[go: up one dir, main page]

KR100395818B1 - Organic electrolyte solution and lithium batteries adopting the same - Google Patents

Organic electrolyte solution and lithium batteries adopting the same Download PDF

Info

Publication number
KR100395818B1
KR100395818B1 KR10-2001-0066456A KR20010066456A KR100395818B1 KR 100395818 B1 KR100395818 B1 KR 100395818B1 KR 20010066456 A KR20010066456 A KR 20010066456A KR 100395818 B1 KR100395818 B1 KR 100395818B1
Authority
KR
South Korea
Prior art keywords
battery
lithium
weight
electrolyte
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR10-2001-0066456A
Other languages
Korean (ko)
Other versions
KR20030034737A (en
Inventor
이진욱
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR10-2001-0066456A priority Critical patent/KR100395818B1/en
Publication of KR20030034737A publication Critical patent/KR20030034737A/en
Application granted granted Critical
Publication of KR100395818B1 publication Critical patent/KR100395818B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 카보네이트 화합물 50∼99 중량% 및 이황화탄소(CS2) 0.1∼5 중량%를 포함하는 것을 특징으로 하는 유기 전해액을 제공한다.The present invention provides an organic electrolyte solution comprising 50 to 99% by weight of a carbonate compound and 0.1 to 5% by weight of carbon disulfide (CS 2 ).

카보네이트 화합물계 유기 전해액에 이황화탄소를 첨가함으로써, 각형 및 폴리머 리튬 이온 전지의 경우, 전지 두께 변화를 기존에 비해 4% 정도 감소하여 세트 장착성에 대한 신뢰성을 향상시킬 수 있고, 충방전 수명특성 또한 향상 시킬 수 있었다.By adding carbon disulfide to the carbonate compound-based organic electrolyte, in the case of prismatic and polymer lithium ion batteries, the change in battery thickness is reduced by 4% compared to the conventional one, thereby improving reliability of set mountability and improving charge / discharge life characteristics. I could make it.

Description

유기 전해액 및 이를 채용한 리튬 전지{Organic electrolyte solution and lithium batteries adopting the same}Organic electrolyte solution and lithium batteries adopting the same

본 발명은 유기 전해액 및 이를 채용한 리튬 전지에 관한 것으로, 보다 상세하게는 만충전후 전지 두께 변화를 감소시킬 수 있으며 충방전 사이클 수명이 우수한 유기 전해액 및 이를 채용한 리튬 전지에 관한 것이다.The present invention relates to an organic electrolyte and a lithium battery employing the same, and more particularly, to an organic electrolyte and a lithium battery employing the same, which can reduce the change in battery thickness after full charge and have excellent charge / discharge cycle life.

통상적으로 충방전이 가능한 2차 전지는 셀룰러 폰, 노트북 컴퓨터, 컴퓨터 캠코드 등 휴대용 전자기기의 개발로 활발한 연구가 진행되고 있다. 특히 이러한 2차 전지는 니켈-카드뮴 전지, 연축 전지, 니켈 수소 전지, 리튬 이온 전지, 리튬 폴리머 전지, 금속 리튬 2차 전지, 공기 아연 축전지 등 종류가 다양하다. 상기 전지들 중 리튬 2차 전지는 작동 전압이 3.6 V로서, 전자 기기의 전원으로 많이 사용되는 니켈-카드뮴 전지나 니켈-수소 전지에 비해 수명이 약 3배이며, 단위 중량당에너지 밀도가 우수하다는 점에서 그 수요가 급속도로 신장되고 있다.In general, rechargeable batteries capable of charging and discharging are being actively researched by the development of portable electronic devices such as cellular phones, notebook computers, and computer cam codes. In particular, such a secondary battery is a variety of types such as nickel-cadmium battery, lead-acid battery, nickel-hydrogen battery, lithium ion battery, lithium polymer battery, metal lithium secondary battery, air zinc storage battery. Among the batteries, the lithium secondary battery has an operating voltage of 3.6 V, which is about three times longer than a nickel-cadmium battery or nickel-hydrogen battery, which is widely used as a power source for electronic devices, and has an excellent energy density per unit weight. The demand is growing rapidly.

이러한 리튬 2차 전지는 전해질의 종류에 따라 액체 전해질 전지와 고분자 전해질 전지로 분류할 수 있으며, 일반적으로 액체 전해질을 사용하는 전지를 리튬 이온 전지, 고분자 전해질을 사용하는 전지를 리튬 폴리머 전지라고 한다.The lithium secondary battery may be classified into a liquid electrolyte battery and a polymer electrolyte battery according to the type of electrolyte. Generally, a battery using a liquid electrolyte is a lithium ion battery and a battery using a polymer electrolyte is called a lithium polymer battery.

리튬 이온 전지의 장점 중의 하나는 평균방전전압이 3.6∼3.7 V 정도로서 다른 알칼리 전지, Ni-MH, 또는 Ni-Cd 전지의 그것에 비하여 높은 것이다. 그러나, 이런 높은 구동전압을 내기 위해서는 충방전 전압영역인 0∼4.2 V에서 전기화학적으로 안정한 전해액 조성이 필요하며, 이러한 요구사항으로 인해, EC(Ethylene Carbonate), DMC(Di-Methyl carbonate), DEC(Di-Ethyl Carbonate) 등의 카보네이트류의 조합으로 이루어진 혼합물을 용매로 사용한다. 그러나 이러한 조성의 전해액은 Ni-MH 또는 Ni-Cd 전지에서 사용하는 수계 전해액에 비하여 이온전도도가 현저히 낮기 때문에 고율 충방전 등에서는 불리한 원인으로 작용하기도 한다. 전해액의 용질로서 통상 사용하는 LiPF6, LiBF4, LiClO4등은 전지 내에서 리튬이온의 공급원으로 작용하여 리튬 이온 전지의 작동을 가능하게 한다.One of the advantages of the lithium ion battery is that the average discharge voltage is about 3.6 to 3.7 V, which is higher than that of other alkaline batteries, Ni-MH, or Ni-Cd batteries. However, in order to produce such a high driving voltage, an electrochemically stable electrolyte composition is required in the charge and discharge voltage range of 0 to 4.2 V. Due to these requirements, EC (Ethylene Carbonate), Di-Methyl Carbonate (DMC), and DEC are required. A mixture consisting of a combination of carbonates such as (Di-Ethyl Carbonate) is used as a solvent. However, the electrolytic solution having such a composition has a lower ionic conductivity than the aqueous electrolytic solution used in Ni-MH or Ni-Cd batteries, and thus, may act as a disadvantage in high rate charge and discharge. LiPF 6 , LiBF 4 , LiClO 4, and the like, which are commonly used as the solute of the electrolyte, act as a source of lithium ions in the battery to enable operation of the lithium ion battery.

이러한 리튬 이온 전지의 전해액은 통상 -20℃∼60℃의 온도 범위에서 안정하며, 4 V 영역의 전압에서도 안정적인 특성을 유지하여야 한다.The electrolyte of such a lithium ion battery is normally stable at a temperature range of -20 ° C to 60 ° C, and must maintain stable characteristics even at a voltage of 4 V region.

리튬 이온 전지의 초충전시 양극으로 사용되는 리튬 금속산화물로부터 나온 리튬 이온이 음극으로 사용되는 카본(결정질 또는 비결정질) 전극으로 이동하여 인터칼레이션(intercalation)되게 되는데, 이때 리튬은 반응성이 강하므로 카본 음극과 반응하여 Li2CO3, LiO, LiOH 등을 만들어 내게 되고, 이것들은 음극의 표면에 피막을 형성하게 된다. 이 피막을 SEI(Solid Electrolyte Interface) 피막이라고 한다.During supercharging of lithium ion batteries, lithium ions from lithium metal oxides used as anodes are moved to intercalation by moving to carbon (crystalline or amorphous) electrodes used as cathodes. Reaction with the cathode produces Li 2 CO 3 , LiO, LiOH, etc., and these form a film on the surface of the cathode. This film is called SEI (Solid Electrolyte Interface) film.

리튬 이온 전지의 초충전시 형성되는 SEI 피막은 형성된 후 충방전 중 리튬이온이 카본 음극 또는 다른 물질과 반응하는 것을 막아준다. 또 이 피막은 이온 터널의 역할을 수행하여 리튬 이온만을 통과시키게 된다.The SEI film formed during supercharge of a lithium ion battery prevents lithium ions from reacting with a carbon anode or other material during charge and discharge after formation. The film also acts as an ion tunnel, allowing only lithium ions to pass through.

이 이온 터널의 효과 때문에 전해액 중에서 리튬 이온을 솔베이션시켜, 이와 함께 이동하는 분자량이 큰 유기 용매들이 카본 음극에 함께 코인터칼레이션(cointercalation)되는 것이 방지되어 카본 음극의 구조를 붕괴시키는 것을 막아준다. 일단 이 피막이 형성되고 나면 리튬 이온은 다시 카본 음극이나 다른 물질과 부반응을 하지 않게 되어 리튬 이온의 양을 가역적으로 유지시키게 된다. 이와 같이 SEI 피막의 역할은 리튬 이차 전지에서 매우 중요하다.Due to the effect of this ion tunnel, lithium ions are solubilized in the electrolyte solution, thereby preventing the organic solvents having high molecular weight from being cointercalated together on the carbon anode, thereby preventing the carbon cathode structure from collapsing. . Once this film is formed, the lithium ions will no longer react sideways with the carbon anode or other materials, thereby reversibly maintaining the amount of lithium ions. As such, the role of the SEI film is very important in a lithium secondary battery.

즉, 음극의 카본 재료는 초충전시 전해액과 반응하여 음극표면에 보호막(passivation layer)을 형성하여, 더 이상의 전해액의 분해가 발생하지 않고 안정적인 충방전을 유지할 수 있도록 한다 (J. Power Sources, 51(1994) 79∼104). 이때, 음극 표면의 보호막 형성에 소모된 전하량은 비가역용량으로, 방전시 가역적으로 반응하지 않는 특징을 가지고 있다. 이러한 이유로 리튬 이온 전지는 초충전 반응 이후 더 이상의 비가역적인 보호막 형성 반응을 나타내지 않고 안정적인 사이클 수명을 유지할 수 있다.That is, the carbon material of the negative electrode reacts with the electrolyte during supercharge to form a passivation layer on the surface of the negative electrode to maintain stable charge and discharge without further decomposition of the electrolyte ( J. Power Sources , 51 (1994) 79-104). At this time, the amount of charge consumed to form the protective film on the surface of the cathode is an irreversible capacity, and has a feature of not reversibly reacting during discharge. For this reason, the lithium ion battery may maintain a stable cycle life after the supercharge reaction without showing any irreversible protective film formation reaction.

그러나, 박형의 각형 전지에서는 위의 SEI 피막 형성 반응 중에서 카보네이트계 유기 용매의 분해로 생기는 CO, CO2, CH4, C2H6등의 가스가 발생(J. Power Sources, 72 (1998) 66∼70)하여 내압이 상승하므로 충전시 전지의 두께가 팽창하고, 이로 인한 전극의 뒤틀림 현상이 발생하여 전지 충방전시 불균일 반응이 일어나 신뢰성 및 안정성을 저해하는 요인이 된다.However, in the thin rectangular battery, gases such as CO, CO 2 , CH 4 , and C 2 H 6 generated by decomposition of the carbonate-based organic solvent are generated during the SEI film formation reaction ( J. Power Sources , 72 (1998) 66). As the internal pressure increases, the thickness of the battery expands during charging, resulting in a distortion of the electrode, resulting in a heterogeneous reaction during charging and discharging of the battery, thereby degrading reliability and stability.

이와 같은 반응으로 각형 전지와 PLI(Polymer Lithium Ion)전지의 경우, 전지의 두께가 증가하여 세트 장착 자체를 어렵게 만드는 문제를 유발하기도 한다.In this reaction, in the case of a square battery and a polymer lithium ion (PLI) battery, the thickness of the battery increases, which may cause a problem of making the set itself difficult.

이러한 문제점을 억제하기 위하여 전해액에 첨가제를 넣어서 SEI 피막 형성 반응을 변화시키는 실험이 진행 되어 왔다. 그 예로 일본 특개평7-176323에서는 CO2를 전해액에 첨가하는 기술등이 개시되어 있다. 또한 일본 특개평7-230825는 대칭 술폰(sulfone)을 함유하는 것을 특징으로 하는 비수 전해액을 개시하고 있다. 일본 특개평8-241732는 비환상 술폰을 함유하고 있는 것을 특징으로 하는 전해액을 개시하고 있다. US3907597은 술포레인(sulfolane) 및 본질적으로 물이 없는 알킬-치환된 술포레인 유도체, 적어도 하나의 점도가 낮은 유기 용매 및 이온성 용질로 구성된 비수계 전해액을 개시하고 있다. WO99/19932는 일반식 R-SO2-R'을 가지는 하나 이상의 불화된 비대칭 비환형 술폰을 포함하는 비수계 전해액을 개시하고 있다; 여기서 R과 R'은 서로 것으로서 다른 일부 또는 전부 불화된 선형 또는 분지형 알킬 그룹이다. US4690877은 단지 디메틸술폰 및 디메틸술폰과 다른 방향족 또는 지방족 선형 술폰과의 혼합물로 구성된 군에서 선택된 적어도 하나의 용매로 구성된 비수계 전해액을 개시한다.In order to suppress this problem, experiments have been conducted to change the SEI film formation reaction by adding an additive to the electrolyte. For example, Japanese Patent Laid-Open No. 7-176323 discloses a technique of adding CO 2 to an electrolyte solution. In addition, Japanese Patent Laid-Open No. 7-230825 discloses a nonaqueous electrolyte which contains symmetric sulfone. Japanese Patent Laid-Open No. 8-241732 discloses an electrolytic solution characterized by containing acyclic sulfone. US3907597 discloses a non-aqueous electrolyte consisting of sulfolane and essentially water-free alkyl-substituted sulfolane derivatives, at least one low viscosity organic solvent and ionic solutes. WO 99/19932 discloses a non-aqueous electrolyte comprising one or more fluorinated asymmetric acyclic sulfones having the general formula R—SO 2 —R ′; Wherein R and R 'are some or all fluorinated linear or branched alkyl groups that are different from each other. US4690877 discloses a non-aqueous electrolyte consisting of only dimethylsulfone and at least one solvent selected from the group consisting of dimethylsulfone and mixtures of other aromatic or aliphatic linear sulfones.

위와 같은 많은 노력에도 불구하고 상술한 충전시 전지의 두께 팽창으로 인한 전극 내 극판의 뒤틀림으로 인한 충방전 불균일이 일어나 전지의 제반 특성 및 안전성의 열화를 가져오는 원인은 완전히 개선되지 못하고 있다.Despite many efforts as described above, the charge and discharge unevenness due to the warpage of the electrode plate due to the expansion of the thickness of the battery during charging, resulting in deterioration of various characteristics and safety of the battery is not completely improved.

따라서, 본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결할 수 있는 유기 전해액을 제공하는 데 있다.Therefore, the technical problem to be achieved by the present invention is to provide an organic electrolyte solution that can solve the above problems.

본 발명이 이루고자 하는 다른 기술적 과제는 상기 전해액을 이용함으로써 만충전후 전지의 두께 변화를 감소시킬 수 있으며 사이클 수명 특성이 우수한 리튬 전지를 제공하는 데 있다.Another technical problem to be achieved by the present invention is to provide a lithium battery having excellent cycle life characteristics by reducing the thickness change of the battery after full charge by using the electrolyte solution.

도 1은 본 발명에 따른 첨가제의 사용유무에 따른 화성 충전시 전압 프로파일를 나타낸다.Figure 1 shows the voltage profile during chemical charging according to the use of the additive according to the present invention.

도 2는 본 발명에 따른 첨가제 사용유무에 따른 전지 수명특성을 나타낸다.2 shows battery life characteristics depending on whether additives are used according to the present invention.

상기 목적을 달성하기 위하여, 본 발명은 카보네이트 화합물 50∼99 중량% 및 이황화탄소(CS2) 0.1∼5 중량%를 포함하는 것을 특징으로 하는 유기 전해액을 제공한다.In order to achieve the above object, the present invention provides an organic electrolytic solution comprising 50 to 99% by weight of a carbonate compound and 0.1 to 5% by weight of carbon disulfide (CS 2 ).

상기 카보네이트 화합물은 EC(Ethylene Carbonate), DMC(Di-Methyl carbonate), 및 DEC(Di-Ethyl Carbonate)로 구성된 군에서 선택된 적어도 어느 하나 이상인 것이 바람직하다.The carbonate compound is preferably at least one selected from the group consisting of EC (Ethylene Carbonate), DMC (Di-Methyl carbonate), and DEC (Di-Ethyl Carbonate).

상기 다른 목적을 달성하기 위하여, 본 발명은 양극, 음극, 이들 사이에 개재된 세퍼레이터, 및 전해액을 포함하는 리튬 전지에 있어서,In order to achieve the above another object, the present invention is a lithium battery comprising a positive electrode, a negative electrode, a separator interposed therebetween, and an electrolyte solution,

상기 전해액은 카보네이트 화합물 50∼99 중량% 및 이황화탄소(CS2) 0.1∼5중량%를 포함하는 유기 전해액으로 이루어진 것을 것을 특징으로 하는 리튬 전지를 제공한다.The electrolyte provides a lithium battery comprising an organic electrolyte solution containing 50 to 99% by weight of a carbonate compound and 0.1 to 5% by weight of carbon disulfide (CS 2 ).

상기 카보네이트 화합물은 EC, DMC, 및 DEC로 구성된 군에서 선택된 적어도 어느 하나 이상인 것이 바람직하다.The carbonate compound is preferably at least one selected from the group consisting of EC, DMC, and DEC.

상기 양극은 LiCoO2, LiMnO2, LiMn2O4, LiNiO2, 및 LiMxM'yO2로 이루어진 군에서 선택된 적어도 어느 하나 이상의 리튬 금속 산화물 또는 리튬 금속 복합 산화물을 포함하는 것이 바람직하다:The anode preferably comprises at least one lithium metal oxide or lithium metal composite oxide selected from the group consisting of LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , and LiM x M ' y O 2 :

여기서 M과 M'은 서로 독립적으로 Co, Mn , 또는 Ni를, x의 범위는 1 ∼0.5, y의 범위는 0.5∼1를 각각 나타낸다.M and M 'each independently represent Co, Mn, or Ni, the range of x is 1 to 0.5, and the range of y is 0.5 to 1, respectively.

상기 음극은 결정질 또는 비정질의 카본, 그래파이트 및 리튬 금속으로 이루어진 군에서 선택된 적어도 어느 하나 이상을 포함하는 것이 바람직하다.The negative electrode preferably includes at least one selected from the group consisting of crystalline or amorphous carbon, graphite and lithium metal.

이하 본 발명에 따른 유기 전해액 및 이를 이용한 리튬전지의 제조방법을 보다 상세히 설명한다.Hereinafter, an organic electrolyte solution and a method of manufacturing a lithium battery using the same according to the present invention will be described in detail.

본 발명에 따른 유기 전해액은 통상 사용되는 기본 유기 전해액, 즉 EC, DMC, DEC 등의 카보네이트 화합물에 이황화탄소를 첨가하여 제조된다.The organic electrolytic solution according to the present invention is prepared by adding carbon disulfide to a basic organic electrolytic solution commonly used, that is, carbonate compounds such as EC, DMC, and DEC.

본 발명에 따른 유기 전해액을 채용하는 리튬 전지는 통상적인 리튬전지의 제조 방법에 따라 제조될 수 있다. 즉 리튬 전지 제조시 사용되는 통상적인 방법에 따라 양극 극판과 음극 극판을 각각 제조한다. 이때, 양극 활물질로는 리튬 금속 산화물, 리튬 금속 복합 산화물, 전이금속 화합물, 설퍼 화합물 등을 사용할 수 있으며, 음극 활물질로는 결정질 또는 비정질의 탄소재 분말, 그래파이트 분말 등을사용할 수 있다.The lithium battery employing the organic electrolyte according to the present invention can be prepared according to a conventional method for producing a lithium battery. That is, the positive electrode plate and the negative electrode plate are each produced in accordance with a conventional method used in manufacturing a lithium battery. In this case, a lithium metal oxide, a lithium metal composite oxide, a transition metal compound, a sulfur compound, or the like may be used as the positive electrode active material, and a crystalline or amorphous carbon material powder, graphite powder, or the like may be used as the negative electrode active material.

그 후, 상기 양극 극판과 음극 극판 사이에 세퍼레이트를 삽입하고 이를 와인딩(winding)하거나 스택킹(stacking)하여 전극 구조체를 형성한 다음, 이를 전지 케이스에 넣어 전지를 조립한다.Thereafter, a separator is inserted between the positive electrode plate and the negative electrode plate, and the electrode structure is formed by winding or stacking the electrode plate. The separator is assembled into a battery case.

이후, 전극 구조체에 수납된 전지 케이스내에, 본 발명에 따른 이황화탄소가 첨가된 카보네이트계 유기 용매와 리튬염을 함유하는 전해액을 주입한 다음, 열압착을 실시하여 리튬 전지를 완성한다.Thereafter, an electrolyte solution containing a carbonate-based organic solvent and a lithium salt containing carbon disulfide according to the present invention is injected into a battery case housed in an electrode structure, and then thermocompression-bonded to complete a lithium battery.

도 1은 이황화탄소 즉 첨가제의 사용유무에 따른 화성 충전시 전압 프로파일을 보여준다. 도 1에서와 볼 수 있는 바와 같이 이황화탄소는 2.3 V 부근에서 카보네이트계 유기 용매보다 먼저 분해가 일어나며, 이때의 전압에서 SEI 피막 형성 반응이 일어난다.Figure 1 shows the voltage profile of the carbon disulfide, that is, the charge according to the presence or absence of additives. As can be seen in Figure 1, carbon disulfide is decomposed before the carbonate-based organic solvent in the vicinity of 2.3 V, the SEI film formation reaction occurs at this voltage.

이때 형성된 SEI 피막은 EC, DMC, DEC 등의 카보네이트계 유기 용매의 분해를 막기 때문에 리튬 이온 전지 또는 PLI 전지에서의 초기 충전시 카보네이트계 유기 용매의 분해로 인한 가스 발생을 억제하여서 전지의 내부 압력을 감소시키고 결국 만 충전 후 전지의 두께를 감소시키게 된다.At this time, the formed SEI film prevents decomposition of carbonate-based organic solvents such as EC, DMC, and DEC, thereby suppressing gas generation due to decomposition of carbonate-based organic solvents during initial charging in a lithium ion battery or PLI battery, thereby reducing the internal pressure of the battery. And eventually only reduce the thickness of the battery after charging.

이하 실시예를 통하여 본 발명을 보다 상세히 설명하되, 본 발명은 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

[실시예]EXAMPLE

<실시예 1><Example 1>

다음과 같은 순서에 의하여 리튬이온 이차전지를 제작하였다. 양극 활물질인LiCoO292 중량부, 결합제인 폴리비닐리덴 플루오라이트(PVDF) 4 중량부, 도전제인 카본(수퍼-P) 4 중량부로 혼합하여, N-메틸-2-피롤리돈 30 중량부에 분산시켜 양극 슬러리를 제조하였다. 이 슬러리를 두께 20 ㎛의 알루미늄 포일에 코팅하고, 이를 건조 및 압연한 뒤 소정치수로 절단하여 양극 극판을 제조하였다.A lithium ion secondary battery was manufactured by the following procedure. 92 parts by weight of LiCoO 2 as a positive electrode active material, 4 parts by weight of polyvinylidene fluorite (PVDF) as a binder, and 4 parts by weight of carbon (super-P) as a conductive agent, and 30 parts by weight of N-methyl-2-pyrrolidone Dispersion produced a positive electrode slurry. The slurry was coated on an aluminum foil having a thickness of 20 μm, dried, rolled, and cut into predetermined dimensions to prepare a positive electrode plate.

음극의 활물질인 결정성 인조흑연(메조카본파이버: Petoca사) 92 중량부, 결합제인 PVDF 8 중량부를, N-메틸-2-피롤리돈 40 중량부에 분산시켜 음극 슬러리를 제조하였다. 이 슬러리를 두께 15 ㎛의 구리 포일에 코팅하고, 이를 건조, 압연하고 소정 치수로 절단하여 음극 극판을 제조하였다.Crystalline Artificial Graphite (Mesocarbon Fiber: Petoca) 92 parts by weight and 8 parts by weight of PVDF as a binder were dispersed in 40 parts by weight of N-methyl-2-pyrrolidone to prepare a negative electrode slurry. The slurry was coated on a copper foil having a thickness of 15 μm, dried, rolled, and cut into predetermined dimensions to prepare a negative electrode plate.

위와 같이 제조한 양극 극판과 음극 극판 사이에 두께 25 ㎛의 폴리에틸렌 재질의 세퍼레이터(Cellgard사)를 배치하고, 이를 권취, 압축하여 30mm ×48mm ×6mm 각형 캔에 삽입하였다. 그 후 EC:DMC=5:5 조성의 용매에 LiPF6를 1.0 M이 되도록 전해액을 제조하였다. 이 전해액에 중량비 2.0%의 비율로 이황화탄소를 첨가하고, 이 유기 전해액 2.4 g을 상기 캔에 주입함으로써 리튬 전지를 완성하였다.A separator made of polyethylene (Cellgard) having a thickness of 25 μm was disposed between the positive electrode plate and the negative electrode plate prepared as above, and wound and compressed to insert a 30 mm x 48 mm x 6 mm square can. Then, electrolyte solution was prepared so that LiPF 6 might be 1.0 M in the solvent of EC: DMC = 5: 5 composition. Carbon disulfide was added to this electrolyte at a ratio of 2.0% by weight, and 2.4 g of the organic electrolyte was injected into the can to complete a lithium battery.

<비교예 1>Comparative Example 1

유기 전해액에 이황화탄소 첨가제를 넣지 않은 것을 제외하고는 실시예 1과 동일한 과정으로 리튬 전지를 완성하였다.A lithium battery was completed in the same manner as in Example 1 except that the carbon disulfide additive was not added to the organic electrolyte.

실시예 1 및 비교예 1에 따라 제작된 전지에 대하여 만충전후 두께 변화 시험 및 충방전 수명 특성을 시험하였다. 상기 특성들은 다음과 같은 방법에 따라 평가하였다.For the batteries prepared according to Example 1 and Comparative Example 1, the thickness change test and the charge / discharge life characteristics after full charge were tested. The properties were evaluated according to the following method.

(1) 만충전후 두께 변화 시험(1) Thickness change test after full charge

상기 제작된 전지들은 160mA의 전류로 4.2 V 충전전압으로 CC-CV조건으로 충전한 후, 1시간 방치후 160mA의 전류로 2.5 V 까지 방전하고 1시간 동안 방치하였다. 이 과정을 3회 반복한 후, 600 mA의 전류로 2시간 30분간 4.2 V 충전전압으로 충전하였다. 이어서 전지두께를 측정한 후, 초기 조립 후 전지의 두께 변화 비율을 표 1에서 나타냈다.The produced batteries were charged under CC-CV conditions at 4.2 V charging voltage with a current of 160 mA, and then discharged to 2.5 V with a current of 160 mA after being left for 1 hour and left for 1 hour. After repeating this process three times, it was charged with 4.2 V charging voltage for 2 hours and 30 minutes at a current of 600 mA. Subsequently, after measuring battery thickness, the thickness change rate of the battery after initial granulation is shown in Table 1.

만충전후 각형 전지의 두께 변화Thickness change of square cell after full charge 두께 변화Thickness change 비교예 1Comparative Example 1 10.3%10.3% 실시예 1Example 1 6.7%6.7%

(2) 충방전 수명 특성 시험(2) Charge and discharge life test

실시예 1 및 비교예 1에 따라 제작된 전지를 870 mAh로 4.2 V 종지전압 조건으로 2시간 30분간 충전, 2.75 V 870 mAh로 방전을 반복하면서 전지의 수명 특성을 평가하였다. 그 결과를 도 2에 나타냈다. 도 2에서 볼 수 있는 바와 같이 이황화탄소를 첨가하지 않은 비교예 1에 비하여, 이황화탄소를 첨가한 실시예 1의 경우 수명 특성 기울기가 휠씬 감소하는 것을 확인할 수 있다.The battery produced according to Example 1 and Comparative Example 1 was charged with 870 mAh at 4.2 V termination voltage for 2 hours 30 minutes, and the battery life characteristics were evaluated while repeating discharging at 2.75 V 870 mAh. The result is shown in FIG. As can be seen in FIG. 2, in comparison with Comparative Example 1 in which carbon disulfide was not added, in Example 1 in which carbon disulfide was added, the life characteristic slope was significantly reduced.

카보네이트 화합물계 유기 전해액에 이황화탄소를 첨가함으로써, 각형 및 폴리머 리튬 이온 전지의 경우, 전지 두께 변화를 기존에 비해 4% 정도 감소하여 세트 장착성에 대한 신뢰성을 향상시킬 수 있고, 충방전 수명특성 또한 향상 시킬 수있었다.By adding carbon disulfide to the carbonate compound-based organic electrolyte, in the case of square and polymer lithium ion batteries, the change in battery thickness can be reduced by about 4%, thereby improving the reliability of the set mountability and improving the charge / discharge life characteristics. I was able to.

Claims (6)

카보네이트 화합물 50∼99 중량% 및 이황화탄소(CS2) 0.1∼5 중량%를 포함하는 것을 특징으로 하는 유기 전해액.An organic electrolytic solution comprising 50 to 99% by weight of a carbonate compound and 0.1 to 5% by weight of carbon disulfide (CS 2 ). 제1항에 있어서, 상기 카보네이트 화합물은 EC(Ethylene Carbonate), DMC(Di-Methyl carbonate), 및 DEC(Di-Ethyl Carbonate)로 구성된 군에서 선택된 적어도 어느 하나 이상인 것을 특징으로 하는 유기 전해액The organic electrolyte of claim 1, wherein the carbonate compound is at least one selected from the group consisting of ethylene carbonate (EC), di-methyl carbonate (DMC), and di-ethyl carbonate (DEC). 양극, 음극, 이들 사이에 개재된 세퍼레이터, 및 전해액을 포함하는 리튬 전지에 있어서,In a lithium battery comprising a positive electrode, a negative electrode, a separator interposed therebetween, and an electrolyte solution, 상기 전해액은 카보네이트 화합물 50∼99 중량% 및 이황화탄소(CS2) 0.1∼5 중량%를 포함하는 유기 전해액으로 이루어진 것을 것을 특징으로 하는 리튬 전지.The electrolyte is a lithium battery, characterized in that consisting of an organic electrolyte containing 50 to 99% by weight of a carbonate compound and 0.1 to 5% by weight of carbon disulfide (CS 2 ). 제3항에 있어서, 상기 카보네이트 화합물은 EC, DMC, 및 DEC로 구성된 군에서 선택된 적어도 어느 하나 이상인 것을 특징으로 하는 리튬 전지.The lithium battery of claim 3, wherein the carbonate compound is at least one selected from the group consisting of EC, DMC, and DEC. 제3항 또는 제4항에 있어서, 상기 양극은 LiCoO2, LiMnO2, LiMn2O4, LiNiO2,및 LiMxM'yO2로 이루어진 군에서 선택된 적어도 어느 하나 이상의 리튬 금속 산화물 또는 리튬 금속 복합 산화물을 포함하는 것을 특징으로 하는 리튬 전지:The method according to claim 3 or 4, wherein the anode is at least one lithium metal oxide or lithium metal selected from the group consisting of LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , and LiM x M ' y O 2 A lithium battery comprising a composite oxide: 여기서 M과 M'은 서로 독립적으로 Co, Mn , 또는 Ni를, x의 범위는 1 ∼0.5, y의 범위는 0.5∼1를 각각 나타낸다.M and M 'each independently represent Co, Mn, or Ni, the range of x is 1 to 0.5, and the range of y is 0.5 to 1, respectively. 제3항 또는 제4항에 있어서, 상기 음극은 결정질 또는 비정질의 카본, 그래파이트 및 리튬 금속으로 이루어진 군에서 선택된 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 리튬 전지.The lithium battery according to claim 3 or 4, wherein the negative electrode includes at least one selected from the group consisting of crystalline or amorphous carbon, graphite, and lithium metal.
KR10-2001-0066456A 2001-10-26 2001-10-26 Organic electrolyte solution and lithium batteries adopting the same Expired - Fee Related KR100395818B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0066456A KR100395818B1 (en) 2001-10-26 2001-10-26 Organic electrolyte solution and lithium batteries adopting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0066456A KR100395818B1 (en) 2001-10-26 2001-10-26 Organic electrolyte solution and lithium batteries adopting the same

Publications (2)

Publication Number Publication Date
KR20030034737A KR20030034737A (en) 2003-05-09
KR100395818B1 true KR100395818B1 (en) 2003-08-27

Family

ID=29566629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0066456A Expired - Fee Related KR100395818B1 (en) 2001-10-26 2001-10-26 Organic electrolyte solution and lithium batteries adopting the same

Country Status (1)

Country Link
KR (1) KR100395818B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016217709A1 (en) 2016-09-15 2018-03-15 Robert Bosch Gmbh Hybrid supercapacitor with SEI additives

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235907A1 (en) * 2019-05-17 2020-11-26 한양대학교 산학협력단 Additive-containing electrolyte solution and lithium-ion battery comprising electrolyte solution
KR102508685B1 (en) * 2019-05-17 2023-03-13 한양대학교 산학협력단 Electrolyte solution including additives and lithium ion battery containing the electolyte solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532543A (en) * 1968-02-21 1970-10-06 Aerojet General Co Battery employing lithium - sulphur electrodes with non-aqueous electrolyte
JPH0513096A (en) * 1991-06-28 1993-01-22 Japan Storage Battery Co Ltd Metal hydride storage battery
JPH07283083A (en) * 1994-04-14 1995-10-27 Matsushita Electric Ind Co Ltd Electrolyte for driving electrochemical device and electrochemical device using the same
US6245465B1 (en) * 1997-10-15 2001-06-12 Moltech Corporation Non-aqueous electrolyte solvents for secondary cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532543A (en) * 1968-02-21 1970-10-06 Aerojet General Co Battery employing lithium - sulphur electrodes with non-aqueous electrolyte
JPH0513096A (en) * 1991-06-28 1993-01-22 Japan Storage Battery Co Ltd Metal hydride storage battery
JPH07283083A (en) * 1994-04-14 1995-10-27 Matsushita Electric Ind Co Ltd Electrolyte for driving electrochemical device and electrochemical device using the same
US6245465B1 (en) * 1997-10-15 2001-06-12 Moltech Corporation Non-aqueous electrolyte solvents for secondary cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016217709A1 (en) 2016-09-15 2018-03-15 Robert Bosch Gmbh Hybrid supercapacitor with SEI additives

Also Published As

Publication number Publication date
KR20030034737A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
US7709154B2 (en) Non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100603303B1 (en) Lithium Battery with Efficient Performance
KR100428615B1 (en) A electrolyte for a lithium secondary battery
KR100342605B1 (en) Electrolyte for Lithium Rechargeable Batteries
US7022145B2 (en) Lithium secondary battery
KR20070091938A (en) Lithium secondary battery
KR100335222B1 (en) Nonaqueous Electrolyte
KR100412522B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR101349941B1 (en) Electrolyte For Lithium Secondary Battery and Lithium Secondary Battery Including The Same
KR100395818B1 (en) Organic electrolyte solution and lithium batteries adopting the same
KR100450199B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100370387B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370384B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100412527B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100412524B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100370385B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370386B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100521868B1 (en) Nonaqueous Electrolyte For Secondary Battery
KR100572283B1 (en) Non-aqueous electrolyte for lithium battery
KR100370383B1 (en) Non-aqueous electrolyte solution for lithium battery
KR20050068665A (en) Nonaqueous electrolyte for battery
KR100572284B1 (en) Non-aqueous electrolyte for lithium battery
KR100591580B1 (en) Non-aqueous electrolyte for lithium battery
KR100370388B1 (en) Non-aqueous electrolyte solution for lithium battery
KR20010055830A (en) Nonaqueous battery electrolyte

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20011026

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20030710

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20030813

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20030814

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20060727

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20070730

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20080728

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20090727

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20100727

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20110725

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20120720

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20120720

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20130723

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20130723

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20140730

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20140730

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20150721

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20150721

Start annual number: 13

End annual number: 13

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20170705