[go: up one dir, main page]

KR100403355B1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
KR100403355B1
KR100403355B1 KR1019960024525A KR19960024525A KR100403355B1 KR 100403355 B1 KR100403355 B1 KR 100403355B1 KR 1019960024525 A KR1019960024525 A KR 1019960024525A KR 19960024525 A KR19960024525 A KR 19960024525A KR 100403355 B1 KR100403355 B1 KR 100403355B1
Authority
KR
South Korea
Prior art keywords
film
metal
metal silicide
layer
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019960024525A
Other languages
Korean (ko)
Other versions
KR980005545A (en
Inventor
이우봉
김호성
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1019960024525A priority Critical patent/KR100403355B1/en
Publication of KR980005545A publication Critical patent/KR980005545A/en
Application granted granted Critical
Publication of KR100403355B1 publication Critical patent/KR100403355B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28247Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/661Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation
    • H10D64/662Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation the conductor further comprising additional layers, e.g. multiple silicon layers having different crystal structures
    • H10D64/663Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation the conductor further comprising additional layers, e.g. multiple silicon layers having different crystal structures the additional layers comprising a silicide layer contacting the layer of silicon, e.g. polycide gates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE: A method for manufacturing a semiconductor device is provided to improve step coverage by forming a passivation layer on a metal silicide layer. CONSTITUTION: An insulating layer(12) is formed on a semiconductor substrate(11). A polysilicon layer(13) and a metal silicide layer(14) are sequentially formed on the insulating layer. By performing RTP(Rapid Thermal Processing) under nitrogen atmosphere, a passivation layer including a metal nitride layer(15) and a silicon nitride layer(16) is formed on the metal silicide layer.

Description

반도체 소자의 제조방법Manufacturing method of semiconductor device

[발명의 분야][Field of Invention]

본 발명은 반도체 소자의 제조방법에 관한 것으로, 특히 금속 실리사이드에 대한 보호막을 형성하는 반도체 소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device for forming a protective film against metal silicide.

[종래기술][Private Technology]

대부분의 집적회로에서 낮은 비저항과 고온의 안정도를 가지는 금속 실리사이드가 접촉재료로서 대두되었다. 이 실리사이드는 고유의 조성과 각기의 화학적 성질을 갖는 금속-실리콘 화합물로서, 실리콘과 결합하는 금속으로는 내화성 금속족인 몰리브덴, 탄탈륨, 티타늄, 텅스텐 또는 귀금속 원자인 코발트, 니켈, 백금등과 반응한 화합물로 구성된다. 또한, 실리사이드는 낮은 비저항과 고온에서의 안정도 이외에도 양질의 실리사이드는 형성 및 에칭이 용이하고 강력한 접착력이 있으며, 산화 공정시 산화막을 형성할 수 있는 장점이 있다.In most integrated circuits, metal silicides having low resistivity and high temperature stability have emerged as contact materials. This silicide is a metal-silicon compound having an inherent composition and respective chemical properties. As a metal to be bonded with silicon, a compound reacted with molybdenum, tantalum, titanium, tungsten or noble metal atoms cobalt, nickel, platinum, etc. It consists of. In addition, in addition to low specific resistance and stability at high temperature, the silicide has an advantage of being able to easily form and etch, have strong adhesion, and form an oxide film during an oxidation process.

이러한 실리사이드는 현재의 폴리실리콘 배선 또는 게이트 전극위에 형성되어 전도성을 향상시키고, 소오스/드레인 접합 부분에 실리사이드를 부분적으로 형성시켜, 접합 영역 사이에 발생하는 접촉 저항을 감소시킴으로써, RC 지연 시간을 낮추는 역할을 한다.These silicides are formed on current polysilicon interconnects or gate electrodes to improve conductivity, and partially form silicides at the source / drain junctions, thereby reducing the contact resistance between the junction regions, thereby lowering the RC delay time. Do it.

즉, 제 1 도는 상기된 종래의 금속 실리사이드 구조의 워드 라인 형성방법을 나타낸 공정 단면도로서, 반도체 기판(1) 상부에 게이트 절연막(2)을 형성한 후, 그 상부에 폴리실리콘(3)을 증착하고, 전도성을 개선하기 위하여 불순물인 포클(POCl3) 이온을 주입하는 공정을 진행한 다음, 전체 구조 상부에 텅스텐 실리사이드막(4)을 형성한다. 그런 다음, 게이트 전극을 패턴화하기 위하여 포토리소그라피의 일련 공정 및 식각 공정으로 게이트 전극을 형성한 후, 이 게이트 전극을 이온 주입 마스크로하여 게이트 전극 양측의 소오스/드레인 영역에 저농도 이온을 주입함으로써, 저농도 불순물 영역(5)을 형성한다.1 is a cross sectional view showing a conventional method for forming a word line of a metal silicide structure, wherein a gate insulating film 2 is formed on a semiconductor substrate 1, and then polysilicon 3 is deposited thereon. Then, in order to improve conductivity, a process of injecting impurities (POCl 3 ) ions is performed, and then a tungsten silicide layer 4 is formed on the entire structure. Then, the gate electrode is formed by a series of photolithography and etching processes to pattern the gate electrode, and then low concentration ions are implanted into the source / drain regions on both sides of the gate electrode using the gate electrode as an ion implantation mask. The low concentration impurity region 5 is formed.

그 후, 전체 구조 상부에 산화막을 두껍게 증착한 다음 블랭킷 식각 방식으로 비등방성 식각하여, 게이트 양 측벽에 소정의 스페이서(6)를 형성한다. 그런 다음, 이 스페이서(6)를 이온주입 마스크로하여 소오스/드레인 영역에 고농도 이온을 주입함으로써, 고농도 불순물영역(7)을 형성한다. 이어서, 제 1 도에 도시되지는 않았지만 후속 공정시 형성될 폴리실리콘 또는 금속층과의 전기적 절연 및 평탄화를 위하여 전체구조 상부에 BPSG막(8)을 형성한다.Thereafter, a thick oxide film is deposited on the entire structure, and then anisotropically etched by a blanket etching method to form predetermined spacers 6 on both sidewalls of the gate. Then, the high concentration impurity region 7 is formed by implanting high concentration ions into the source / drain regions using the spacer 6 as an ion implantation mask. Subsequently, a BPSG film 8 is formed over the entire structure for electrical insulation and planarization with the polysilicon or metal layer to be formed in a subsequent process, although not shown in FIG.

그런데, 상기된 종래의 실리사이드 구조에 있어서는 텅스텐 실리사이드막 상부에 평탄화 절연막으로 BPSG막을 증착하게 되면, BPSG막으로부터 확산(diffusion)되어 나오는 B 및 P 이온이 텅스텐 실리사이드막으로 침투하여 저항값을 변화시키는 문제를 일으키게 된다.However, in the conventional silicide structure described above, when the BPSG film is deposited as the planarization insulating film on the tungsten silicide film, the B and P ions diffused from the BPSG film penetrate into the tungsten silicide film to change the resistance value. Will cause.

이에 대하여 종래에는 텅스텐 실리사이드막 상부에 산화막+BPSG막의 적층 구조를 평탄화 절연막으로 사용하게 되었지만, 이때에는 또한 다음과 같은 문제가 발생하게 된다.On the other hand, in the related art, a laminated structure of an oxide film + BPSG film on the tungsten silicide film is used as a planarization insulating film. However, the following problem also occurs.

즉, 텅스텐 실리사이드막의 저항을 낮추기 위하여 열공정을 진행하게 되면, 텅스텐 실리사이드막의 표면을 덮고 있는 상기 산화막으로 인하여, 텅스텐 실리사이드막의 잉여 실리콘이 충분히 소모되지 못하기 때문에 텅스텐 실리사이드막의 저항이 증가하게 된다.That is, when the thermal process is performed to lower the resistance of the tungsten silicide film, the resistance of the tungsten silicide film is increased because the excess silicon of the tungsten silicide film is not sufficiently consumed due to the oxide film covering the surface of the tungsten silicide film.

또한, 텅스텐 실리사이드막 상부에 산화막+BPSG막의 적층 구조를 가짐으로 인하여, 후속 금속 콘택 식각시 또는 금속 콘택 형성전의 클리닝 공정의 진행시에 상기 산화막과 BPSG막의 화학적 습식식각 속도의 차이로 인하여, 콘택 홀 측면에요철 구조가 발생하여 스텝 커버리지가 저하되는 문제가 발생하게 된다.In addition, due to the stacked structure of the oxide film + BPSG film on the tungsten silicide film, the contact hole due to the difference in the chemical wet etching rate of the oxide film and the BPSG film during the subsequent metal contact etching or during the cleaning process before forming the metal contact. The uneven structure is generated on the side surface, resulting in a problem that the step coverage is lowered.

이에 본 발명은 상기된 문제점을 감안하여 창출된 것으로서, 금속 실리사이드에 대한 보호막을 형성하여 금속 실리사이드막의 전도 특성을 개선함과 더불어 금속 배선형성시 스텝 커버리지를 향상시킬 수 있는 반도체 소자의 제조방법을 제공함에 그 목적이 있다.Accordingly, the present invention has been made in view of the above-described problems, and provides a method of manufacturing a semiconductor device capable of forming a protective film for the metal silicide to improve conduction characteristics of the metal silicide film and to improve step coverage in forming metal wiring. Has its purpose.

제 1 도는 종래의 금속 실리사이드 구조의 워드라인 형성방법을 나타낸 공정 단면도.1 is a cross-sectional view showing a conventional method for forming a word line of a metal silicide structure.

제 2 도는 본 발명의 일실시예에 따른 금속 실리사이드 보호막이 적용된 금속 실리사이드 구조의 워드라인 형성방법을 나타낸 공정 단면도.2 is a cross-sectional view illustrating a method of forming a word line of a metal silicide structure to which a metal silicide protective film is applied according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

11 : 반도체 기판 12 : 절연막11 semiconductor substrate 12 insulating film

13 : 폴리실리콘 14 : 텅스텐 실리사이드막13: polysilicon 14: tungsten silicide film

15 : 텅스텐 질화막 16 : 실리콘 질화막15 tungsten nitride film 16 silicon nitride film

상기 목적을 달성하기 위한 본 발명에 따른 반도체 소자의 제조방법은 폴리실리콘 상부에 금속 실리사이드막이 형성된 반도체 소자의 제조방법에 있어서, 상기 금속 실리사이드막 상부에 금속 실리사이드에 대한 보호막을 형성하는 단계를 포함하는 것을 특징으로 하고, 또한 상기 보호막은 금속 질화막과 실리콘 질화막인 것을 특징으로 한다.A method of manufacturing a semiconductor device according to the present invention for achieving the above object comprises the step of forming a protective film for the metal silicide on the metal silicide film in the method of manufacturing a semiconductor device formed with a metal silicide film on the polysilicon. In addition, the protective film is characterized in that the metal nitride film and silicon nitride film.

상기 구성으로 된 본 발명에 의하면, 금속 실리사이드에 대한 보호막을 형성함으로써 금속 실리사이드막의 전도 특성을 개선함과 더불어 이후의 금속 배선 형성시 스텝 커버리지를 향상시킬 수 있게 된다.According to the present invention having the above structure, by forming a protective film for the metal silicide, it is possible to improve the conduction characteristics of the metal silicide film and to improve the step coverage in the subsequent formation of the metal wiring.

[실시예]EXAMPLE

이하, 첨부된 도면을 참조하여 본 발명의 일 실시예를 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention.

제 2A 도 내지 제 2C 도는 본 발명의 일 실시예에 따른 금속 실리사이드 보호막이 적용된 금속 실리사이드 구조의 워드라인 형성방법을 나타낸 공정 단면도로서, 도면부호 11은 반도체 기판, 12는 절연막, 13은 도핑된 폴리실리콘, 14는 텅스텐 실리사이드막, 15는 텅스텐 질화막, 16은 실리콘 질화막이다.2A through 2C are cross-sectional views illustrating a method of forming a word line of a metal silicide structure to which a metal silicide protective film is applied according to an embodiment of the present invention, wherein reference numeral 11 is a semiconductor substrate, 12 is an insulating film, and 13 is a doped poly Silicon, 14 is a tungsten silicide film, 15 is a tungsten nitride film and 16 is a silicon nitride film.

먼저 제 2A 도에 도시된 바와 같이, 반도체 기판(11) 상부에 절연막(12)을 형성한후, 그 상부에 폴리실리콘(13)을 증착하고 전도성을 개선하기 위하여 불순물을 주입하는 포클 공정을 진행한 다음, 전체 구조 상부에 텅스텐 실리사이드막(14)을 증착한다.First, as shown in FIG. 2A, an insulating film 12 is formed on the semiconductor substrate 11, and then, a polysilicon 13 is deposited on the semiconductor substrate 11, and a fockle process of implanting impurities to improve conductivity is performed. Then, a tungsten silicide film 14 is deposited over the entire structure.

그런 다음 제 2B 도에 도시된 바와 같이, 포토리소그라피의 일련 공정 및 식각공정을 통하여 도핑된 폴리실리콘(13)/텅스텐 실리사이드막(14)의 적층 구조를 패턴화함으로써, 도핑된 폴리실리콘(13)/텅스텐 실리사이드막(14) 구조의 워드라인을 형성한다.Then, as shown in FIG. 2B, the doped polysilicon 13 is patterned by patterning the stacked structure of the doped polysilicon 13 / tungsten silicide layer 14 through a series of photolithography and etching processes. The word line of the tungsten silicide film 14 structure is formed.

그 후, 질소 가스 분위기에서 RTP(Rapid Thermal Process) 처리를 650 내지 1100℃의 온도에서 실시하게 되면, 어닐링에 의해 상기 증착 상태에서의 텅스텐 실리사이드막(14)이 재결정화 되면서, 실리콘/텅스텐의 조성비가 감소함으로써, 잉여 실리콘이 텅스텐 실리사이드막(14) 표면으로 외방 확산(out-diffusion) 된다.Subsequently, when the RTP (Rapid Thermal Process) treatment is performed at a temperature of 650 to 1100 ° C. in a nitrogen gas atmosphere, the composition ratio of silicon / tungsten is recrystallized while the tungsten silicide film 14 in the deposited state is recrystallized by annealing. By decreasing, excess silicon is out-diffused to the surface of the tungsten silicide film 14.

예컨대, 상기 증착 상태에서의 텅스텐 실리사이드막(14)의 실리콘/텅스텐의 조성비가 약 2.4 내지 2.6인 경우, 어닐링 후재결정화가 이루어지면 실리콘/텅스텐의 조성비가 약 2.1 내지 2.2로 변화하게 된다.For example, when the composition ratio of silicon / tungsten of the tungsten silicide layer 14 in the deposition state is about 2.4 to 2.6, the composition ratio of silicon / tungsten is changed to about 2.1 to 2.2 when recrystallization is performed after annealing.

여기서, 상기 RTP 온도를 650℃ 이상에서 실시하는 것은 텅스텐 실리사이드막(14)이 약 550 내지 600℃의 온도에서 구조 변화를 일으켜 막의 스트레스를 증가시키는 것을 방지하기 위함이다.Here, the RTP temperature is performed at 650 ° C. or higher to prevent the tungsten silicide film 14 from causing a structural change at a temperature of about 550 to 600 ° C. to increase stress of the film.

이어서, 상기 RTP 처리시 주입된 질소 가스는 제 2C 도에 도시된 바와 같이, 텅스텐 실리사이드막(14)의 텅스텐과 반응하여 텅스텐 실리사이드막(14) 표면에 텅스텐 질화막(15)을 형성하게 된다.Subsequently, the nitrogen gas injected during the RTP treatment reacts with the tungsten of the tungsten silicide film 14 to form a tungsten nitride film 15 on the surface of the tungsten silicide film 14.

또한 이 텅스텐 질화막(15)의 형성과 동시에, 상기 질소 가스는 상기 외방 확산된 잉여 실리콘과 결합하게 하여, 얇은 실리콘 질화막(16)을 형성하게 된다. 그 후, 제 2 도에 도시되지는 않았지만 워드라인 형성을 위한 후속 공정을 진행하게 된다.At the same time as the formation of the tungsten nitride film 15, the nitrogen gas is combined with the outwardly diffused excess silicon to form a thin silicon nitride film 16. Thereafter, although not shown in FIG. 2, a subsequent process for word line formation is performed.

즉, 상기 실시예에 의하면 팅스텐 실리사이드막의 잉여 실리콘을 충분히 소모시킴으로써, 텅스텐 실리사이드막의 저항이 감소된다. 또한, RTP 처리시 형성되는 텅스텐 질화막/실리콘 질화막이 후속 공정에 사용되는 BPSG막으로부터 침투하는 B, P 이온에 대한 보호막 역할을 함으로써, 텅스텐 실리사이드막의 저항값 변화를 방지할 수 있게 됨에 따라 텅스텐 실리사이드막의 전도 특성을 개선할 수 있게 된다.That is, according to the above embodiment, the excess silicon of the tinsten silicide film is sufficiently consumed, so that the resistance of the tungsten silicide film is reduced. In addition, since the tungsten nitride film / silicon nitride film formed during the RTP treatment serves as a protective film for B and P ions penetrating from the BPSG film used in the subsequent process, the resistance value change of the tungsten silicide film can be prevented. It is possible to improve the conduction characteristics.

뿐만 아니라, 반도체 제조 공정시 통상적으로 사용되는 산화막+BPSG막의 적층구조를 형성할 필요가 없게 됨에 따라, 금속배선의 스텝 커버리지를 향상시킬 수 있게 된다.In addition, since it is not necessary to form a laminated structure of an oxide film + BPSG film which is commonly used in the semiconductor manufacturing process, it is possible to improve the step coverage of the metal wiring.

또한, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 요지를 벗어나지 않는 범위내에서 다양하게 변형시켜 실시할 수 있다.In addition, this invention is not limited to the said Example, It can variously deform and implement within the range which does not deviate from the technical summary of this invention.

즉, 본 발명에서는 워드라인의 형성방법에 대하여 국한하여 설명하였지만, 비트 라인 및 그 밖의 텅스텐 실리사이드가 형성되는 공정에는 모두 적용되며, 또한 텅스텐 실리사이드 이외에도 금속 실리사이드가 형성되는 공정에 적용할 수 있다.That is, in the present invention, the word line forming method is limited to the above description, but it is applicable to all of the processes for forming bit lines and other tungsten silicides, and also to the processes for forming metal silicides in addition to tungsten silicides.

이상 설명한 바와 같이 본 발명에 의하면, 금속 실리사이드막에 대한 보호막을 형성하여 금속 실리사이드막의 전도 특성을 개선함과 더불어 스텝 커버리지를 향상시킬 수 있는 반도체 소자의 제조방법을 실현할 수 있다.As described above, according to the present invention, a method for manufacturing a semiconductor device capable of forming a protective film for the metal silicide film to improve the conduction characteristics of the metal silicide film and to improve step coverage.

Claims (3)

폴리실리콘 상부에 금속 실리사이드막이 형성된 반도체 소자의 제조방법에 있어서,In the method of manufacturing a semiconductor device having a metal silicide film formed on the polysilicon, 상기 금속 실리사이드막을 질소 가스분위기에서 RTP(Rapid Thermal Process)처리하여 상기 금속 실리사이드막 상부에 금속 질화막과 실리콘 질화막으로 이루어진 적층구보의 보호막을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 제조방법.And forming a protective film of a lamination structure including a metal nitride film and a silicon nitride film on the metal silicide film by treating the metal silicide film with a rapid thermal process (RTP) in a nitrogen gas atmosphere. 제 1 항에 있어서, 상기 RTP처리는 650 내지 1100℃의 온도에서를 진행하는 것을 특징으로 하는 반도체소자의 제조방법.The method of claim 1, wherein the RTP process is performed at a temperature of 650 to 1100 ° C. 제 1 항에 있어서, 상기 금속 실리사이드막은 텅스텐 실리사이드막인 것을 특징으로 반도체 소자의 제조방법.The method of claim 1, wherein the metal silicide film is a tungsten silicide film.
KR1019960024525A 1996-06-27 1996-06-27 Method for manufacturing semiconductor device Expired - Fee Related KR100403355B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960024525A KR100403355B1 (en) 1996-06-27 1996-06-27 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960024525A KR100403355B1 (en) 1996-06-27 1996-06-27 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
KR980005545A KR980005545A (en) 1998-03-30
KR100403355B1 true KR100403355B1 (en) 2004-01-13

Family

ID=37422533

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960024525A Expired - Fee Related KR100403355B1 (en) 1996-06-27 1996-06-27 Method for manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR100403355B1 (en)

Also Published As

Publication number Publication date
KR980005545A (en) 1998-03-30

Similar Documents

Publication Publication Date Title
KR100530401B1 (en) Semiconductor device having a low-resistance gate electrode
US5723893A (en) Method for fabricating double silicide gate electrode structures on CMOS-field effect transistors
KR960012298B1 (en) Method of manufacturing semiconductor devices
US5175118A (en) Multiple layer electrode structure for semiconductor device and method of manufacturing thereof
US5413943A (en) Semiconductor device and method of manufacturing the same
US5683920A (en) Method for fabricating semiconductor devices
KR0158441B1 (en) Method of manufacturing semiconductor device
JP2000138352A (en) Manufacturing method of ferroelectric memory
US4888297A (en) Process for making a contact structure including polysilicon and metal alloys
EP0104079B1 (en) Integrated circuit contact structure
KR100403355B1 (en) Method for manufacturing semiconductor device
JPH0748562B2 (en) Method for manufacturing semiconductor device
KR100223736B1 (en) Method of manufacturing semiconductor device
KR19980060621A (en) Manufacturing method of semiconductor device
JPH1064898A (en) Method for manufacturing semiconductor device
KR0144413B1 (en) Semiconductor device and manufacturing method
JP3545084B2 (en) Method for manufacturing semiconductor device
KR100365409B1 (en) Method for forming a gate electrode in semiconductor device
KR0172263B1 (en) Method of manufacturing semiconductor device
KR100755671B1 (en) Semiconductor device having nickel alloy silicide layer of uniform thickness and manufacturing method thereof
KR100351895B1 (en) Method for forming bitline in semiconductor device
KR100734640B1 (en) Capacitor Manufacturing Method of Semiconductor Device
KR100437620B1 (en) Method for forming polycide structure of semiconductor device
KR100475727B1 (en) Manufacturing method of semiconductor device with low contact resistance
KR100209929B1 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19960627

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20010411

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19960627

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20030206

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20031008

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20031015

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20031016

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20060920

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20070914

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20081006

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20090922

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20100920

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20100920

Start annual number: 8

End annual number: 8

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20120909