
도 1은 본 발명에 따른 풍구 연소대 온도 측정방법에 사용되는 장치의 연결상태를 나타낸 개략도,1 is a schematic diagram showing a connection state of the apparatus used in the method for measuring the temperature of the tuyere furnace according to the present invention,
도 2는 파장별 방사강도를 나타낸 그래프.Figure 2 is a graph showing the radiation intensity for each wavelength.
< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>
1 : 연소대 2 : 철피1: burning zone 2: iron shell
3 : 내화물 4 : 풍구3: refractory 4: windball
5 : 풍구내에서 발산되는 빛 6 : 빛살가르게5: light emitted from the breeze 6: light
7 : 반사경 8 : 관측창7: reflector 8: observation window
9 : 광섬유 10 : 소형 분광계9: optical fiber 10: compact spectrometer
11 : 신호처리계11: signal processing system
상기의 목적을 달성하기 위한 본 발명의 용융환원로 풍구 연소대의 온도 측정방법은, 용융환원로의 풍구(4)에 설치된 빛살가르게(6)를 투과하여 광섬유를 통하여 전달되는 용융환원로 연소대 내의 빛을 소형 분광계(10)에서 0.4-1.0㎛ 대역 파장 영역을 파장별로 분할하고, 상기 소형 분광계(10)와 연결된 신호처리계(11)에서 상기 소형 분광계(10)에 의하여 측정된 0.4-1.0㎛ 대역 파장에 대하여 프랭크 복사 법칙에 의한 곡선과의 비교 측정에 의하여 특정 파장의 강도 비교에 의하여 측정물의 온도를 측정할 수 있도록 하는 것을 특징으로 한다.The temperature measuring method of the melt reduction furnace tuyere combustion zone of the present invention for achieving the above object, in the melt reduction furnace combustion zone transmitted through the optical fiber through the light path 6 installed in the tuyere (4) of the melt reduction furnace 0.4-1.0 μm light is measured by the small spectrometer 10 by dividing the 0.4-1.0 μm band wavelength region by the wavelength in the compact spectrometer 10 and the signal processing system 11 connected to the compact spectrometer 10. It is characterized in that the temperature of the workpiece can be measured by comparing the intensity of the specific wavelength by comparison measurement with the curve according to the Frank radiation law.
이하에서는 첨부도면을 참조하여 본 발명의 용융환원로 풍구 연소대의 온도 측정방법에 대하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the temperature measuring method of the molten reduction furnace wind ball combustion zone of the present invention.
도 1은 본 발명에 따른 풍구 연소대 온도 측정방법에 사용되는 장치의 연결상태를 나타낸 개략도이다.1 is a schematic view showing a connection state of the apparatus used in the method for measuring the temperature of the tuyere furnace according to the present invention.
용융환원로의 각각의 풍구(4)를 통하여 취입된 산소는 연소대(1)에서 코크스 등과 반응하여 불꽃을 방사하게 된다. 이 불꽃은 도 1에 나타낸 바와 같이 풍구(4)를 향하여 돌진하며, 조업자용 관측창(8) 쪽으로 풍구(4)를 통하여 방출된다.Oxygen blown through the respective tuyeres 4 of the melting / reduction furnace reacts with coke or the like in the combustion zone 1 to emit flames. This flame rushes toward the tuyere 4 as shown in FIG. 1 and is emitted through the tuyere 4 toward the operator observation window 8.
이 풍구(4) 상에 설치된 빛살가르게(6)는 가시광과 근 적외선 대역의 빛을 50 대 50으로 투과 및 반사하는 특성을 지닌 물질로 제작된다.The light beam 6 installed on the air vent 4 is made of a material having the property of transmitting and reflecting visible light and light in the near infrared band at 50 to 50.
이에 따라 상기 빛살가르게(6)에서 반사된 50%의 빛은 반사경(7)에서 반사된 후, 조업자용 관측창(8)을 통하여 조업자 목측에 의하여 관측되어 종래 노황 판단하는 방법과 같이 빛의 밝기를 보고서 노황 판단을 할 수 있도록 한다.Accordingly, 50% of the light reflected by the light source 6 is reflected by the reflector 7, and then observed by the operator's neck through the operator's observation window 8, and the light is exposed as in the conventional method of determining yellowing. Look at the brightness so you can make an aging judgment.
한편, 본 발명에 의하여 새로 구성될 광학계 쪽으로의 광의 전달 경로는 빛살가르게(6)에서 투과된 투과광이 광섬유(9)를 통하여 소형 분광계(10)에 전달되고, 이와 연결된 신호처리계(11)는 상기 소형 분광계(10)에서 받아 들인 광량과 데이터 측정시간 등을 결정하게 된다.On the other hand, the transmission path of the light toward the optical system to be newly configured according to the present invention is transmitted light transmitted from the light path 6 is transmitted to the small spectrometer 10 through the optical fiber 9, the signal processing system 11 connected thereto The amount of light received by the compact spectrometer 10 and the data measurement time are determined.
상기 소형 분광계(10)는 가시광 영역에서 근 적외선 영역까지 빛을 분광하여 각 파장 대역별 빛의 강도를 상기 신호처리계(11)로 전달하고, 상기 신호처리계(11)는 이를 각 파장 대역별 고유 광 강도(Intensity)값으로 환산한다.The compact spectrometer 10 spectroscopy light from the visible region to the near infrared region and transmits the intensity of light for each wavelength band to the signal processing system 11, and the signal processing system 11 transmits the light intensity for each wavelength band. Converted to the intrinsic light intensity value.
각 파장 대역별 고유 분광 특성치는 다음과 같은 프랭크 복사공식에 의하여 주어진다.The intrinsic spectral characteristics of each wavelength band are given by the following Frank radiation formula.
여기서,는 흑체의 온도가 절대온도 T일 때 그 흑체가 외부로 방출하는 단위 시간당, 단위 면적당 피장별 복사에너지, с는 진공중 빛의 속도, h는 프랑크 상수, k는 볼쯔만 상수이다.here, Where is the absolute temperature T, the black body emits to the outside per unit time, the unit-specific radiant energy per unit area, с is the speed of light in vacuum, h is the Frank's constant, and k is the Boltzmann's constant.
온도가 있는 물체는 각 파장에 따라 위와 같은 특성값을 나타내는 분광 분포를 나타내기 때문에 특정 파장에서의 빛의 강도를 계산할 수 있다.Since the object with temperature shows a spectral distribution showing the above characteristic values for each wavelength, the intensity of light at a particular wavelength can be calculated.
상기 신호처리계(11)를 이용하여 가시광 영역(450nm)에서 근 적외선(1000nm) 대역의 빛의 강도를 측정하여 곡선에 대한 피팅(Fitting)을 하면, 450-1000nm 대역에서 발광하는 발광원의 온도에 따른 각 파장별 밝기에 대하여 프랭크 복사 법칙에따라 도 2와 같은 곡선을 얻을 수 있다.By measuring the intensity of light in the near infrared (1000 nm) band in the visible region (450 nm) using the signal processing system 11 and fitting the curve, the temperature of the light emitting source emitting light in the 450-1000 nm band With respect to the brightness for each wavelength in accordance with the Frank radiation law can be obtained a curve as shown in FIG.
여기서, 가로축은 파장(㎛), 세로축은 빛의 밝기(W)를 나타낸다. 따라서, 상기 신호처리계(11)에서 측정된 신호 0.4-1.0㎛ 대역 신호와 동일한 영역의 프랭크 복사 법칙에 의하여 구할 수 있는 위 그래프와 자동 비교를 하여 발광원의 온도를 측정할 수 있다.Here, the horizontal axis represents wavelength (占 퐉) and the vertical axis represents brightness (W) of light. Therefore, the temperature of the light emitting source can be measured by automatic comparison with the above graph obtained by the Frank radiation law in the same region as the signal measured by the signal processing system 11 in the band of 0.4-1.0 μm.
이상에서 상세히 설명한 바와 같이, 본 발명의 용융환원로 풍구 연소대의 온도 측정방법에 의하여 양호한 실시가 이루어질 경우 풍구 연소대의 연속적 온도 측정이 가능하게 됨으로서 노열을 빠른 시간에 정확한 온도로 판단함으로서 코렉스로의 장수명화 및 노열인자의 적절한 제어를 통하여 출선원가 절감에 효과가 있으며, 용선의 최적 상태인 출선온도 1500℃ 관리 기준에 크게 기여할 것으로 판단된다.As described in detail above, when good implementation is made by the temperature measuring method of the melt reduction furnace tuyere combustion zone of the present invention, it is possible to continuously measure the temperature of the tuyere combustion zone by judging the furnace heat to accurate temperature in a short time to longevity to Korex It is effective to reduce the cost of shipbuilding through proper control of the name and furnace factor, and it is expected to contribute greatly to the management standard of the shipbuilding temperature 1500 ℃ which is the optimal state of the chartered ship.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0063246A KR100419174B1 (en) | 1999-12-28 | 1999-12-28 | Temperature measuring method for the tuyere combustion zone in melting reduction furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0063246A KR100419174B1 (en) | 1999-12-28 | 1999-12-28 | Temperature measuring method for the tuyere combustion zone in melting reduction furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010060804A KR20010060804A (en) | 2001-07-07 |
KR100419174B1 true KR100419174B1 (en) | 2004-02-14 |
Family
ID=19630605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1999-0063246A Expired - Fee Related KR100419174B1 (en) | 1999-12-28 | 1999-12-28 | Temperature measuring method for the tuyere combustion zone in melting reduction furnace |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100419174B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200124393A (en) | 2019-04-24 | 2020-11-03 | 손주달 | Indoor fire hydrant with pressure status |
KR20220104610A (en) | 2021-01-18 | 2022-07-26 | 손주달 | On-off valve for indoor fire extinguishing with pressure gauge plate |
KR20230118413A (en) | 2022-02-04 | 2023-08-11 | 손주달 | Check the function of the indoor fire hydrant and optimized delivery system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6263605A (en) * | 1985-09-12 | 1987-03-20 | Kobe Steel Ltd | Method for controlling temperature of molten iron in blast furnace |
JPH02124439A (en) * | 1988-11-02 | 1990-05-11 | Mitsubishi Electric Corp | Temperature measuring apparatus |
US5876121A (en) * | 1994-08-05 | 1999-03-02 | Mcgill University | Substrate temperature measurement by infrared spectroscopy |
-
1999
- 1999-12-28 KR KR10-1999-0063246A patent/KR100419174B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6263605A (en) * | 1985-09-12 | 1987-03-20 | Kobe Steel Ltd | Method for controlling temperature of molten iron in blast furnace |
JPH02124439A (en) * | 1988-11-02 | 1990-05-11 | Mitsubishi Electric Corp | Temperature measuring apparatus |
US5876121A (en) * | 1994-08-05 | 1999-03-02 | Mcgill University | Substrate temperature measurement by infrared spectroscopy |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200124393A (en) | 2019-04-24 | 2020-11-03 | 손주달 | Indoor fire hydrant with pressure status |
KR20220104610A (en) | 2021-01-18 | 2022-07-26 | 손주달 | On-off valve for indoor fire extinguishing with pressure gauge plate |
KR20230118413A (en) | 2022-02-04 | 2023-08-11 | 손주달 | Check the function of the indoor fire hydrant and optimized delivery system |
Also Published As
Publication number | Publication date |
---|---|
KR20010060804A (en) | 2001-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6109783A (en) | Optic pyrometer for gas turbines | |
US20190322562A1 (en) | Control system for furnace | |
US7365841B2 (en) | Method for analysis of a molten material, device and immersion sensor | |
US7995195B2 (en) | Method of optically monitoring the progression of a physical and/or chemical process taking place on a surface of a body | |
CA1329018C (en) | Method and apparatus for optically coupling an element analysis system and a laser to liquid metal in a melting vessel | |
CN100516840C (en) | Liquid steel component monitoring and analysis device | |
KR100419174B1 (en) | Temperature measuring method for the tuyere combustion zone in melting reduction furnace | |
JPWO2005045379A1 (en) | Flame detection method and flame detection apparatus | |
JP2604754B2 (en) | Spectrophotometer | |
JP2008215851A (en) | Probe for laser-induced fluorescence analysis and laser-induced fluorescence analyzer | |
KR100809563B1 (en) | Apparatus for chemical analysis of material samples and metals for the same | |
GB2260608A (en) | Monitoring ceramic welding | |
US5170060A (en) | Measuring the flow rate of a thin stream of molten material | |
WO1992008088A1 (en) | Distance measurement in furnaces | |
US20210318233A1 (en) | In Situ Apparatus for Furnace Off-Gas Constituent and Flow Velocity Measurement | |
US7445384B2 (en) | Pyrometer | |
JP2006126062A (en) | Method and apparatus for measuring temperature of molten metal | |
US20040105153A1 (en) | Device for reception and transmission of electromagnetic waves emitted by a material sample | |
EP2235703A1 (en) | A fire detecting system and method for early detection of fire | |
JPS62226025A (en) | Method for measuring the flash point temperature of a steelmaking furnace | |
Belbachir et al. | Real-time Optical Sensing and Analysis for Understanding Extreme Metal Production Processes | |
US20250012442A1 (en) | Detection apparatus and combustion system | |
JPH07174634A (en) | Temperature measurement method for objects in the furnace | |
JP2005315777A (en) | Hot spot radiation measuring method and apparatus | |
JP2003207321A (en) | Shape measuring device for high-temperature object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19991228 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20011015 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 19991228 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20030529 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20031127 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20040204 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20040205 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20070206 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20080201 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20090202 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20100202 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20100202 Start annual number: 7 End annual number: 7 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |