KR100414771B1 - Chemical oxidation method of petroleum-contaminated soil using electro-osmosis and apparatus thereof - Google Patents
Chemical oxidation method of petroleum-contaminated soil using electro-osmosis and apparatus thereof Download PDFInfo
- Publication number
- KR100414771B1 KR100414771B1 KR1020030048094A KR20030048094A KR100414771B1 KR 100414771 B1 KR100414771 B1 KR 100414771B1 KR 1020030048094 A KR1020030048094 A KR 1020030048094A KR 20030048094 A KR20030048094 A KR 20030048094A KR 100414771 B1 KR100414771 B1 KR 100414771B1
- Authority
- KR
- South Korea
- Prior art keywords
- soil
- hydrogen peroxide
- electrode
- contaminated soil
- oxidative decomposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/08—Reclamation of contaminated soil chemically
- B09C1/085—Reclamation of contaminated soil chemically electrochemically, e.g. by electrokinetics
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
- C01B13/0203—Preparation of oxygen from inorganic compounds
- C01B13/0211—Peroxy compounds
- C01B13/0214—Hydrogen peroxide
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Soil Sciences (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
개시된 내용은 전기삼투현상에 의하여 오염토양내에서 과산화수소를 원활하게 이동시켜 수산화라디칼에 의한 유류오염물의 직접적인 산화분해를 유도하고 전극극성전환을 통하여 제거율을 더욱더 상승시키는 전기삼투현상을 이용한 오염토양내 유류오염물 산화분해방법 및 장치에 관한 것이다. 이러한 본 발명은 오염토양내에 양전극과 음전극을 삽입하고 양전극쪽에 과산화수소를 주입하는 동시에 직류전류를 공급하여 전기삼투현상에 의하여 상기 과산화수소용액이 원활하게 이동하면서 토양내의 철분과 반응하여 생성된 수산화라디칼에 의해 오염물질이 산화분해되게 한다. 나아가, 상기 산화분해반응중 소정 시일이 경과한 후 상기 전극들의 극성전환을 통하여 전기삼투현상에 의한 과산화수소용액의 흐름방향을 바꿔주는 것을 특징으로 한다.Disclosed is an oil in a contaminated soil using an electroosmotic phenomenon to smoothly move hydrogen peroxide in the contaminated soil by electroosmotic phenomenon to induce direct oxidative decomposition of oil contaminants by hydroxyl radicals and to further increase the removal rate through electrode polarity conversion. A method and apparatus for oxidative decomposition of contaminants. The present invention inserts a positive electrode and a negative electrode into a contaminated soil, and injects hydrogen peroxide into the positive electrode and simultaneously supplies a DC current, thereby smoothly moving the hydrogen peroxide solution by the electroosmotic phenomenon and reacting with the iron in the soil by radicals generated by the radicals. Causes contaminants to be oxidized Further, after the predetermined time elapses during the oxidative decomposition reaction, the flow direction of the hydrogen peroxide solution by the electroosmotic phenomenon is changed through polarity switching of the electrodes.
Description
본 발명은 유류로 오염된 토양을 정화하기 위한 방법 및 장치에 관한 것으로, 보다 상세하게는 전기삼투현상에 의하여 오염토양내에서 과산화수소를 원활하게 이동시켜 수산화라디칼에 의한 유류오염물의 직접적인 산화분해를 유도하고 전극극성전환을 통하여 제거율을 더욱더 상승시키는 전기삼투현상을 이용한 오염토양내 유류오염물 산화분해방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for purifying soil contaminated with oil, and more particularly, to smoothly transfer hydrogen peroxide in contaminated soil by electroosmotic phenomenon to induce direct oxidative decomposition of oil pollutants by radicals. The present invention relates to a method and apparatus for oxidative decomposition of oil contaminants in a contaminated soil using an electroosmotic phenomenon to further increase the removal rate through electrode polarity conversion.
일반적으로, 인구증가와 산업발달에 따라 부수적으로 발생되는 도시, 산업, 광산, 준설, 핵 등의 폐기물이나 나날이 사용량이 증가하고 있는 화학물질, 유류, 농약 등의 처리불량으로 인하여 토양 및 지하수가 오염되고 있다. 이와 같이 토양 및 지하수 오염원은 매우 다양한 원인에 의하여 일어나게 된다.In general, soil and groundwater are contaminated by wastes such as urban, industrial, mining, dredging, nuclear, etc., which are incidentally generated due to population growth and industrial development, and poor processing of chemicals, oils, pesticides, etc. It is becoming. As such, soil and groundwater sources are caused by a wide variety of causes.
국내의 경우 1980년 후반기 이전에 설치된 매립장의 경우에는 매립장에서 발생되는 침출수를 차단하기 위한 차수재가 설치되지 않거나 비닐이나 천막 등 저급한 차수재가 설치된 불량 매립장이 대부분이었다. 이와 같은 매립장은 주로 계곡, 평지 및 하천 부근에 위치하고 있기 때문에 상수원의 오염원이 되기도 한다. 현재 전국적으로 불량 매립장이 1996년 통계에 따르면 약 2,000여개가 있는 것으로 조사되었다. 국내에는 폐광된 금속광산수에 대한 광역적인 조사가 이루어지지 않아 정확한 숫자를 파악하기 어려우나 약 2,500여개 이상 되는 것으로 추정되고 있다.In Korea, most of the landfills that were installed before the late 1980's were landfills that were not equipped with a liner to block leachate from the landfill or low-grade liners such as vinyl or tents. These landfills are often located near valleys, plains, and rivers, which can be a source of pollution. Currently, there are about 2,000 landfills nationwide, according to 1996 statistics. In Korea, it is difficult to determine the exact number due to the widespread investigation of abandoned mines, but it is estimated to be more than 2,500.
우리나라는 1960년대 이후부터 현재까지 40여년동안 경제개발에 치중하여 공업화를 이룬 과정에서 산업입국에는 성공했으나 전국이 공해강산으로 변하는 값비싼 대가를 치르게 되었다. 공업화가 지상과제였던 60~80년대에 환경문제는 전혀 고려의 대상이 아니었으며 환경오염에 대한 인식 조차 없었다. 따라서, 현재 수백여개에 달하는 산업공단지역이나 인근지역의 대기, 수질 뿐만 아니라 토양 및 지하수의 오염이 심각한 상태에 있다.Korea has succeeded in entering the industry in the process of industrialization, focusing on economic development for more than 40 years from the 1960s to the present, but at the cost of turning the country into a high mountain on the high seas. In the sixties and eighties, when industrialization was a ground-breaking task, environmental issues were not considered at all, and there was no awareness of environmental pollution. Therefore, pollution of soil and groundwater as well as air and water quality in hundreds of industrial parks and neighboring areas is in serious condition.
산업공단지역에서의 토양오염은 지역에 따라 다르겠지만 중금속, 유류, 황화물 등 다양한 양상을 띤다. 국내의 경우, 자동차의 폭발적인 증가와 주유소거리제한 철폐로 인하여 주유소의 신설이 활발히 추진되고 있다. 현재 국내 주유소의 개수는 10,000여개를 상회하고 있는데, 이들 유류저장탱크의 누수여부에 대한 조사가 전혀 이루어지지 않고 있는 상태이다.Soil pollution in industrial complexes varies from region to region but can take many forms, including heavy metals, oils, and sulfides. In Korea, new gas stations are being actively promoted due to the explosion of automobiles and the removal of gas station distance restrictions. Currently, the number of gas stations in Korea is over 10,000, and there is no investigation about leaks of these oil storage tanks.
유류의 정제, 운송, 저장 과정중에 사고에 의해서 또는 고의적으로 토양으로 유출된 유류오염물은 토양입자 표면에 흡착되거나 토양내에서 이동하여 장기적인 토양오염과 지하수오염을 초래하게 된다. 이것은 결과적으로 다양한 경로를 통하여 직·간접적으로 인간 및 자연 생태계에 피해를 주게 된다. 최근 도시, 공장 및 주유소의 지하유류 저장시설의 부식 및 노후화에 따라 연료유의 토양유출이 심화되고 있다. 이러한 독성이 있고 발암성을 가진 유류오염물의 토양내 유출은 국내 뿐만 아니라 국외에서도 심각한 문제로 대두되고 있다.Oil contaminants spilled into the soil by accident or deliberately spilled into the soil during oil refining, transportation, and storage processes are adsorbed on the surface of soil particles or migrate in the soil, resulting in long-term soil contamination and groundwater contamination. This, in turn, damages human and natural ecosystems directly and indirectly through a variety of pathways. Recently, the oil leakage of fuel oil is intensifying due to corrosion and aging of underground oil storage facilities in cities, factories and gas stations. The spillage of toxic and carcinogenic oil contaminants in the soil has become a serious problem not only in Korea but also abroad.
유류오염물은 토양에의 강한 흡착과 낮은 용해도로 인해 이동 및 제거가 어렵다. 따라서, 증기주입이나 진공추출 등 기체를 이용한 복원기술의 적용이 어렵고, 물에 잘 녹지 않아 지하수를 이용한 토양세척의 효과도 미미한 실정이다. 이외의 대부분의 화학적, 생물학적 복원기술들도 일차적으로 오염물을 토양 표면으로부터 유동층으로 이동시켜야 하기 때문에, 유류오염토양에서와 같이 오염물의 물질전달이 느린 상태에서는 그 처리효율이 좋지 않다. 이런 지역의 효과적인 복원을 위해서는 유류오염물의 이동성 및 제거율을 향상시킬 수 있는 방법이 필요하다.Oil contaminants are difficult to transport and remove due to their strong adsorption and low solubility in the soil. Therefore, it is difficult to apply the restoration technology using gas such as steam injection or vacuum extraction, and it is difficult to dissolve in water, so the effect of soil washing using groundwater is insignificant. Most of the other chemical and biological remediation techniques also have to first move contaminants from the soil surface to the fluidized bed, so that the treatment efficiency is not good under conditions of slow transport of contaminants such as in oil contaminated soils. Effective rehabilitation in these areas requires ways to improve the mobility and removal rates of oil pollutants.
그 한 방법으로 계면활성제를 이용하여 오염물을 제거하는 경우, 오염물의 이동성을 향상시킴으로써 제거율을 증대시킬 수 있지만, 계면활성제의 일부가 토양에 흡착되어 부가적인 오염을 유발할 수 있고, 세척 후의 폐용액을 다시 처리해야 하는 단점이 있다. 또한, 산화제를 사용하여 오염물의 분해를 촉진하는 경우, 부가적인 폐용액의 처리가 필요없고 빠른 시간내에 처리가 가능하다는 장점이 있지만, 점토와 같은 세립질 지반에서는 투수계수가 낮아서 첨가제가 효율적으로 오염물과 접촉하는데 어려움이 있다. 따라서, 저투수성 토양을 포함한 다양한 토양에서의 오염물 제거를 위해서는 첨가제의 이동을 원활하게 유도할 수 있는 방법이 절실히 요구되고 있다.In this way, if the contaminant is removed using a surfactant, the removal rate can be increased by improving the mobility of the contaminant, but a part of the surfactant may be adsorbed to the soil, causing additional contamination, and the waste solution after washing There is a drawback to reprocessing. In addition, when oxidizing agent is used to promote the decomposition of contaminants, there is an advantage that it does not need to treat additional waste solution and can be processed quickly. However, in fine grained ground such as clay, the permeability coefficient is low, so that additives are effectively contaminated. Have difficulty contacting Therefore, there is an urgent need for a method for smoothly inducing the movement of additives in order to remove contaminants in various soils including low permeability soils.
따라서, 본 발명의 목적은 상술한 제결점들을 해소하기 위해서 안출한 것으로서, 오염토양내에 과산화수소를 주입하는 동시에 양·음전극들을 삽입하고 전기를 인가하여 전기삼투현상에 의해 과산화수소가 오염된 토양내를 원활하게 이동하게 함으로써 수산화라디칼에 의한 유류오염물의 직접적인 산화분해를 유도하고, 일정기간마다 전극극성을 전환하여 과산화수소의 유동성을 강화시킴으로써 오염물의 제거효율을 증진시키는 전기삼투현상을 이용한 오염토양내 유류오염물 산화분해방법을 제공하는 데 있다.Accordingly, an object of the present invention is to solve the above-mentioned drawbacks, while injecting hydrogen peroxide into the contaminated soil, inserting the positive and negative electrodes and applying electricity to smooth the soil contaminated with hydrogen peroxide by electroosmotic phenomenon. Oxidation of oil in polluted soil using electroosmotic phenomena, which induce direct oxidative decomposition of oil pollutants by hydroxyl radicals and improve the removal efficiency of pollutants by converting electrode polarity and enhancing the fluidity of hydrogen peroxide at regular intervals. To provide a decomposition method.
또한, 본 발명의 다른 목적은 상기 유류오염물 산화분해방법을 실제 오염부지에서 구현하기 위한 장치를 제공하는 데 있다.In addition, another object of the present invention to provide an apparatus for implementing the oil contaminant oxidative decomposition method in the actual contaminated site.
본 발명의 실시예에 관한 상세한 설명은 첨부하는 도면들을 참조하여 이루어질 것이며, 도면에서 대응되는 부분을 지정하는 번호는 같다.Detailed description of the embodiments of the present invention will be made with reference to the accompanying drawings, in which numerals designate corresponding parts in the drawings.
도 1은 본 발명에 따른 전기삼투현상을 이용한 오염토양내 유류오염물 산화분해방법을 설명하기 위한 실험예를 보여주는 장치구성도이고,1 is a device configuration showing an experimental example for explaining the oxidative decomposition of oil contaminants in contaminated soil using the electroosmotic phenomenon according to the present invention,
도 2는 도 1에서 전극의 극성이 전환된 상태를 보여주는 도면이다.2 is a view showing a state in which the polarity of the electrode is switched in FIG.
** 도면의 주요부분에 대한 부호의 설명 **** Explanation of symbols for main parts of drawings **
10,10a : 반응기 20,20a : 양극전극조10,10a: reactor 20,20a: anode electrode bath
22,22a : 양전극 24,24a : 여과지22,22a: positive electrode 24,24a: filter paper
26,26a : 양극기체배출관 30,30a : 음극전극조26, 26a: cathode gas discharge pipe 30, 30a: cathode electrode tank
32,32a : 음전극 34,34a : 여과지32,32a: negative electrode 34,34a: filter paper
36,36a : 음극기체배출관 40,40a : 전원공급기36,36a: Cathode gas discharge pipe 40,40a: Power supply
60,60a : 공급용액저장조 62,62a : 공급관60,60a: Supply solution reservoir 62,62a: Supply pipe
70,70a : 유출수저장조 72,72a : 배출관70,70a: Effluent storage tank 72,72a: discharge pipe
상기 목적을 달성하기 위한 본 발명에 따른 전기삼투현상을 이용한 오염토양내 유류오염물 산화분해방법은 오염토양내에 양전극과 음전극을 삽입하고 양전극쪽에 과산화수소용액을 주입하는 동시에 직류전류를 인가하여 전기삼투현상을 유발함에 의하여 상기 과산화수소용액이 원활하게 오염토양내를 이동하면서 토양내의 철분과 반응하여 생성된 수산화라디칼에 의해 오염물질이 산화분해되게 하는 것을 특징으로 한다.In order to achieve the above object, oxidative decomposition of oil contaminants in contaminated soil using the electroosmotic phenomenon according to the present invention inserts a positive electrode and a negative electrode into the contaminated soil, injects a hydrogen peroxide solution to the positive electrode, and applies a DC current to the electroosmotic phenomenon. By causing the hydrogen peroxide solution to move smoothly in the contaminated soil, it is characterized in that the pollutants are oxidatively decomposed by the hydroxyl radical generated by reaction with iron in the soil.
상기 다른 목적을 달성하기 위한 본 발명에 따른 전기삼투현상을 이용한 오염토양내 유류오염물 산화분해장치는 토양내의 오염부위에 삽입되며, 양전극을 구비하는 양극전극조; 상기 양극전극조와 일정간격 이격되어 토양내의 오염부위에 삽입되며, 음전극을 구비하는 음극전극조; 상기 양극전극조와 연결되어 과산화수소용액을 공급하는 공급용액저장조; 및 상기 양전극과 음전극에 직류전류를 공급함에 의해 전기삼투현상을 유발하여 상기 과산화수소용액이 양극에서 음극으로 유동하게하는 전원공급기를 포함한다.Oil pollutant oxidative decomposition device in contaminated soil using the electroosmotic phenomenon according to the present invention for achieving the above another object is inserted into the contaminated portion in the soil, the anode electrode tank having a positive electrode; A cathode electrode tank spaced apart from the cathode electrode tank at a predetermined interval and inserted into a contaminated portion in the soil, the anode electrode including a cathode; A supply solution storage tank connected to the anode electrode tank to supply a hydrogen peroxide solution; And a power supply for causing an electroosmotic phenomenon by supplying a DC current to the positive electrode and the negative electrode to allow the hydrogen peroxide solution to flow from the positive electrode to the negative electrode.
본 발명은 오염된 토양내에 오염물질이 존재하는 부위로 산화제인 과산화수소를 주입하는 동시에 토양에 양전극과 음전극을 삽입하여 전류를 공급함에 의해 전기삼투현상에 의해 과산화수소가 양전극에서 음전극으로 신속하고 원활하게 이동하게 한다. 과산화수소가 오염된 토양내로 이동할 때 토양내에 존재하는 철성분(Fe2+)과 반응하여 다음식과 같은 펜턴반응을 일으켜 수산화라디칼을 생성하게 된다.The present invention injects hydrogen peroxide, an oxidant, into a site where contaminants are present in contaminated soil, while simultaneously inserting a positive electrode and a negative electrode into the soil to supply current, so that the hydrogen peroxide moves from the positive electrode to the negative electrode quickly and smoothly. Let's do it. When hydrogen peroxide moves into the contaminated soil, it reacts with the iron component (Fe 2+ ) present in the soil to produce the Fenton reaction as shown in the following formula to produce radical hydroxide.
위 식과 같은 펜턴반응을 일으키는 펜턴산화(Fenton oxidation)는 유류오염물을 산화분해하는 고급산화공정(advanced oxidation process; AOP)의 하나로, 과산화수소와 철이 반응하여 생성된 수산화라디칼에 의해 유류오염물이 분해되는 반응이다. 실제 토양의 처리에 있어서는 토양내에 미네랄로써 철이 존재하기 때문에 별도로 철을 공급하여 주지 않아도 펜턴산화반응과 같은 반응이 일어나게 되는데, 이러한 반응을 펜턴유사반응이라 한다.Fenton oxidation, which causes the Fenton reaction as described above, is an advanced oxidation process (AOP) for oxidatively decomposing oil contaminants. A reaction in which oil contaminants are decomposed by radical hydroxides produced by the reaction between hydrogen peroxide and iron. to be. In the actual soil treatment, iron exists as a mineral in the soil, so a reaction such as the Fenton oxidation reaction occurs without supplying iron separately. This reaction is called a Fenton-like reaction.
위와 같은 펜턴유사반응에 의해 생성된 수산화라디칼은 생존기간이 짧아 라디칼이 생성되자마자 주변의 유류오염물을 분해하면서 소멸된다. 이렇게 생성되는 수산화라디칼(·OH)은 강력한 산화력을 가지며 오염원인 유기물질을 산화시켜 분해하고 중금속 등과도 반응하여 무해한 화합물로 변화시키는 성질이 있다. 이와 같이, 전극들에 전기를 투입하면서 토양내 오염부위로 과산화수소를 계속하여 주입하면 위와 같은 반응을 거쳐 수산화라디칼이 생성되면서 유류오염물이 산화분해되어 무해화되게 된다.Hydroxide radicals produced by the Fenton-like reaction as described above are extinguished by decomposing oil contaminants as soon as radicals are generated due to their short survival. The radical radicals (.OH) thus formed have a strong oxidizing power and have the property of oxidizing and decomposing organic substances as pollutants and reacting with heavy metals to change into harmless compounds. As such, if hydrogen peroxide is continuously injected into the soil in the soil while the electricity is supplied to the electrodes, the radicals are oxidatively decomposed and harmless while the radicals are generated through the above reaction.
본 발명에서는 전기삼투현상을 이용하여 과산화수소의 이동성을 향상시켜 이로부터 생성된 수산화라디칼이 토양에 분포된 유류오염물과 반응하게 하여 제거하는 것이 가장 핵심적인 기능을 담당한다. 전기삼투현상이란 보통 토양의 표면은 음전하를 띠고 있으며, 따라서 토양에 아주 가까운 주변에는 그 인력에 의해 양이온이 밀집되어 전극들에 전류를 걸어 주었을 경우 양전극쪽에서 음전극쪽으로 양이온들이 이동하면서 같은 방향으로 물의 흐름이 생기는 현상이다. 이때 유류오염물이 물과 함께 음전극쪽으로 끌려가 모이면 유류오염물을 유출수저장조로 뽑아내어 토양으로부터 유류오염물을 제거정화하기도 한다. 본 발명에서는 전기삼투현상이 물의 흐름에 의해 과산화수소를 음전극쪽으로 이동시켜 오염물을 토양내에서 산화분해하도록 하는 역할을 한다.In the present invention, by using the electroosmotic phenomenon to improve the mobility of the hydrogen peroxide, the radicals generated therefrom react with the oil pollutants distributed in the soil to remove the most important function. Electroosmotic phenomena usually have a negative charge on the surface of the soil. Therefore, when the cations are concentrated near the soil by the attraction force and the electric current is applied to the electrodes, the cations move from the positive electrode side to the negative electrode and the water flows in the same direction. This is a phenomenon that occurs. At this time, when oil contaminants are attracted to the negative electrode together with water, oil contaminants are extracted to the effluent storage tank to purify oil contaminants from the soil. In the present invention, the electroosmotic phenomenon serves to oxidize contaminants in the soil by moving hydrogen peroxide toward the negative electrode by the flow of water.
위와 같은 토양내 오염물의 산화분해는 과산화수소가 주입되는 주입부분, 즉 양전극쪽에서는 활발히 진행되어 오염물의 제거효율이 높은 반면 주입부로부터 멀어질수록 제거효율은 감소하게 된다. 따라서, 본 발명에서는 이러한 단점을 보완하기 위해서 일정시간이 지나면 양전극과 음전극의 극성을 바꿔주어 산화제인 과산화수소의 흐름을 반대방향으로 진행하게 한다. 이에 의해, 전에 오염물의 제거율이 떨어졌던 부분에서는 반대로 제거율이 상승하고 제거율이 높았던 부분에서는 낮아짐으로써 전구간에서 보다 효율적이고 균일한 제거효율을 얻고 있다.Oxidative decomposition of the contaminants in the soil as described above is active in the injection portion, that is, the positive electrode side in which hydrogen peroxide is injected, the removal efficiency of the contaminant is high, while the removal efficiency decreases away from the injection portion. Therefore, in the present invention, in order to compensate for the above disadvantages, the polarity of the positive electrode and the negative electrode is changed after a certain time so that the flow of hydrogen peroxide, which is an oxidizing agent, proceeds in the opposite direction. As a result, the removal rate is increased in the portion where the removal rate of the contaminants has fallen earlier, and the removal rate is increased in the portion where the removal rate is high, thereby achieving more efficient and uniform removal efficiency in all the sections.
본 발명에서 요구하는 액상 산화반응의 선택적 산화제로서 과산화수소가 사용되는데, 산화제인 분자산소나 유기물 퍼옥사이드(Peroxide) 등은 분해시 유기물 부생으로 환경적인 문제를 야기시키고 폭발의 위험성도 내재하고 있으므로 오염토양을 정화하는데 사용되기에는 부적합하다. 따라서, 본 발명에서는 청정산화제로서 친환경적인 과산화수소가 선택된 것이다. 특히, 투입되는 과산화수소의 농도는 토양내의 함수율 및 오염물 농도 그리고 다른 유기물 함량 등을 고려하여 결정된다. 또한, 과산화수소와 함께 소량의 전해질을 첨가하면 토양 내의 전도도를 증가시켜 과산화수소의 이동을 원활하게 하고, 이것은 결국 유류오염물의 산화분해를 촉진하고 그 이동을 빠르게 하여 정화효율을 상승시키게 된다. 물론, 전해질로는 물에 포함된 과산화수소 자체도 전해질 역할을 하지만, 바람직하게는 NaCl, KH2PO4, MgSO4등이 좋으며, 이 외에도 이온용액이면 된다.Hydrogen peroxide is used as a selective oxidant for the liquid phase oxidation reaction required by the present invention, and since the oxidizing agent, molecular oxygen or organic peroxide, etc., causes environmental problems as organic by-products when decomposing and contaminates the risk of explosion. Not suitable for use in purifying Therefore, in the present invention, environmentally friendly hydrogen peroxide is selected as a clean oxidant. In particular, the concentration of hydrogen peroxide introduced is determined in consideration of the moisture content and pollutant concentration in the soil and other organic matter content. In addition, the addition of a small amount of electrolyte with hydrogen peroxide increases the conductivity in the soil to facilitate the movement of hydrogen peroxide, which in turn promotes the oxidative decomposition of oil pollutants and speeds up the movement to increase the purification efficiency. Of course, as the electrolyte, hydrogen peroxide contained in the water itself also serves as an electrolyte, but preferably NaCl, KH 2 PO 4 , MgSO 4 , and the like, in addition to the ionic solution.
본 발명은 전기삼투현상에 의해 산화제인 과산화수소의 이동을 빠르고 원활하게 유도하므로 세립토가 많은 지역에서도 적용이 가능하며 원하는 이상의 효과를 볼 수 있다.Since the present invention induces the rapid and smooth movement of hydrogen peroxide, which is an oxidant, by electroosmotic phenomenon, it can be applied even in areas with fine grained soil, and the desired effect can be seen.
이하에서는 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예에 관하여 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 전기삼투현상을 이용한 오염토양내 유류오염물 산화분해방법을 설명하기 위한 실험예를 보여주는 장치구성도이다.1 is a device configuration showing an experimental example for explaining the oxidative decomposition of oil contaminants in contaminated soil using the electroosmotic phenomenon according to the present invention.
도 1에 도시된 실험장치에 대해 설명하면, 오염토양시료가 담기는 반응기(10)의 좌우양측으로는 각각 양극전극조(20)와 음극전극조(30)가 배치되고, 이 양극전극조(20)와 음극전극조(30)에는 각각 양전극(22) 및 음전극(32)이 배치되어 있다. 양·음전극(22,32)은 두께 0.8cm, 직경 8cm의 흑연판으로 제조되며, 양전극(22)과 음전극(32)에는 직류전원을 공급하는 직류전원공급기(40)가 연결되어, 최대 200V의 전압공급이 가능하게 되어 있다. 이 양·음전극(22,32)의 재료로는 탄소, 스테인리스강, 티타늄 등의 도체를 사용할 수 있으며, 과산화수소의 양극전극조(20)에서는 분해소모를 촉진하는 백금, 이리듐, 철 또는 이러한 성분들이 코팅된 전극을 이용하지 않는 것이 좋다. 그리고, 오염토양시료(50)와 양·음극전극조들(20,30) 사이에는 각각 유리섬유로 된 여과지(24,34)를 두장씩 개재하여 토양시료(50)가 전극조(20,30)내로 유입되는 것을 방지하고 있다.Referring to the experimental apparatus illustrated in FIG. 1, the anode electrode tank 20 and the cathode electrode tank 30 are disposed on the left and right sides of the reactor 10 containing the contaminated soil sample, respectively. The positive electrode 22 and the negative electrode 32 are disposed in the 20 and the negative electrode bath 30, respectively. The positive and negative electrodes 22 and 32 are made of a graphite plate having a thickness of 0.8 cm and a diameter of 8 cm, and the positive electrode 22 and the negative electrode 32 are connected to a DC power supply 40 for supplying a DC power supply. Voltage supply is possible. As the material of the positive and negative electrodes 22 and 32, conductors such as carbon, stainless steel, and titanium may be used. In the anode electrode tank 20 of hydrogen peroxide, platinum, iridium, iron, or such components which promote decomposition consumption may be used. It is not recommended to use coated electrodes. Then, the soil sample 50 is interposed between the soil sample 50 and the positive and negative electrode baths 20 and 30 by two sheets of filter paper 24 and 34 made of glass fibers, respectively. It prevents inflow into the inside.
전술한 반응조(10)는 직경 4cm, 길이 10cm 또는 20cm의 유리재질의 원통관으로 제작되고, 그 양옆에 부착되는 전극조들(20,30)은 체적이 75㎤로 설계되었다. 양·음극전극조들(20,30)에는 내부에서 발생하는 기체를 외부로 배출하기 위한 양극기체배출관(26)과 음극기체배출관(36)이 각각 연결되어 있다. 물론, 이 양·음극기체배출관들(26,36)에는 각각 통제밸브들이 장착되어 있다. 또한, 양극전극조(20)에는 공급용액저장조(60)가 공급관(62)을 통해 연결되어 있으며, 음극전극조(30)에는 유출수저장조(70)가 배출관(72)을 통해 연결되어 있다.The reaction tank 10 described above is made of a glass tube of 4 cm in diameter, 10 cm or 20 cm in length, and the electrode tanks 20 and 30 attached to both sides thereof have a volume of 75 cm 3. The positive and negative electrode baths 20 and 30 are connected to the positive and negative gas discharge tubes 26 and 36 respectively for discharging gas generated therein to the outside. Of course, these positive and negative gas discharge pipes 26 and 36 are each equipped with control valves. In addition, the supply solution storage tank 60 is connected to the anode electrode tank 20 through the supply pipe 62, and the outflow water storage tank 70 is connected to the cathode electrode tank 30 through the discharge pipe 72.
본 발명을 현장의 오염토양에 실제로 적용하는데 있어 산화분해장치는 도1과 같은 구성중에서 반응기(10)는 제거되어야 한다. 즉, 넓은 오염토양은 그 자체가 반응기의 역할을 하므로, 오염부위까지 토양에 주입공들을 천공하여 양전극과 음전극을 양극전극조 및 음극전극조 모듈로 하여 삽입하고, 그들에 전선으로 전원공급기를 연결하여 직류전원을 공급하여 전기삼투현상을 일으키게 하고, 양극전극조와 공급관으로 연결된 공급용액저장조에 과산화수소용액 및 전해질을 투입하여 양극전극조를 통해 오염토양에 주입되게 한다. 이렇게 주입된 과산화수소용액은 전기삼투현상에 의해 양극에서 음극으로 이동하면서 그 사이에 존재하는 오염물질을 산화분해시켜 음극쪽으로 유동시키게 된다. 음극전극조로 유동한 유출수는 음극전극조에 연결된 배출관을 통해 외부의 유출수저장조로 운송제거되게 된다.In actual application of the present invention to contaminated soil in the field, the oxidative decomposition apparatus needs to be removed from the reactor 10 in the configuration as shown in FIG. In other words, the large contaminated soil itself acts as a reactor, so that the positive and negative electrodes are inserted into the anode and cathode electrode modules by drilling holes in the soil to the contaminated area, and connecting the power supply to the wires. By supplying a DC power supply to cause the electroosmotic phenomenon, the hydrogen peroxide solution and the electrolyte is put into the supply solution storage tank connected to the anode electrode tank and the supply pipe to be injected into the contaminated soil through the anode electrode tank. The injected hydrogen peroxide solution moves from the anode to the cathode by the electroosmotic phenomenon and oxidizes the contaminants present therebetween to flow to the cathode. Effluent flows to the cathode electrode tank is transported to the external effluent storage tank through the discharge pipe connected to the cathode electrode tank.
기설명한 구조의 본 실험장치를 이용하여 반응기(10)내에 오염토양시료(50)를 채우고, 전극들(22,32)에 전류를 공급하여 전기삼투현상을 유발하여 과산화수소용액을 이동시키면서 토양시료(50)내에 포함된 오염물질을 산화분해하는 과정에 대해 실제 실험예들을 통해 알아보기로 한다.The soil sample 50 is filled with the soil sample 50 in the reactor 10 by using the above-described structure, and the current is supplied to the electrodes 22 and 32 to cause an electroosmotic phenomenon to move the hydrogen peroxide solution. The process of oxidatively decomposing the pollutant contained in 50) will be examined through actual experimental examples.
[실시예 1]Example 1
도 1에 도시된 길이 10cm의 반응기(10)에 토양 1kg당 500mg의 페난트렌이 오염된 오염토양시료(50)를 채우고, 공급용액저장조(60)에 10% 과산화수소용액을 공급하였다. 이때, 과산화수소용액에 전해질로 0.005M의 KH2PO4를 첨가하여 공급하였다. 그리고, 10mA의 직류전류를 양전극(22)과 음전극(32)에 걸어주어 전기삼투현상이 일어나도록 하였다. 그 결과, 양전극(22)에서 음전극(32)으로의 유체흐름이 관찰되었다. 7일후 양극에서 음극까지 2cm 간격으로 시료를 채취하여 토양에 남아있는 페난트렌의 양을 HPLC(high performance liquid chromatography)로 분석하였다. 이 HPLC분석법에 대해 좀더 구체적으로 설명하면, 실험종료후 토양을 거리별로 채취하여 건조하고, 그 중 1g을 취하여 메탄올 10ml에 넣고 24시간 교반한 다음, 이렇게 교반된 액상의 상층액을 HPLC분석기에 주입하면 시간에 따른 피크(peak)그래프가 생성되고 그 면적을 농도로 환산하여 페난트렌의 농도를 얻는 분석기법이다.In the reactor 10 of length 10cm shown in FIG. 1, 500 mg of phenanthrene-contaminated soil sample 50 per kg of soil was filled, and 10% hydrogen peroxide solution was supplied to the supply solution storage tank 60. At this time, 0.005M KH 2 PO 4 was added to the hydrogen peroxide solution as an electrolyte. Then, a 10 mA DC current was applied to the positive electrode 22 and the negative electrode 32 to cause an electroosmotic phenomenon. As a result, the fluid flow from the positive electrode 22 to the negative electrode 32 was observed. After 7 days, samples were taken from the anode to the cathode at 2 cm intervals, and the amount of phenanthrene remaining in the soil was analyzed by high performance liquid chromatography (HPLC). In more detail, the HPLC method is described. After completion of the experiment, the soil is collected by distance, dried, 1 g of which is taken up in 10 ml of methanol, stirred for 24 hours, and then the supernatant of the stirred liquid is injected into the HPLC analyzer. When the peak graph is produced over time and the area is converted into the concentration, the phenanthrene concentration is obtained.
본 실험에서 오염물질로 이용된 페난트렌(phenanthrene)은 고리가 세 개 있는 PAH(polyaromatic hydrocarbon)의 하나로써 물에 잘 녹지 않고 토양에 강하게 흡착하는 성질을 지니고 있다. 따라서, 이러한 오염물질을 산화분해할 수 있다면 이보다 흡착성이 약한 물질은 손쉽게 제거할 수 있으므로, 본 실시예에서는 위와 같이 다소 제거가 어려운 물질을 사용하여 본 오염물 제거방법에 대한 효과를 입증하고자 한다. 또한, 위의 실험에서 전해질만을 각각 NaCl, MgSO4로 바꿔 동일한 조건에서 실험하였다.The phenanthrene used as a contaminant in this experiment is one of three ring polyaromatic hydrocarbons (PAH), which does not dissolve well in water and has strong adsorption to soil. Therefore, if the pollutants can be oxidatively decomposed, substances having weaker adsorption can be easily removed. Thus, the present embodiment intends to prove the effect of the present pollutant removal method using materials that are somewhat difficult to remove. In addition, only the electrolyte was changed to NaCl and MgSO 4 in the above experiments, and the experiment was performed under the same conditions.
한편, 비교예1로 전류공급이 없고 10%의 과산화수소, 0.005M의 KH2PO4전해질의 조건에서 다른 조건은 위와 동일하게 실험하였다. 또한, 비교예2에서는 전류는공급하되 과산화수소를 주입하지 않고 KH2PO4전해질만 사용하여 시험하였다.On the other hand, in Comparative Example 1, no current supply, 10% hydrogen peroxide, 0.005M KH 2 PO 4 in the conditions of the other conditions were tested in the same manner as above. In addition, in Comparative Example 2, the test was performed using only KH 2 PO 4 electrolyte while supplying current but not injecting hydrogen peroxide.
그 결과 다음 표 1과 같은 결과를 얻었다.As a result, the result shown in Table 1 was obtained.
표1. 과산화수소를 전기삼투현상에 의해 이동시킨 경우의 오염물의 제거율Table 1. Removal rate of contaminants when hydrogen peroxide is moved by electroosmotic phenomenon
위 표 1에서 알 수 있는 바와 같이, 과산화수소를 오염토양에 주입하고 전류를 공급하지 않은 비교예1의 경우 저투수성 토양에서는 수리학적 경사에 의한 과산화수소의 이동이 어려워 양전극 근처에서만 오염물의 분해 양상이 나타날 뿐 음극에서는 전혀 분해가 일어나지 않아 매우 저조한 제거효율을 보인다. 또한, 전류공급은 있으나 과산화수소가 주입되지 않은 비교예2의 경우는 전기삼투현상에 의한 유체의 흐름이 발생하지만 페난트렌이 토양에 흡착하는 경향이 강하므로 세척효과가 떨어져 제거효율이 낮은 것으로 나타났다.As can be seen in Table 1, in Comparative Example 1, in which hydrogen peroxide was injected into the contaminated soil and no current was supplied, it was difficult to move hydrogen peroxide due to a hydraulic gradient in low permeability soils. However, no decomposition occurs at the cathode, which shows very low removal efficiency. In addition, in the case of Comparative Example 2 with a current supply but not injected with hydrogen peroxide, fluid flow due to electroosmotic phenomenon occurred, but the phenanthrene tended to be adsorbed to the soil, so the cleaning effect was low and the removal efficiency was low.
이에 비하여, 과산화수소를 주입하면서 전류를 공급한 경우의 본 실시예1-1, 1-2 및 1-3에서 모두 90%이상의 오염물질 제거율을 보이는 것으로 나타났다. 예를 들어, 본 실시예1-1의 경우 양극에서는 오염물질이 초기양을 1로 보았을 때 0.005만 남았으며, 음극에서도 0.016밖에 남지 않아 전구간에 걸쳐 고루 오염물질이 분해되어 제거되었음을 알 수 있다. 세 개의 본 실시예에서는 투입된 전해질의 종류에서만 차이가 있을 뿐 전류공급과 함께 과산화수소를 투입한다는 본 발명의 핵심에 있어서는 동일하며, 세 실시예 모두 전 구간에서 페난트렌의 잔류율이 0.15미만으로 감소되어 매우 뛰어난 제거효율을 보임을 알 수 있다. 세 실시예들에서 전해질에 따라 KH2PO4와 NaCl이 MgSO4을 첨가하였을 경우보다 다소 높은 제거율을 보이는 미소한 차이는 있으나 전체적으로 볼 때 본 실시예1-1, 1-2, 1-3은 거의 비슷한 결과를 보였다.On the other hand, when the current was supplied while injecting hydrogen peroxide, all of the present Example 1-1, 1-2, and 1-3 showed a removal rate of more than 90%. For example, in the present embodiment 1-1, only 0.005 remains in the positive electrode when the initial amount is 1 in the positive electrode, and only 0.016 remains in the negative electrode. In the present three examples, only the difference in the type of the introduced electrolyte is the same in the core of the present invention that hydrogen peroxide is supplied with the current supply, and in all three embodiments, the residual ratio of phenanthrene is reduced to less than 0.15 in all sections. It can be seen that the removal efficiency is very good. In each of the three embodiments, the KH 2 PO 4 and NaCl have a slightly higher removal rate than the MgSO 4 added depending on the electrolyte. Almost the same result.
[실시예 2]Example 2
도 2는 도 1에서 전극극성을 바꾼 전극극성전환시험예를 보여주는 장치구성도이다.FIG. 2 is a device configuration diagram showing an example of an electrode polarity conversion test in which electrode polarity is changed in FIG. 1.
길이가 20cm인 반응기(10a)에 실제 현장토양(50a)을 실시예1에서와 같은 방법으로 오염시켜 전해질을 주입하지 않고 3.5%의 과산화수소용액을 주입하여 전기를 공급하면서 4주동안 토양내의 페난트렌의 정화실험을 하였다. 이때, 2주경과후에 도 1과 같은 상태에서 도 2의 상태로 전극들(22a,32a)의 극성을 1번 바꿔 전극극성전환의 유효성 실험을 실시하였다. 물론, 전극극성전환에 따라 전에 음극전극조(30)였던 양극전극조(20a)에는 과산화수소가 공급되는 공급용액저장조(60a)가 연결되며, 양극전극조(20)였던 음극전극조(30a)에는 유출수저장조(70a)가 연결되게 된다. 그 결과, 과산화수소용액의 주입은 전극극성전환후 전과는 다른 반대쪽에서 이루어진다. 또한, 비교예로서 전극극성을 한번도 바꾸지 않고 다른 조건은 본실시예와 동일하게 실험하여 4주후 결과를 얻었다. 그 결과들이 아래 표 2에 나타나있다.Phenanthrene in the soil for 4 weeks while supplying electricity by injecting 3.5% hydrogen peroxide solution without injecting electrolyte by contaminating the actual field soil 50a in the same manner as in Example 1 in the reactor 10a having a length of 20 cm. Purification experiment was performed. At this time, two weeks later, the polarity of the electrodes 22a and 32a was changed once to the state of FIG. Of course, according to the electrode polarity conversion, the supply solution storage tank 60a to which hydrogen peroxide is supplied is connected to the anode electrode tank 20a that was the cathode electrode tank 30 before, and to the cathode electrode tank 30a that was the anode electrode tank 20. Effluent storage tank 70a is to be connected. As a result, the injection of the hydrogen peroxide solution takes place on the other side different than before the electrode polarity conversion. In addition, as a comparative example, the electrode polarity was not changed at all, and the other conditions were tested in the same manner as in this example, and the results were obtained after 4 weeks. The results are shown in Table 2 below.
표2. 전기삼투현상에 의해 과산화수소를 이동시키면서 전극극성전환을 한 경우의 효과분석.Table 2. Effect analysis of electrode polarity conversion while moving hydrogen peroxide by electroosmotic phenomenon.
위 표2에서 보는 바와 같이, 전극극성전환을 실시하지 않은 비교예에서는 양극에서는 높은 페난트렌 제거율이 나타났지만 음극쪽으로 갈수록 제거율이 급격히 감소하여 음극인 20cm부분에서는 거의 제거가 되지 않았다. 이것은 실제 현장토양내에는 다른 유기물이 존재하여 과산화수소를 소모시킴으로써 과산화수소가 주입되는 양극부근에서는 높은 제거율을 보이는 반면에 음극으로 갈수록 과산화수소가 소모되어 도달하지 않으므로 제거율이 급감하는 분포를 보이게 되는 것이다.As shown in Table 2 above, in the comparative example without performing the electrode polarity conversion, the phenanthrene removal rate was high at the positive electrode, but the removal rate rapidly decreased toward the negative electrode, so that it was hardly removed at the 20 cm portion of the negative electrode. This is because the organic soil is consumed by other organic matter in the field soil, which shows a high removal rate near the anode where hydrogen peroxide is injected, whereas hydrogen peroxide is not reached as it goes toward the cathode, so the removal rate is rapidly decreased.
반면에, 실험 2주후 한번의 전극극성전환이 이루어진 본실시예에서는 양극에서의 페난트렌 제거율과 음극에서의 페난트렌 제거율이 거의 비슷하여 전구간에서 균일한 유효한 제거율을 나타냈다. 전체적인 제거율을 종합해 볼 때, 비교예의 제거율은 61.4%에 불과하였지만, 본실시예의 제거율은 80.5%로 전극극성전환을 실시한 경우 전극극성전환이 없는 경우에 비해 상당히 높은, 본 실시예에서는 대략 20% 가까이 제거효율이 상승되었다.On the other hand, in the present Example, in which one electrode polarity conversion was performed two weeks after the experiment, the removal rate of phenanthrene at the positive electrode and the phenanthrene removal at the negative electrode were almost similar, and thus, uniform effective removal rates were shown throughout the entire period. In total, the removal rate of the comparative example was only 61.4%, but the removal rate of the present embodiment was 80.5%, which is considerably higher than the case where the electrode polarity conversion was not performed, and about 20% in this example. The removal efficiency is increased.
위 실험을 통해 알 수 있는 바와 같이, 전극극성전환을 적절한 시기에 수행한다면 토양내의 오염물의 제거효율을 높일 수 있을 것이다. 물론, 전극극성전환은 오염물의 처리기간이 긴 경우에는 한번이상 수행할 수 있다.As can be seen from the above experiment, if the electrode polarity conversion is performed in a timely manner, the removal efficiency of contaminants in the soil can be improved. Of course, the electrode polarity conversion can be performed more than once when the treatment period of the contaminants is long.
여기에서 개시되는 실시예는 여러가지 실시가능한 예 중에서 당업자의 이해를 돕기 위하여 가장 바람직한 예를 선정하여 제시한 것일 뿐, 본 발명의 기술적 사상이 반드시 이 실시예에 의해서만 한정되거나 제한되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화와 변경이 가능함은 물론, 균등한 다른 실시예가 가능하다.The embodiments disclosed herein are only presented by selecting the most preferred examples to help those skilled in the art from the various possible examples, the technical spirit of the present invention is not necessarily limited or limited only by this embodiment, the present invention Various changes and modifications are possible within the scope without departing from the spirit of the invention, as well as other equivalent embodiments.
이상에서 설명한 바와 같이, 본 발명에 의한 전기삼투현상을 이용한 오염토양내 유류오염물 산화분해방법은 전기삼투현상에 의하여 오염토양내에서 과산화수소를 원활하게 이동시켜 수산화라디칼에 의해 유류오염물을 직접 산화분해함으로써 오염토양내의 오염물 제거효율을 상승시킬 수 있는 잇점이 있다. 나아가, 전극들의 극성전환을 통하여 과산화수소가 도달하기 어려운 음극을 양극으로 전환하여 과산화수소가 충분히 공급되게 함으로써 오염물의 전구간에 걸쳐 균일한 제거가 가능하고 오염물의 제거율을 더욱더 배가시키는 효과가 있다. 이에 따라서, 본 발명은 오염된 토양을 효율적으로 신속하게 정화할 수 있어 정화시간이 단축되고 정화처리비용이 절감되므로 경제적이다.As described above, the oil pollution oxidation decomposition method in the contaminated soil using the electroosmotic phenomenon according to the present invention by moving the hydrogen peroxide smoothly in the contaminated soil by the electroosmotic phenomenon by directly oxidizing the oil contaminants by radical hydroxide There is an advantage to increase the efficiency of pollutant removal in contaminated soil. Furthermore, by switching the polarity of the electrodes to convert the cathode, which is hard to reach hydrogen peroxide, to the anode so that the hydrogen peroxide is sufficiently supplied, uniform removal is possible throughout the entire contaminant, and the removal rate of the pollutant is further increased. Accordingly, the present invention is economical because it is possible to efficiently and quickly clean the contaminated soil is shortened purification time and reduced purification treatment cost.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030048094A KR100414771B1 (en) | 2003-07-14 | 2003-07-14 | Chemical oxidation method of petroleum-contaminated soil using electro-osmosis and apparatus thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030048094A KR100414771B1 (en) | 2003-07-14 | 2003-07-14 | Chemical oxidation method of petroleum-contaminated soil using electro-osmosis and apparatus thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100414771B1 true KR100414771B1 (en) | 2004-01-13 |
Family
ID=37423071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030048094A Expired - Lifetime KR100414771B1 (en) | 2003-07-14 | 2003-07-14 | Chemical oxidation method of petroleum-contaminated soil using electro-osmosis and apparatus thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100414771B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100856909B1 (en) | 2008-05-29 | 2008-09-05 | 금오공과대학교 산학협력단 | Purification of TP-contaminated soil combining cleaning and galvanic technology |
KR101464878B1 (en) * | 2013-05-30 | 2014-11-25 | 에이치플러스에코 주식회사 | Remediation system for Multi-contaminated soils combining Chemical Oxidation and Soil Flushing and Electrokinetic Separation and Remediation method using the same |
CN106925607A (en) * | 2015-12-30 | 2017-07-07 | 北京高能时代环境技术股份有限公司 | Electro-Fenton process repairs the process unit and its method of PAHs contaminated soils |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0775772A (en) * | 1993-06-18 | 1995-03-20 | Kankyo Eng Kk | Method for restoring soil |
JPH0947748A (en) * | 1995-08-04 | 1997-02-18 | Ohbayashi Corp | Polluted soil purifying method |
US5861090A (en) * | 1996-01-30 | 1999-01-19 | Electrochemical Design Associates, Inc. | In situ electrochemical remediation of organically contaminated soil, sediments and ground water using electrochemically generated and delivered Fenton's Reagent |
KR20010086551A (en) * | 2000-03-02 | 2001-09-13 | 이기세 | Method of purifying soil contaminated with oil and an apparatus thereof |
KR100321857B1 (en) * | 1999-04-22 | 2002-02-02 | 김효근 | Removal of Toxic Heavy Metals from Wastewater Sludge Using Electrokinetic Processing |
KR20030029204A (en) * | 2001-10-05 | 2003-04-14 | 주식회사 에코필 | Method for decontamination of soil using electrokinetic |
-
2003
- 2003-07-14 KR KR1020030048094A patent/KR100414771B1/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0775772A (en) * | 1993-06-18 | 1995-03-20 | Kankyo Eng Kk | Method for restoring soil |
JPH0947748A (en) * | 1995-08-04 | 1997-02-18 | Ohbayashi Corp | Polluted soil purifying method |
US5861090A (en) * | 1996-01-30 | 1999-01-19 | Electrochemical Design Associates, Inc. | In situ electrochemical remediation of organically contaminated soil, sediments and ground water using electrochemically generated and delivered Fenton's Reagent |
KR100321857B1 (en) * | 1999-04-22 | 2002-02-02 | 김효근 | Removal of Toxic Heavy Metals from Wastewater Sludge Using Electrokinetic Processing |
KR20010086551A (en) * | 2000-03-02 | 2001-09-13 | 이기세 | Method of purifying soil contaminated with oil and an apparatus thereof |
KR20030029204A (en) * | 2001-10-05 | 2003-04-14 | 주식회사 에코필 | Method for decontamination of soil using electrokinetic |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100856909B1 (en) | 2008-05-29 | 2008-09-05 | 금오공과대학교 산학협력단 | Purification of TP-contaminated soil combining cleaning and galvanic technology |
KR101464878B1 (en) * | 2013-05-30 | 2014-11-25 | 에이치플러스에코 주식회사 | Remediation system for Multi-contaminated soils combining Chemical Oxidation and Soil Flushing and Electrokinetic Separation and Remediation method using the same |
CN106925607A (en) * | 2015-12-30 | 2017-07-07 | 北京高能时代环境技术股份有限公司 | Electro-Fenton process repairs the process unit and its method of PAHs contaminated soils |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Paixão et al. | Electrokinetic-Fenton for the remediation low hydraulic conductivity soil contaminated with petroleum | |
Huang et al. | Electrokinetic remediation and its combined technologies for removal of organic pollutants from contaminated soils | |
Reddy | Electrokinetic remediation of soils at complex contaminated sites: Technology status, challenges, and opportunities | |
Tsai et al. | Application of iron electrode corrosion enhanced electrokinetic-Fenton oxidation to remediate diesel contaminated soils: a laboratory feasibility study | |
Mena et al. | Influence of electric field on the remediation of polluted soil using a biobarrier assisted electro-bioremediation process | |
Cameselle et al. | Effects of periodic electric potential and electrolyte recirculation on electrochemical remediation of contaminant mixtures in clayey soils | |
Xu et al. | Ion exchange membranes enhance the electrokinetic in situ chemical oxidation of PAH-contaminated soil | |
Niroumand et al. | The performance of electrochemical remediation technologies in soil mechanics | |
US10500618B2 (en) | Apparatus and method for remediating trichloroethylene-polluting soils by integrated rotated migration and PRB | |
Yuan et al. | Remediating ethylbenzene-contaminated clayey soil by a surfactant-aided electrokinetic (SAEK) process | |
KR100341957B1 (en) | Method of purifying soil contaminated with oil and an apparatus thereof | |
Muñoz-Morales et al. | A new electrochemically-based process for the removal of perchloroethylene from gaseous effluents | |
Li et al. | Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl-β-cyclodextrin | |
RU2345848C2 (en) | Method for deactivation and technical modification of soil | |
Mousset et al. | Soil remediation by electro-Fenton process | |
Kim et al. | Enhanced electrokinetic soil remediation for removal of organic contaminants | |
KR101464878B1 (en) | Remediation system for Multi-contaminated soils combining Chemical Oxidation and Soil Flushing and Electrokinetic Separation and Remediation method using the same | |
KR20030066901A (en) | Development of electrode compartment for enhanced electrokinetic remediation and post-treatment of waste water | |
KR100414771B1 (en) | Chemical oxidation method of petroleum-contaminated soil using electro-osmosis and apparatus thereof | |
Gogina et al. | Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo | |
Le Hécho et al. | Industrial site soils contaminated with arsenic or chromium: Evaluation of the electrokinetic method | |
KR20060036961A (en) | Galvanic Soil Purification Treatment System Contaminated with Organic Pollutants | |
KR100667465B1 (en) | Apparatus for purification and restoration of contaminated soil mixed with sandy soil and viscous soil by electric washing reaction pile technique | |
CN110697968A (en) | Pulse current and permeable reactive barrier co-processing method for removing pollution in soil and underground water | |
KR20240058594A (en) | Remediation system including composite electrode for electrokinetic remediation of contaminated soil and remediation method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20030714 |
|
PA0201 | Request for examination | ||
A302 | Request for accelerated examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20030904 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20030714 Patent event code: PA03021R01I Comment text: Patent Application |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20031128 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20031229 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20031229 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20061205 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20071220 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20081224 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20091230 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20110103 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20120514 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20121217 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20121217 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20131205 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20131205 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20141224 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20141224 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20151204 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20151204 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20161209 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20161209 Start annual number: 14 End annual number: 14 |
|
FPAY | Annual fee payment |
Payment date: 20171207 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20171207 Start annual number: 15 End annual number: 15 |
|
FPAY | Annual fee payment |
Payment date: 20191204 Year of fee payment: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20191204 Start annual number: 17 End annual number: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20201203 Start annual number: 18 End annual number: 18 |
|
PR1001 | Payment of annual fee |
Payment date: 20211208 Start annual number: 19 End annual number: 19 |
|
PR1001 | Payment of annual fee |
Payment date: 20221207 Start annual number: 20 End annual number: 20 |
|
PC1801 | Expiration of term |
Termination date: 20240114 Termination category: Expiration of duration |