KR100390047B1 - The freezing dehumidifier its system using refrigeratory material and air-precooling method - Google Patents
The freezing dehumidifier its system using refrigeratory material and air-precooling method Download PDFInfo
- Publication number
- KR100390047B1 KR100390047B1 KR10-2001-0011973A KR20010011973A KR100390047B1 KR 100390047 B1 KR100390047 B1 KR 100390047B1 KR 20010011973 A KR20010011973 A KR 20010011973A KR 100390047 B1 KR100390047 B1 KR 100390047B1
- Authority
- KR
- South Korea
- Prior art keywords
- refrigerant
- compressed air
- condenser
- temperature
- chiller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title abstract description 13
- 230000008014 freezing Effects 0.000 title 1
- 238000007710 freezing Methods 0.000 title 1
- 239000003507 refrigerant Substances 0.000 claims abstract description 62
- 238000001816 cooling Methods 0.000 claims abstract description 21
- 238000007791 dehumidification Methods 0.000 claims abstract description 20
- 238000005057 refrigeration Methods 0.000 claims abstract description 10
- 239000002826 coolant Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 238000001704 evaporation Methods 0.000 abstract description 3
- 230000008020 evaporation Effects 0.000 abstract description 3
- 238000009833 condensation Methods 0.000 description 8
- 230000005494 condensation Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
- F25B27/02—Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/003—Filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/02—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/01—Heaters
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Combustion & Propulsion (AREA)
- Drying Of Gases (AREA)
Abstract
본 발명은 산업전반에서 각종 공압기기의 주요 동력원으로 사용되는 고온의 압축공기를 냉각시켜 압축공기중에 포함된 수분을 효율적으로 제거하는 냉동식 제습시스템 및 제습기에 관한 것으로, 더욱 상세하게는 냉동시스템의 응축기에서 응축된 냉매를 압축공기가 배출되는 리히터로 통과시켜 냉각기에서 냉매의 증발열에 의해 냉각되고 제습된 저온의 압축공기와의 열교환에 의해 압축공기는 재가열시켜 토출시키고, 냉매는 2차 냉각시켜 순환되게 하므로서 응축기의 용량을 대폭 축소시킴과 동시에 전력손실을 감소시켜 에너지를 절감하며 소음을 줄일 수 있도록 안출한 냉매와 공기의 예냉방식을 이용한 냉동식 제습시스템 및 제습기에 관한 것이다.The present invention relates to a refrigeration dehumidification system and a dehumidifier that efficiently removes moisture contained in compressed air by cooling high temperature compressed air used as a main power source of various pneumatic equipment in the industry. The refrigerant condensed in the condenser is passed to the Richter where the compressed air is discharged. The refrigerant is cooled by the heat of evaporation of the refrigerant and the compressed air is reheated and discharged by heat exchange with dehumidified low-temperature compressed air. The present invention relates to a refrigeration dehumidification system and a dehumidifier using a precooling method of refrigerant and air, which are designed to significantly reduce the capacity of the condenser and at the same time reduce power loss to save energy and reduce noise.
Description
본 발명은 산업전반에서 각종 공압기기의 주요 동력원으로 사용되는 고온의 압축공기를 냉각시켜 압축공기중에 포함된 수분을 효율적으로 제거하는 냉동식 제습시스템 및 제습기에 관한 것으로, 더욱 상세하게는 냉동시스템의 응축기에서 응축된 냉매를 압축공기가 배출되는 리히터로 통과시켜 냉각기에서 냉매의 증발열에 의해 냉각되고 제습된 저온의 압축공기와의 열교환에 의해 압축공기는 재가열시켜 토출시키고, 냉매는 2차 냉각시켜 순환되게 하므로서 응축기의 용량을 대폭 축소시킴과 동시에 전력손실을 감소시켜 에너지를 절감하며 소음을 줄일 수 있도록 안출한 냉매와 공기의 예냉방식을 이용한 냉동식 제습시스템 및 제습기에 관한 것이다.The present invention relates to a refrigeration dehumidification system and a dehumidifier that efficiently removes moisture contained in compressed air by cooling high temperature compressed air used as a main power source of various pneumatic equipment in the industry. The refrigerant condensed in the condenser is passed to the Richter where the compressed air is discharged. The refrigerant is cooled by the heat of evaporation of the refrigerant and the compressed air is reheated and discharged by heat exchange with dehumidified low-temperature compressed air. The present invention relates to a refrigeration dehumidification system and a dehumidifier using a precooling method of refrigerant and air, which are designed to significantly reduce the capacity of the condenser and at the same time reduce power loss to save energy and reduce noise.
반적인 냉동식 제습기는 기체상태의 냉매를 압축시키는 콤프레샤(압축기)와, 상기 냉매를 일정한 온도로 냉각시켜 응축시키는 응축기와, 액체상태의 냉매를 단열 팽창시키는 팽창장치와, 칠러로 불리우는 열교환기 및 냉각된 압축공기를 재가열시키는 리히터로 이루어져 있다.A typical refrigeration dehumidifier includes a compressor (compressor) for compressing a refrigerant in a gas state, a condenser for cooling and condensing the refrigerant at a constant temperature, an expansion device for adiabatic expansion of a liquid state in a refrigerant state, a heat exchanger called a chiller, It consists of a Richter that reheats the cooled compressed air.
이와같은 제습기의 종래 제습 시스템을 도 5에 의해 설명하면, 압축기에서 고온(80℃) 고압으로 압축된 냉매가스는 응축기에서 팬의 회전에 의한 강제냉각방식으로 온도가 떨어지면서 액상으로 변화되어 응축기의 후단에 있는 냉매액 저장탱크로 저장된 후 필터드라이어와 팽창장치를 거치면서 압력의 저하로 미립자 상태로 증발되면서 칠러로 유입된다. 한편, 리히터의 일측 공기유입구를 통해 쉘측으로 유입된 고온의 압축공기는 리히터에 지그재그로 설치된 격판을 거쳐 타측의 공기유출구로 유출되는 과정에서 일차 냉각되어 칠러로 흐르게 되고, 칠러에서는 리히터를 거쳐 일차 냉각된 압축공기와 팽창밸브를 거쳐 미립자 상태로 증발되어 튜브내로 흐르는 냉매와의 열교환이 되어 냉매가 증발하면서 압축공기의 온도를 10℃이하로 떨어뜨려 제습이 이루어진다. 이 과정에서 발생된 응축수는 세퍼레이터에서 배출되고 건조된 공기는 리히터로 흐르게 되는 데, 당해 리히터에서는 고온으로 공기유입구를 통해 유입된 공기와 칠러를 거친 저온의 압축공기와의 열교환이 다시 이루어지면서 튜브내로 흐르는 저온의 공기를 약 10℃에서 25℃까지 가열시켜 배출하게 되고 쉘측으로 흐르는 고온의 입구공기는 유입될 때의 온도보다 약간 낮아진 상태로 일차 냉각되어 다시 칠러로 흐르는 순환과정을 과쳐 제습이 이루어지게 된다.Referring to FIG. 5, a conventional dehumidifying system of such a dehumidifier is a refrigerant gas compressed at a high temperature (80 ° C.) and a high pressure in a compressor. After being stored as a refrigerant liquid storage tank in the rear stage, the filter is passed through a filter drier and an expansion device and is introduced into the chiller as it is evaporated to a particulate state due to a drop in pressure. On the other hand, the hot compressed air flowing into the shell through one air inlet of the Richter is first cooled and flows to the chiller in the process of flowing out to the air outlet of the other side through a zigzag plate installed on the Richter, and in the chiller, the primary cooling is passed through the Richter. After the compressed air and the expansion valve is evaporated in the particulate state and the heat exchange with the refrigerant flowing into the tube, the refrigerant evaporates while the temperature of the compressed air drops below 10 ℃ dehumidification. The condensate generated in this process is discharged from the separator, and the dried air flows to the Richter, where the heat exchanged between the air introduced through the air inlet at a high temperature and the cold compressed air passing through the chiller is regenerated. Heated low-temperature air is discharged by heating it from about 10 ℃ to 25 ℃, and the high temperature inlet air flowing to the shell side is first cooled to be slightly lower than the temperature at which it is introduced, so that the dehumidification is performed by circulating the circulation process to the chiller again. do.
그러나 이와같은 종래의 제습시스템은 응축기에서 응축된 냉매를 칠러의 튜브내로 순환시켜 공기와의 열교환을 한 후 다시 압축기로 순환되고 리히터에서는 칠러에서 냉각된 저온의 공기와 고온의 입구 공기가 서로 열교환하는 공기와 공기의 열교환 방식으로 되어 있으므로, 냉매가스의 응축은 팬회전에 의한 강제냉각을 이용한 응축기에서만 이루어지게 됨에 따라 고온의 냉매가스(80℃)를 저온(40℃)으로 응축시키기 위해서는 필수적으로 대용량의 응축기를 사용하지 않으면 않되므로 제습기의 크기가 대형화되고 전력소모가 클 뿐 아니라 소음이 많이 발생하는 등 여러가지의 폐단이 있었다.However, the conventional dehumidification system circulates the refrigerant condensed in the condenser into the tube of the chiller to exchange heat with air, and then circulates the compressor again, and in the Richter, the cold air cooled in the chiller and the high temperature inlet air exchange with each other. Since it is a heat-exchanging method of air and air, the condensation of the refrigerant gas is made only in the condenser using forced cooling by fan rotation, so that a large capacity is required to condense the high-temperature refrigerant gas (80 ° C) to low temperature (40 ° C). Since the condenser must be used, the size of the dehumidifier is large, power consumption is high, and noise is generated.
본 발명의 목적은 종래의 이와같은 문제점을 해소하고자 한 데 있는 것으로 본 발명은 냉동 시스템의 응축기에서 응축된 냉매를 리히터로 유입시켜 팽창장치와 칠러를 통해 순환되게 하고 고온의 압축공기는 칠러로 유입시켜 제습후 리히터로 배출되게 하는 새로운 냉동시스템을 채택하여 응축기에서 일차 냉각된 냉매를 리히터에서 칠러를 거쳐 저온으로 냉각된 저온의 압축공기와 열교환시켜 보다 낮은 온도로 2차 냉각시키는 냉매와 공기의 열교환 방식으로 응축기의 크기를 소형화하고 전력손실과 소음발생을 감소할 수 있게 한 냉매와 공기의 예냉방식을 이용한 냉동식 제습시스템 및 제습기를 제공하는 데 있다.The purpose of the present invention is to solve such a problem in the prior art The present invention is to introduce the refrigerant condensed in the condenser of the refrigeration system to the Richter to be circulated through the expansion device and the chiller and hot compressed air into the chiller By adopting a new refrigeration system that is discharged to the Richter after dehumidification, the refrigerant cooled first in the condenser is exchanged with cold compressed air cooled to low temperature through the chiller in the chiller and secondly cooled to lower temperature. The present invention provides a refrigeration dehumidification system and a dehumidifier using a refrigerant and air precooling method that can reduce the size of a condenser and reduce power loss and noise generation.
도 1 은 본 발명의 제습시스템을 설명한 전체 흐름도1 is an overall flow chart illustrating the dehumidification system of the present invention
도 2 는 본 발명의 다른 실시예를 설명한 전체 흐름도2 is an overall flow chart illustrating another embodiment of the present invention.
도 3 은 도 1에 의한 제습기의 구조도3 is a structural diagram of the dehumidifier according to FIG.
도 4 는 도 2에 의한 제습기의 구조도4 is a structural diagram of the dehumidifier according to FIG.
도 5 는 종래 제습기의 흐름도5 is a flowchart of a conventional dehumidifier
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
1 : 압축기 2 : 팬모터 3 : 응축기1: compressor 2: fan motor 3: condenser
4 : 필터드라이어 5 : 팽창장치 6 : 리히터4 filter drier 5 expansion device 6 Richter
7 : 에어관 8 : 칠러 9 : 응축수 분리기7 air tube 8 chiller 9 condensate separator
10 : 와이어 콘덴서 10' : 콘덴서 11 : 압축공기 유입관10 wire condenser 10 'condenser 11 compressed air inlet pipe
11' : 압축공기 토출관 12 : 냉매유출관 12' : 냉매유입관11 ': compressed air discharge tube 12: refrigerant outlet tube 12': refrigerant inlet tube
13 : 단열재 100 : 제습기 본체13: insulation material 100: dehumidifier body
이하 본 발명을 첨부도면의 실시예에 의거 보다 상술하면 다음과 같다.Hereinafter, the present invention will be described in more detail based on the embodiments of the accompanying drawings.
도 1과 도 2는 본 발명의 제습시스템을 설명한 전체 흐름도로서, 기체상태의 냉매를 고온 고압으로 압축시키는 압축기(1)와, 상기 냉매를 일정한 온도로 팬모터 (2)에 의한 강제 대류방식으로 냉각시켜 액상으로 응축시키는 응축기(3)와, 불순물을 여과하는 필터드라이어(4)와 액체상태의 냉매를 단열 팽창시키는 팽창장치(5)와, 저온 저압의 냉매와 리히터(6)를 거쳐 에어관(7)으로 유입되는 고온 고압의 압축공기를 열교환시키는 칠러(8)와, 열교환으로 발생된 응축수를 분리하는 응축수 분리기(9)와, 차고 건조한 압축공기를 유입되는 고온의 압축공기와 열교환시켜 제습된 압축공기를 재가열시키는 리히터(6)로 이루어진 통상의 냉동식 제습시스템에 있어서 , 응축기(3)에서 응축된 냉매를 리히터(6)로 유입시켜 필터드라이어(4)와팽창장치 (5)를 거쳐 칠러(8)를 통해 압축기(1)로 순환되게 하고, 고온의 압축공기는 칠러 (8)로 유입시켜 응축수 분리기(9)에 의해 제습후 리히터(6)로 배출되게 하므로서 응축기(3)에서 1차 냉각된 냉매를 리히터(6)에서 칠러(8)를 거쳐 저온으로 냉각된 압축공기와 열교환시켜 압축공기의 온도를 가열 상승시키고 냉매는 응축기(3)에서 응축된 온도보다 더 낮은 온도로 2차 냉각시키는 냉매와 공기의 예냉방식으로 이루어짐을 특징으로 한다.1 and 2 are the overall flow chart illustrating the dehumidification system of the present invention, the compressor (1) for compressing the refrigerant in the gas state at high temperature and high pressure, and the forced convection by the fan motor (2) at a constant temperature The condenser (3) for cooling and condensing into a liquid phase, the filter dryer (4) for filtering impurities, the expansion device (5) for adiabatic expansion and expansion of the liquid refrigerant, and the low-temperature and low-pressure refrigerant and the heater (6) (7) A chiller (8) for exchanging the high temperature and high pressure compressed air introduced into the condensate, a condensate separator (9) for separating the condensate generated by the heat exchange, and dehumidification by exchanging heat with the high temperature compressed air entering the cold and dry compressed air. In the conventional refrigeration dehumidification system consisting of a Richter (6) for reheating the compressed air, the refrigerant condensed in the Condenser (3) flows into the Richter (6) and passes through the filter dryer (4) and the expansion device (5). Chiller (8) The refrigerant 1 is circulated to the compressor 1, and the compressed air of high temperature flows into the chiller 8, and is discharged to the richer 6 after dehumidification by the condensate separator 9 to discharge the refrigerant cooled in the condenser 3 first. Heat exchanges the compressed air cooled to a low temperature via the chiller (8) from the heater (6) to heat up the temperature of the compressed air, and the refrigerant is secondly cooled to a temperature lower than the temperature condensed in the condenser (3) Characterized in that made of the pre-cooling method.
상기에서 응축방식은 도 1에 도시한 바와 같이 응축기(3)를 와이어 콘덴서 (10)에 의한 자연냉각방식으로 하거나, 도 2에 도시한 바와 같이 팬쿨링 타입 콘덴서(10')에 의한 강제 냉각 방식으로도 가능한 데 전자의 경우는 자연냉각방식이므로 충분한 응축용량을 얻을 수 있는 비교적 큰 크기가 사용되는 반면에 팬모터(2)가 없으므로 전력손실이 감소되고 소음이 없는 장점이 있고, 후자의 경우는 팬모터(2)에 의한 강제대류 냉각 방식이므로 콘덴서(10')의 크기를 소형으로 구성할 수 있는 장점이 있으나 자연냉각방식보다 에너지 손실과 소음이 약간 발생하는 단점이 있다.In the above condensation method, the condenser 3 is naturally cooled by the wire condenser 10 as shown in FIG. 1, or the forced cooling method by the fan cooling type condenser 10 ′ as shown in FIG. 2. Although the former is a natural cooling method, a relatively large size can be used to obtain a sufficient condensation capacity, whereas the fan motor (2) is not used, so the power loss is reduced and there is no noise. Forced convection cooling by the fan motor (2) has the advantage that the size of the condenser (10 ') can be configured to a small size, but there is a disadvantage that the energy loss and noise slightly occurs than the natural cooling method.
도 3과 도 4는 응축기(3)의 응축방식에 따른 제습기의 내부 구조를 나타낸 예시도로서 도 3은 자연냉각방식에 따른 비교적 큰 와이어 콘덴서(10)가 제습기 본체 (100)의 일측에 설치되고 이의 내부에 압축기(1)와 필터드라이어(4)가 연결된 칠러 (8)와 리히터(6)가 코일관체 형상으로 중첩되게 설치되어 있는 데 내측에는 압축공기 유입관(11)과 보다 적은 직경의 냉매유출관(12)이 상하로 당접되게 권회된 칠러 (8)가 설치되고 외측에는 압축공기 토출관(11')과 보다 적은 직경의 냉매유입관3 and 4 is an exemplary view showing the internal structure of the dehumidifier according to the condensation method of the condenser 3, Figure 3 is a relatively large wire condenser 10 according to the natural cooling method is installed on one side of the dehumidifier main body 100 The chiller (8) and the heater (6) to which the compressor (1) and the filter drier (4) are connected are superimposed in the shape of a coil pipe, and inside the compressed air inlet pipe (11) and a refrigerant having a smaller diameter therein. A chiller (8) wound around the outlet pipe (12) up and down is provided, and a compressed air discharge pipe (11 ') and a coolant inlet pipe having a smaller diameter are provided on the outside.
(12')이 상하로 당접되게 권회된 리히터(6)가 단열재(13)로서 분리되게 이중으로 중첩 설치되어 있다.Richter 6 wound up and down 12 'is abutted and provided in duplicate so as to be separated as a heat insulating material 13.
도 4는 팬모터(2)를 이용한 강제냉각방식의 응축기(3)를 사용한 제습기의 내부구조를 도시한 것으로서, 제습기 본체(100)의 일측에 팬모터(2)를 부착한 소형의 콘덴서(10')가 설치되어 있고 나머지 구조는 전기한 자연냉각방식의 구조와 동일하다.4 shows the internal structure of the dehumidifier using the forced cooling condenser 3 using the fan motor 2, the compact condenser 10 having the fan motor 2 attached to one side of the main body 100 of the dehumidifier. ') Is installed and the rest of the structure is the same as the structure of the natural cooling method described above.
이와같이 된 본 발명의 제습시스템의 제습과정을 설명하면, 압축기(1)에서 냉매가 약 80℃의 고온 고압으로 압축되어 응축기(3)에서 와이어 콘덴서(10)를 이용한 자연냉각방식 또는 팬모터(2)에 의한 강제대류 냉각으로 응축되면 냉매는 액체상태로 상변화를 하게 되고 이때 냉매의 온도는 약 45℃로 떨어지게 된다. 이와같이 낮아진 온도의 액상냉매가 리히터(6)로 보내지면 리히터(6)에서는 칠러(8)를 거쳐 나온 차가운 압축공기(이때의 온도는 약 10℃)와 열교환을 하게 되어 압축공기의 온도를 약 10℃에서 45℃로 상승시키고 자신은 응축기(3)에서 응축시의 온도인 약 45℃에서 약 40℃의 온도로 냉각되어 필터드라이어(4)로 보내어진다. 결국 리히터(6)에서는 응축기(3)에서 1차 냉각된 냉매를 저온의 압축공기와 열교환시켜 2차 냉각으로 온도를 저온으로 낮추게 되는 것이다.Referring to the dehumidification process of the dehumidification system of the present invention as described above, the refrigerant in the compressor (1) is compressed to a high temperature and high pressure of about 80 ℃ natural condensation system (3) using a wire condenser (10) or fan motor (2) When condensed by forced convection cooling by), the refrigerant changes phase into a liquid state, and the temperature of the refrigerant drops to about 45 ° C. When the liquid refrigerant at such a low temperature is sent to the Richter 6, the Richter 6 exchanges heat with cold compressed air (at this time, about 10 ° C.) passing through the chiller 8, thereby reducing the temperature of the compressed air to about 10 degrees. It raises from 45 degreeC to 45 degreeC, and it cools to the temperature of about 40 degreeC from about 45 degreeC which is the temperature at the time of condensation in the condenser 3, and is sent to the filter drier 4. As a result, in the Richter 6, the refrigerant cooled in the condenser 3 is exchanged with the compressed air of low temperature to lower the temperature to the low temperature by the secondary cooling.
한편, 필터드라이어(4)로 보내진 냉매는 냉매속에 남아있는 불순물이 걸러진 상태에서 팽창장치(5)를 거치면서 압력과 온도가 저하되고 이어서 칠러(8)로 유입되어 증발하기 시작하는 데, 이때의 증발열원은 칠러(8)의 공기유입구로 유입되는고온(약 38℃)의 압축공기로 부터 나오게 되므로 칠러(8)를 지나가는 압축공기는 38℃에서 제습이 가능한 10℃이하로 떨어지게 되고 이 과정에서 발생된 응축수는 응축수 분리기(9)에서 분리 배출되어 제습이 이루어지며 여전히 차가운 공기는 다음의 리히터(6)로 흘러 전기한 바와 같이 응축기(3)에서 45℃로 냉각된 냉매와 열교환을 하여 45℃로 가열된 후 토출되고 냉매는 2차 응축되어 필터드라이어(4)로 보내지는 순환과정을 반복하게 되는 것이다.On the other hand, the refrigerant sent to the filter drier (4) is passed through the expansion device (5) in the state that the impurities remaining in the refrigerant is filtered, the pressure and temperature is lowered, then flows into the chiller (8) and begins to evaporate, The evaporation heat source comes from the compressed air of high temperature (about 38 ℃) flowing into the air inlet of the chiller (8), so the compressed air passing through the chiller (8) drops to less than 10 ℃ which enables dehumidification at 38 ℃. The generated condensate is separated and discharged from the condensate separator (9) to dehumidify, and still cold air flows to the next Richter (6) and heat exchanges with the refrigerant cooled to 45 ° C in the condenser (3) as described above. After heating, the discharge is repeated and the refrigerant is repeatedly condensed and the circulation process sent to the filter drier 4 is repeated.
이상의 과정에서 알 수 있는 바와 같이 본 발명의 특징은 리히터(6)에서 열교환하는 유체가 도 5에 도시한 종래의 제습시스템과 같이 제습된 저온의 공기와 유입구로 유입되는 고온의 압축공기와의 열교환이 아니라 제습된 저온의 공기와 응축되어 1차 냉각된 냉매와의 열교환을 하는 시스템이므로 종래의 방식에서는 냉매가스의 응축이 일어나는 부분은 한 곳 밖에 없어서 고온의 냉매가스(80℃)를 저온으로 응축 (40℃)시키기 위해서는 용량이 큰 응축기(3)를 사용해야 되는 단점이 있으나 본 발명은 응축기(3)에서 1차 응축(80℃→45℃)되고 난 후 보조응축기의 역할을 하는 리히터(6)에서 2차 응축(45℃→40℃)되므로 응축기(3)의 크기가 상대적으로 종래의 것보다 적어질 수 있는 것이 큰 장점이다.As can be seen from the above process, a feature of the present invention is that the fluid heat exchanged in the Richter 6 is heat exchanged with hot air dehumidified and hot compressed air introduced into the inlet as in the conventional dehumidification system shown in FIG. It is a system that exchanges heat with dehumidified low-temperature air and the first-cooled refrigerant and condenses high-temperature refrigerant gas (80 ° C) at low temperature because there is only one place where the refrigerant gas condenses. In order to (40 ° C) there is a disadvantage in that a large capacity condenser (3) must be used, but the present invention has a primary condenser (80 ° C → 45 ° C) in the condenser (3) after the role of secondary condenser (6) The secondary condensation at (45 ° C → 40 ° C) is a big advantage that the size of the condenser (3) can be relatively smaller than the conventional one.
본 발명의 칠러(8)와 리히터(6)의 구조는 도 3과 도 4에 도시된 바와 같이 압축기(1)와 필터드라이어(4)가 연결된 칠러(8)와 리히터(6)가 코일관체 형상으로 중첩되게 설치되어 있고 이를 구성하는 대소의 공기튜브(공기관)와 냉매튜브(냉매관)가 상하로 당접된 상태로 설치되어 있으므로 내측에 설치된 칠러(8)의 관체에서는 고온의 공기와 저온의 냉매가 열교환되고 외측에 설치된 리히터(6)의 관체에서는 칠러(8)에서의 열교환으로 저온이 된 공기와 보다 낮은 온도의 냉매의 열교환이 이루어져 공기의 폐열을 이용한 냉매의 2차 냉각을 효율적으로 할 수 있어 응축기(3)의 소형화에 따른 구조의 간단함과 크기의 축소를 해결할 수 있다.In the structure of the chiller 8 and the richer 6 of the present invention, the chiller 8 and the richer 6 to which the compressor 1 and the filter drier 4 are connected as shown in FIGS. And the air tubes (air engines) and the refrigerant tubes (refrigerant tubes) of the large and small parts constituting them are installed in contact with each other up and down. Therefore, in the tube body of the chiller 8 installed inside, high temperature air and low temperature refrigerants are provided. In the conduit of the heater 6 installed outside and heat exchanged in the chiller 8, heat exchanged between the coolant air and the coolant at a lower temperature can be efficiently performed for the secondary cooling of the coolant using the waste heat of the air. Therefore, it is possible to solve the simplicity of the structure and the reduction in size due to the miniaturization of the condenser 3.
이와같이 본 발명은 냉매를 리히터(6)에서 공기의 폐열을 이용하여 2차 냉각시키는 냉매와 공기의 열교환 방식이므로 응축기(3)의 용량을 줄일 수 있어 가격의 저렴화와 전기소모를 줄일 수 있고 특히 팬모터(2)에 의한 강제응축방식을 사용하였을 때에도 콘덴서(10)의 크기가 축소되어 종래보다 에너지 절약효과가 있으며 소음이 감소될 뿐 아니라 리히터(6)에서 냉각된 압축공기 측으로 많은 열량을 방출시키므로 응축기(3)에서 대기로 제거해야 할 열량이 대폭 감소되는 등 그 효과가 매우 지대한 우수한 발명이다.As described above, the present invention can reduce the capacity of the condenser 3 since the refrigerant is heat-exchanged with the refrigerant to secondary coolant by using the waste heat of the air in the Richter 6, thereby reducing the cost and reducing the electricity consumption. Even when forced condensation by the motor 2 is used, the size of the condenser 10 is reduced, which is more energy-saving than the conventional one, and noise is reduced, and also emits a large amount of heat from the Richter 6 to the compressed air. It is an excellent invention with a very large effect, such as a large amount of heat to be removed from the condenser 3 to the atmosphere.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0011973A KR100390047B1 (en) | 2001-03-08 | 2001-03-08 | The freezing dehumidifier its system using refrigeratory material and air-precooling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0011973A KR100390047B1 (en) | 2001-03-08 | 2001-03-08 | The freezing dehumidifier its system using refrigeratory material and air-precooling method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR2020010006225U Division KR200234358Y1 (en) | 2001-03-08 | 2001-03-08 | The freezing dehumidifier using refrigeratory material and air-precooling method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010044583A KR20010044583A (en) | 2001-06-05 |
KR100390047B1 true KR100390047B1 (en) | 2003-07-04 |
Family
ID=19706631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0011973A Expired - Lifetime KR100390047B1 (en) | 2001-03-08 | 2001-03-08 | The freezing dehumidifier its system using refrigeratory material and air-precooling method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100390047B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100814378B1 (en) * | 2006-02-06 | 2008-03-18 | 이충기 | Refrigeration system with improved energy efficiency and refrigerant condensation method using the system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04358514A (en) * | 1991-06-05 | 1992-12-11 | Hitachi Plant Eng & Constr Co Ltd | How to dehumidify compressed air |
JPH06201206A (en) * | 1992-12-28 | 1994-07-19 | Nippon Sanso Kk | Low temperature air generation method and device |
JPH07218035A (en) * | 1994-02-02 | 1995-08-18 | Hitachi Ltd | Air conditioner |
-
2001
- 2001-03-08 KR KR10-2001-0011973A patent/KR100390047B1/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04358514A (en) * | 1991-06-05 | 1992-12-11 | Hitachi Plant Eng & Constr Co Ltd | How to dehumidify compressed air |
JPH06201206A (en) * | 1992-12-28 | 1994-07-19 | Nippon Sanso Kk | Low temperature air generation method and device |
JPH07218035A (en) * | 1994-02-02 | 1995-08-18 | Hitachi Ltd | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
KR20010044583A (en) | 2001-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5761923A (en) | Air conditioning system | |
CN106225116B (en) | A kind of efficient fresh air dehumidifier based on heat pump recuperation of heat and double evaporating temperatures | |
KR100510774B1 (en) | Hybrid dehumidified cooling system | |
KR101081821B1 (en) | Energy-efficient refrigerated air dryer dehumidify device | |
JP3585308B2 (en) | Desiccant air conditioner | |
WO1991016584A1 (en) | Efficient dehumidification system | |
CN101175898A (en) | Systems and methods for managing water content in fluids | |
CN214581894U (en) | Temperature control system and temperature control device | |
JP4948513B2 (en) | Air conditioner, its operating method and air conditioning system | |
CN112050618B (en) | Three-effect heat recovery type mixed air heat pump drying system and its application | |
CN103316568B (en) | Combined type compressed air deep cooling dehumidifier | |
CN106345237A (en) | Cold air circulating type compressed air freeze dryer | |
JP3765732B2 (en) | Heat pump and dehumidifying air conditioner | |
CN105899882A (en) | Air conditioner and control method for air conditioner | |
CN215909269U (en) | Heat pump type low-temperature regeneration runner fresh air frequency conversion dehumidification system for radiant air conditioner | |
JP2530859B2 (en) | Method for dehydrating city gas, etc. | |
CN203342632U (en) | A Combined Compressed Air Cryogenic Dehumidifier | |
KR100390047B1 (en) | The freezing dehumidifier its system using refrigeratory material and air-precooling method | |
KR200234358Y1 (en) | The freezing dehumidifier using refrigeratory material and air-precooling method | |
CN111692779A (en) | Wet-cooling double-effect recovery type high-efficiency heat pump unit for drying sea sedge | |
US20040118133A1 (en) | Heat pump and dehumidifying air-conditioning apparatus | |
KR100493871B1 (en) | Equipment for dehumidification and dryness | |
KR102538185B1 (en) | cooling dehumidifier | |
JP2948776B2 (en) | Air conditioning system | |
US12138992B2 (en) | Air supply systems for vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20010308 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20030428 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20030621 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20030623 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20060524 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20070503 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20080516 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20090427 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20100415 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20110427 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20120410 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20120410 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20130411 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20130411 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160607 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20160607 Start annual number: 14 End annual number: 14 |
|
FPAY | Annual fee payment |
Payment date: 20170530 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20170530 Start annual number: 15 End annual number: 15 |
|
FPAY | Annual fee payment |
Payment date: 20180516 Year of fee payment: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20180516 Start annual number: 16 End annual number: 16 |
|
FPAY | Annual fee payment |
Payment date: 20190619 Year of fee payment: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20190619 Start annual number: 17 End annual number: 17 |
|
PC1801 | Expiration of term |
Termination date: 20210908 Termination category: Expiration of duration |