[go: up one dir, main page]

KR100390047B1 - The freezing dehumidifier its system using refrigeratory material and air-precooling method - Google Patents

The freezing dehumidifier its system using refrigeratory material and air-precooling method Download PDF

Info

Publication number
KR100390047B1
KR100390047B1 KR10-2001-0011973A KR20010011973A KR100390047B1 KR 100390047 B1 KR100390047 B1 KR 100390047B1 KR 20010011973 A KR20010011973 A KR 20010011973A KR 100390047 B1 KR100390047 B1 KR 100390047B1
Authority
KR
South Korea
Prior art keywords
refrigerant
compressed air
condenser
temperature
chiller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR10-2001-0011973A
Other languages
Korean (ko)
Other versions
KR20010044583A (en
Inventor
이병승
Original Assignee
제마코-플레어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제마코-플레어 주식회사 filed Critical 제마코-플레어 주식회사
Priority to KR10-2001-0011973A priority Critical patent/KR100390047B1/en
Publication of KR20010044583A publication Critical patent/KR20010044583A/en
Application granted granted Critical
Publication of KR100390047B1 publication Critical patent/KR100390047B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Drying Of Gases (AREA)

Abstract

본 발명은 산업전반에서 각종 공압기기의 주요 동력원으로 사용되는 고온의 압축공기를 냉각시켜 압축공기중에 포함된 수분을 효율적으로 제거하는 냉동식 제습시스템 및 제습기에 관한 것으로, 더욱 상세하게는 냉동시스템의 응축기에서 응축된 냉매를 압축공기가 배출되는 리히터로 통과시켜 냉각기에서 냉매의 증발열에 의해 냉각되고 제습된 저온의 압축공기와의 열교환에 의해 압축공기는 재가열시켜 토출시키고, 냉매는 2차 냉각시켜 순환되게 하므로서 응축기의 용량을 대폭 축소시킴과 동시에 전력손실을 감소시켜 에너지를 절감하며 소음을 줄일 수 있도록 안출한 냉매와 공기의 예냉방식을 이용한 냉동식 제습시스템 및 제습기에 관한 것이다.The present invention relates to a refrigeration dehumidification system and a dehumidifier that efficiently removes moisture contained in compressed air by cooling high temperature compressed air used as a main power source of various pneumatic equipment in the industry. The refrigerant condensed in the condenser is passed to the Richter where the compressed air is discharged. The refrigerant is cooled by the heat of evaporation of the refrigerant and the compressed air is reheated and discharged by heat exchange with dehumidified low-temperature compressed air. The present invention relates to a refrigeration dehumidification system and a dehumidifier using a precooling method of refrigerant and air, which are designed to significantly reduce the capacity of the condenser and at the same time reduce power loss to save energy and reduce noise.

Description

냉매와 공기의 예냉방식을 이용한 냉동식 제습시스템 및 제습기{The freezing dehumidifier its system using refrigeratory material and air-precooling method}The freezing dehumidifier its system using refrigeratory material and air-precooling method

본 발명은 산업전반에서 각종 공압기기의 주요 동력원으로 사용되는 고온의 압축공기를 냉각시켜 압축공기중에 포함된 수분을 효율적으로 제거하는 냉동식 제습시스템 및 제습기에 관한 것으로, 더욱 상세하게는 냉동시스템의 응축기에서 응축된 냉매를 압축공기가 배출되는 리히터로 통과시켜 냉각기에서 냉매의 증발열에 의해 냉각되고 제습된 저온의 압축공기와의 열교환에 의해 압축공기는 재가열시켜 토출시키고, 냉매는 2차 냉각시켜 순환되게 하므로서 응축기의 용량을 대폭 축소시킴과 동시에 전력손실을 감소시켜 에너지를 절감하며 소음을 줄일 수 있도록 안출한 냉매와 공기의 예냉방식을 이용한 냉동식 제습시스템 및 제습기에 관한 것이다.The present invention relates to a refrigeration dehumidification system and a dehumidifier that efficiently removes moisture contained in compressed air by cooling high temperature compressed air used as a main power source of various pneumatic equipment in the industry. The refrigerant condensed in the condenser is passed to the Richter where the compressed air is discharged. The refrigerant is cooled by the heat of evaporation of the refrigerant and the compressed air is reheated and discharged by heat exchange with dehumidified low-temperature compressed air. The present invention relates to a refrigeration dehumidification system and a dehumidifier using a precooling method of refrigerant and air, which are designed to significantly reduce the capacity of the condenser and at the same time reduce power loss to save energy and reduce noise.

반적인 냉동식 제습기는 기체상태의 냉매를 압축시키는 콤프레샤(압축기)와, 상기 냉매를 일정한 온도로 냉각시켜 응축시키는 응축기와, 액체상태의 냉매를 단열 팽창시키는 팽창장치와, 칠러로 불리우는 열교환기 및 냉각된 압축공기를 재가열시키는 리히터로 이루어져 있다.A typical refrigeration dehumidifier includes a compressor (compressor) for compressing a refrigerant in a gas state, a condenser for cooling and condensing the refrigerant at a constant temperature, an expansion device for adiabatic expansion of a liquid state in a refrigerant state, a heat exchanger called a chiller, It consists of a Richter that reheats the cooled compressed air.

이와같은 제습기의 종래 제습 시스템을 도 5에 의해 설명하면, 압축기에서 고온(80℃) 고압으로 압축된 냉매가스는 응축기에서 팬의 회전에 의한 강제냉각방식으로 온도가 떨어지면서 액상으로 변화되어 응축기의 후단에 있는 냉매액 저장탱크로 저장된 후 필터드라이어와 팽창장치를 거치면서 압력의 저하로 미립자 상태로 증발되면서 칠러로 유입된다. 한편, 리히터의 일측 공기유입구를 통해 쉘측으로 유입된 고온의 압축공기는 리히터에 지그재그로 설치된 격판을 거쳐 타측의 공기유출구로 유출되는 과정에서 일차 냉각되어 칠러로 흐르게 되고, 칠러에서는 리히터를 거쳐 일차 냉각된 압축공기와 팽창밸브를 거쳐 미립자 상태로 증발되어 튜브내로 흐르는 냉매와의 열교환이 되어 냉매가 증발하면서 압축공기의 온도를 10℃이하로 떨어뜨려 제습이 이루어진다. 이 과정에서 발생된 응축수는 세퍼레이터에서 배출되고 건조된 공기는 리히터로 흐르게 되는 데, 당해 리히터에서는 고온으로 공기유입구를 통해 유입된 공기와 칠러를 거친 저온의 압축공기와의 열교환이 다시 이루어지면서 튜브내로 흐르는 저온의 공기를 약 10℃에서 25℃까지 가열시켜 배출하게 되고 쉘측으로 흐르는 고온의 입구공기는 유입될 때의 온도보다 약간 낮아진 상태로 일차 냉각되어 다시 칠러로 흐르는 순환과정을 과쳐 제습이 이루어지게 된다.Referring to FIG. 5, a conventional dehumidifying system of such a dehumidifier is a refrigerant gas compressed at a high temperature (80 ° C.) and a high pressure in a compressor. After being stored as a refrigerant liquid storage tank in the rear stage, the filter is passed through a filter drier and an expansion device and is introduced into the chiller as it is evaporated to a particulate state due to a drop in pressure. On the other hand, the hot compressed air flowing into the shell through one air inlet of the Richter is first cooled and flows to the chiller in the process of flowing out to the air outlet of the other side through a zigzag plate installed on the Richter, and in the chiller, the primary cooling is passed through the Richter. After the compressed air and the expansion valve is evaporated in the particulate state and the heat exchange with the refrigerant flowing into the tube, the refrigerant evaporates while the temperature of the compressed air drops below 10 ℃ dehumidification. The condensate generated in this process is discharged from the separator, and the dried air flows to the Richter, where the heat exchanged between the air introduced through the air inlet at a high temperature and the cold compressed air passing through the chiller is regenerated. Heated low-temperature air is discharged by heating it from about 10 ℃ to 25 ℃, and the high temperature inlet air flowing to the shell side is first cooled to be slightly lower than the temperature at which it is introduced, so that the dehumidification is performed by circulating the circulation process to the chiller again. do.

그러나 이와같은 종래의 제습시스템은 응축기에서 응축된 냉매를 칠러의 튜브내로 순환시켜 공기와의 열교환을 한 후 다시 압축기로 순환되고 리히터에서는 칠러에서 냉각된 저온의 공기와 고온의 입구 공기가 서로 열교환하는 공기와 공기의 열교환 방식으로 되어 있으므로, 냉매가스의 응축은 팬회전에 의한 강제냉각을 이용한 응축기에서만 이루어지게 됨에 따라 고온의 냉매가스(80℃)를 저온(40℃)으로 응축시키기 위해서는 필수적으로 대용량의 응축기를 사용하지 않으면 않되므로 제습기의 크기가 대형화되고 전력소모가 클 뿐 아니라 소음이 많이 발생하는 등 여러가지의 폐단이 있었다.However, the conventional dehumidification system circulates the refrigerant condensed in the condenser into the tube of the chiller to exchange heat with air, and then circulates the compressor again, and in the Richter, the cold air cooled in the chiller and the high temperature inlet air exchange with each other. Since it is a heat-exchanging method of air and air, the condensation of the refrigerant gas is made only in the condenser using forced cooling by fan rotation, so that a large capacity is required to condense the high-temperature refrigerant gas (80 ° C) to low temperature (40 ° C). Since the condenser must be used, the size of the dehumidifier is large, power consumption is high, and noise is generated.

본 발명의 목적은 종래의 이와같은 문제점을 해소하고자 한 데 있는 것으로 본 발명은 냉동 시스템의 응축기에서 응축된 냉매를 리히터로 유입시켜 팽창장치와 칠러를 통해 순환되게 하고 고온의 압축공기는 칠러로 유입시켜 제습후 리히터로 배출되게 하는 새로운 냉동시스템을 채택하여 응축기에서 일차 냉각된 냉매를 리히터에서 칠러를 거쳐 저온으로 냉각된 저온의 압축공기와 열교환시켜 보다 낮은 온도로 2차 냉각시키는 냉매와 공기의 열교환 방식으로 응축기의 크기를 소형화하고 전력손실과 소음발생을 감소할 수 있게 한 냉매와 공기의 예냉방식을 이용한 냉동식 제습시스템 및 제습기를 제공하는 데 있다.The purpose of the present invention is to solve such a problem in the prior art The present invention is to introduce the refrigerant condensed in the condenser of the refrigeration system to the Richter to be circulated through the expansion device and the chiller and hot compressed air into the chiller By adopting a new refrigeration system that is discharged to the Richter after dehumidification, the refrigerant cooled first in the condenser is exchanged with cold compressed air cooled to low temperature through the chiller in the chiller and secondly cooled to lower temperature. The present invention provides a refrigeration dehumidification system and a dehumidifier using a refrigerant and air precooling method that can reduce the size of a condenser and reduce power loss and noise generation.

도 1 은 본 발명의 제습시스템을 설명한 전체 흐름도1 is an overall flow chart illustrating the dehumidification system of the present invention

도 2 는 본 발명의 다른 실시예를 설명한 전체 흐름도2 is an overall flow chart illustrating another embodiment of the present invention.

도 3 은 도 1에 의한 제습기의 구조도3 is a structural diagram of the dehumidifier according to FIG.

도 4 는 도 2에 의한 제습기의 구조도4 is a structural diagram of the dehumidifier according to FIG.

도 5 는 종래 제습기의 흐름도5 is a flowchart of a conventional dehumidifier

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 압축기 2 : 팬모터 3 : 응축기1: compressor 2: fan motor 3: condenser

4 : 필터드라이어 5 : 팽창장치 6 : 리히터4 filter drier 5 expansion device 6 Richter

7 : 에어관 8 : 칠러 9 : 응축수 분리기7 air tube 8 chiller 9 condensate separator

10 : 와이어 콘덴서 10' : 콘덴서 11 : 압축공기 유입관10 wire condenser 10 'condenser 11 compressed air inlet pipe

11' : 압축공기 토출관 12 : 냉매유출관 12' : 냉매유입관11 ': compressed air discharge tube 12: refrigerant outlet tube 12': refrigerant inlet tube

13 : 단열재 100 : 제습기 본체13: insulation material 100: dehumidifier body

이하 본 발명을 첨부도면의 실시예에 의거 보다 상술하면 다음과 같다.Hereinafter, the present invention will be described in more detail based on the embodiments of the accompanying drawings.

도 1과 도 2는 본 발명의 제습시스템을 설명한 전체 흐름도로서, 기체상태의 냉매를 고온 고압으로 압축시키는 압축기(1)와, 상기 냉매를 일정한 온도로 팬모터 (2)에 의한 강제 대류방식으로 냉각시켜 액상으로 응축시키는 응축기(3)와, 불순물을 여과하는 필터드라이어(4)와 액체상태의 냉매를 단열 팽창시키는 팽창장치(5)와, 저온 저압의 냉매와 리히터(6)를 거쳐 에어관(7)으로 유입되는 고온 고압의 압축공기를 열교환시키는 칠러(8)와, 열교환으로 발생된 응축수를 분리하는 응축수 분리기(9)와, 차고 건조한 압축공기를 유입되는 고온의 압축공기와 열교환시켜 제습된 압축공기를 재가열시키는 리히터(6)로 이루어진 통상의 냉동식 제습시스템에 있어서 , 응축기(3)에서 응축된 냉매를 리히터(6)로 유입시켜 필터드라이어(4)와팽창장치 (5)를 거쳐 칠러(8)를 통해 압축기(1)로 순환되게 하고, 고온의 압축공기는 칠러 (8)로 유입시켜 응축수 분리기(9)에 의해 제습후 리히터(6)로 배출되게 하므로서 응축기(3)에서 1차 냉각된 냉매를 리히터(6)에서 칠러(8)를 거쳐 저온으로 냉각된 압축공기와 열교환시켜 압축공기의 온도를 가열 상승시키고 냉매는 응축기(3)에서 응축된 온도보다 더 낮은 온도로 2차 냉각시키는 냉매와 공기의 예냉방식으로 이루어짐을 특징으로 한다.1 and 2 are the overall flow chart illustrating the dehumidification system of the present invention, the compressor (1) for compressing the refrigerant in the gas state at high temperature and high pressure, and the forced convection by the fan motor (2) at a constant temperature The condenser (3) for cooling and condensing into a liquid phase, the filter dryer (4) for filtering impurities, the expansion device (5) for adiabatic expansion and expansion of the liquid refrigerant, and the low-temperature and low-pressure refrigerant and the heater (6) (7) A chiller (8) for exchanging the high temperature and high pressure compressed air introduced into the condensate, a condensate separator (9) for separating the condensate generated by the heat exchange, and dehumidification by exchanging heat with the high temperature compressed air entering the cold and dry compressed air. In the conventional refrigeration dehumidification system consisting of a Richter (6) for reheating the compressed air, the refrigerant condensed in the Condenser (3) flows into the Richter (6) and passes through the filter dryer (4) and the expansion device (5). Chiller (8) The refrigerant 1 is circulated to the compressor 1, and the compressed air of high temperature flows into the chiller 8, and is discharged to the richer 6 after dehumidification by the condensate separator 9 to discharge the refrigerant cooled in the condenser 3 first. Heat exchanges the compressed air cooled to a low temperature via the chiller (8) from the heater (6) to heat up the temperature of the compressed air, and the refrigerant is secondly cooled to a temperature lower than the temperature condensed in the condenser (3) Characterized in that made of the pre-cooling method.

상기에서 응축방식은 도 1에 도시한 바와 같이 응축기(3)를 와이어 콘덴서 (10)에 의한 자연냉각방식으로 하거나, 도 2에 도시한 바와 같이 팬쿨링 타입 콘덴서(10')에 의한 강제 냉각 방식으로도 가능한 데 전자의 경우는 자연냉각방식이므로 충분한 응축용량을 얻을 수 있는 비교적 큰 크기가 사용되는 반면에 팬모터(2)가 없으므로 전력손실이 감소되고 소음이 없는 장점이 있고, 후자의 경우는 팬모터(2)에 의한 강제대류 냉각 방식이므로 콘덴서(10')의 크기를 소형으로 구성할 수 있는 장점이 있으나 자연냉각방식보다 에너지 손실과 소음이 약간 발생하는 단점이 있다.In the above condensation method, the condenser 3 is naturally cooled by the wire condenser 10 as shown in FIG. 1, or the forced cooling method by the fan cooling type condenser 10 ′ as shown in FIG. 2. Although the former is a natural cooling method, a relatively large size can be used to obtain a sufficient condensation capacity, whereas the fan motor (2) is not used, so the power loss is reduced and there is no noise. Forced convection cooling by the fan motor (2) has the advantage that the size of the condenser (10 ') can be configured to a small size, but there is a disadvantage that the energy loss and noise slightly occurs than the natural cooling method.

도 3과 도 4는 응축기(3)의 응축방식에 따른 제습기의 내부 구조를 나타낸 예시도로서 도 3은 자연냉각방식에 따른 비교적 큰 와이어 콘덴서(10)가 제습기 본체 (100)의 일측에 설치되고 이의 내부에 압축기(1)와 필터드라이어(4)가 연결된 칠러 (8)와 리히터(6)가 코일관체 형상으로 중첩되게 설치되어 있는 데 내측에는 압축공기 유입관(11)과 보다 적은 직경의 냉매유출관(12)이 상하로 당접되게 권회된 칠러 (8)가 설치되고 외측에는 압축공기 토출관(11')과 보다 적은 직경의 냉매유입관3 and 4 is an exemplary view showing the internal structure of the dehumidifier according to the condensation method of the condenser 3, Figure 3 is a relatively large wire condenser 10 according to the natural cooling method is installed on one side of the dehumidifier main body 100 The chiller (8) and the heater (6) to which the compressor (1) and the filter drier (4) are connected are superimposed in the shape of a coil pipe, and inside the compressed air inlet pipe (11) and a refrigerant having a smaller diameter therein. A chiller (8) wound around the outlet pipe (12) up and down is provided, and a compressed air discharge pipe (11 ') and a coolant inlet pipe having a smaller diameter are provided on the outside.

(12')이 상하로 당접되게 권회된 리히터(6)가 단열재(13)로서 분리되게 이중으로 중첩 설치되어 있다.Richter 6 wound up and down 12 'is abutted and provided in duplicate so as to be separated as a heat insulating material 13.

도 4는 팬모터(2)를 이용한 강제냉각방식의 응축기(3)를 사용한 제습기의 내부구조를 도시한 것으로서, 제습기 본체(100)의 일측에 팬모터(2)를 부착한 소형의 콘덴서(10')가 설치되어 있고 나머지 구조는 전기한 자연냉각방식의 구조와 동일하다.4 shows the internal structure of the dehumidifier using the forced cooling condenser 3 using the fan motor 2, the compact condenser 10 having the fan motor 2 attached to one side of the main body 100 of the dehumidifier. ') Is installed and the rest of the structure is the same as the structure of the natural cooling method described above.

이와같이 된 본 발명의 제습시스템의 제습과정을 설명하면, 압축기(1)에서 냉매가 약 80℃의 고온 고압으로 압축되어 응축기(3)에서 와이어 콘덴서(10)를 이용한 자연냉각방식 또는 팬모터(2)에 의한 강제대류 냉각으로 응축되면 냉매는 액체상태로 상변화를 하게 되고 이때 냉매의 온도는 약 45℃로 떨어지게 된다. 이와같이 낮아진 온도의 액상냉매가 리히터(6)로 보내지면 리히터(6)에서는 칠러(8)를 거쳐 나온 차가운 압축공기(이때의 온도는 약 10℃)와 열교환을 하게 되어 압축공기의 온도를 약 10℃에서 45℃로 상승시키고 자신은 응축기(3)에서 응축시의 온도인 약 45℃에서 약 40℃의 온도로 냉각되어 필터드라이어(4)로 보내어진다. 결국 리히터(6)에서는 응축기(3)에서 1차 냉각된 냉매를 저온의 압축공기와 열교환시켜 2차 냉각으로 온도를 저온으로 낮추게 되는 것이다.Referring to the dehumidification process of the dehumidification system of the present invention as described above, the refrigerant in the compressor (1) is compressed to a high temperature and high pressure of about 80 ℃ natural condensation system (3) using a wire condenser (10) or fan motor (2) When condensed by forced convection cooling by), the refrigerant changes phase into a liquid state, and the temperature of the refrigerant drops to about 45 ° C. When the liquid refrigerant at such a low temperature is sent to the Richter 6, the Richter 6 exchanges heat with cold compressed air (at this time, about 10 ° C.) passing through the chiller 8, thereby reducing the temperature of the compressed air to about 10 degrees. It raises from 45 degreeC to 45 degreeC, and it cools to the temperature of about 40 degreeC from about 45 degreeC which is the temperature at the time of condensation in the condenser 3, and is sent to the filter drier 4. As a result, in the Richter 6, the refrigerant cooled in the condenser 3 is exchanged with the compressed air of low temperature to lower the temperature to the low temperature by the secondary cooling.

한편, 필터드라이어(4)로 보내진 냉매는 냉매속에 남아있는 불순물이 걸러진 상태에서 팽창장치(5)를 거치면서 압력과 온도가 저하되고 이어서 칠러(8)로 유입되어 증발하기 시작하는 데, 이때의 증발열원은 칠러(8)의 공기유입구로 유입되는고온(약 38℃)의 압축공기로 부터 나오게 되므로 칠러(8)를 지나가는 압축공기는 38℃에서 제습이 가능한 10℃이하로 떨어지게 되고 이 과정에서 발생된 응축수는 응축수 분리기(9)에서 분리 배출되어 제습이 이루어지며 여전히 차가운 공기는 다음의 리히터(6)로 흘러 전기한 바와 같이 응축기(3)에서 45℃로 냉각된 냉매와 열교환을 하여 45℃로 가열된 후 토출되고 냉매는 2차 응축되어 필터드라이어(4)로 보내지는 순환과정을 반복하게 되는 것이다.On the other hand, the refrigerant sent to the filter drier (4) is passed through the expansion device (5) in the state that the impurities remaining in the refrigerant is filtered, the pressure and temperature is lowered, then flows into the chiller (8) and begins to evaporate, The evaporation heat source comes from the compressed air of high temperature (about 38 ℃) flowing into the air inlet of the chiller (8), so the compressed air passing through the chiller (8) drops to less than 10 ℃ which enables dehumidification at 38 ℃. The generated condensate is separated and discharged from the condensate separator (9) to dehumidify, and still cold air flows to the next Richter (6) and heat exchanges with the refrigerant cooled to 45 ° C in the condenser (3) as described above. After heating, the discharge is repeated and the refrigerant is repeatedly condensed and the circulation process sent to the filter drier 4 is repeated.

이상의 과정에서 알 수 있는 바와 같이 본 발명의 특징은 리히터(6)에서 열교환하는 유체가 도 5에 도시한 종래의 제습시스템과 같이 제습된 저온의 공기와 유입구로 유입되는 고온의 압축공기와의 열교환이 아니라 제습된 저온의 공기와 응축되어 1차 냉각된 냉매와의 열교환을 하는 시스템이므로 종래의 방식에서는 냉매가스의 응축이 일어나는 부분은 한 곳 밖에 없어서 고온의 냉매가스(80℃)를 저온으로 응축 (40℃)시키기 위해서는 용량이 큰 응축기(3)를 사용해야 되는 단점이 있으나 본 발명은 응축기(3)에서 1차 응축(80℃→45℃)되고 난 후 보조응축기의 역할을 하는 리히터(6)에서 2차 응축(45℃→40℃)되므로 응축기(3)의 크기가 상대적으로 종래의 것보다 적어질 수 있는 것이 큰 장점이다.As can be seen from the above process, a feature of the present invention is that the fluid heat exchanged in the Richter 6 is heat exchanged with hot air dehumidified and hot compressed air introduced into the inlet as in the conventional dehumidification system shown in FIG. It is a system that exchanges heat with dehumidified low-temperature air and the first-cooled refrigerant and condenses high-temperature refrigerant gas (80 ° C) at low temperature because there is only one place where the refrigerant gas condenses. In order to (40 ° C) there is a disadvantage in that a large capacity condenser (3) must be used, but the present invention has a primary condenser (80 ° C → 45 ° C) in the condenser (3) after the role of secondary condenser (6) The secondary condensation at (45 ° C → 40 ° C) is a big advantage that the size of the condenser (3) can be relatively smaller than the conventional one.

본 발명의 칠러(8)와 리히터(6)의 구조는 도 3과 도 4에 도시된 바와 같이 압축기(1)와 필터드라이어(4)가 연결된 칠러(8)와 리히터(6)가 코일관체 형상으로 중첩되게 설치되어 있고 이를 구성하는 대소의 공기튜브(공기관)와 냉매튜브(냉매관)가 상하로 당접된 상태로 설치되어 있으므로 내측에 설치된 칠러(8)의 관체에서는 고온의 공기와 저온의 냉매가 열교환되고 외측에 설치된 리히터(6)의 관체에서는 칠러(8)에서의 열교환으로 저온이 된 공기와 보다 낮은 온도의 냉매의 열교환이 이루어져 공기의 폐열을 이용한 냉매의 2차 냉각을 효율적으로 할 수 있어 응축기(3)의 소형화에 따른 구조의 간단함과 크기의 축소를 해결할 수 있다.In the structure of the chiller 8 and the richer 6 of the present invention, the chiller 8 and the richer 6 to which the compressor 1 and the filter drier 4 are connected as shown in FIGS. And the air tubes (air engines) and the refrigerant tubes (refrigerant tubes) of the large and small parts constituting them are installed in contact with each other up and down. Therefore, in the tube body of the chiller 8 installed inside, high temperature air and low temperature refrigerants are provided. In the conduit of the heater 6 installed outside and heat exchanged in the chiller 8, heat exchanged between the coolant air and the coolant at a lower temperature can be efficiently performed for the secondary cooling of the coolant using the waste heat of the air. Therefore, it is possible to solve the simplicity of the structure and the reduction in size due to the miniaturization of the condenser 3.

이와같이 본 발명은 냉매를 리히터(6)에서 공기의 폐열을 이용하여 2차 냉각시키는 냉매와 공기의 열교환 방식이므로 응축기(3)의 용량을 줄일 수 있어 가격의 저렴화와 전기소모를 줄일 수 있고 특히 팬모터(2)에 의한 강제응축방식을 사용하였을 때에도 콘덴서(10)의 크기가 축소되어 종래보다 에너지 절약효과가 있으며 소음이 감소될 뿐 아니라 리히터(6)에서 냉각된 압축공기 측으로 많은 열량을 방출시키므로 응축기(3)에서 대기로 제거해야 할 열량이 대폭 감소되는 등 그 효과가 매우 지대한 우수한 발명이다.As described above, the present invention can reduce the capacity of the condenser 3 since the refrigerant is heat-exchanged with the refrigerant to secondary coolant by using the waste heat of the air in the Richter 6, thereby reducing the cost and reducing the electricity consumption. Even when forced condensation by the motor 2 is used, the size of the condenser 10 is reduced, which is more energy-saving than the conventional one, and noise is reduced, and also emits a large amount of heat from the Richter 6 to the compressed air. It is an excellent invention with a very large effect, such as a large amount of heat to be removed from the condenser 3 to the atmosphere.

Claims (2)

냉매를 고온 고압으로 압축시키는 압축기(1)와, 상기 냉매를 액상으로 응축시키는 응축기(3)와, 불순물 여과용 필터드라이어(4)와 액상의 냉매를 단열 팽창시키는 팽창장치(5)와, 냉매와 압축공기를 열교환시키는 칠러(8)와, 응축수를 분리하는 응축수 분리기(9)와, 제습된 저온의 압축공기를 고온의 압축공기와 열교환시켜 재가열시키는 리히터(6)로 이루어진 통상의 냉동식 제습기에 있어서, 응축기(3)에서 응축된 냉매를 리히터(6)로 유입시켜 칠러(8)를 통해 압축기(1)로 순환되게 하고, 고온의 압축공기는 칠러(8)로 유입시켜 응축수 분리기(9)에 의해 제습후 리히터(6)로 배출되게 하므로서 응축기(3)에서 1차 냉각된 냉매를 리히터(6)에서 칠러(8)를 거쳐 저온으로 냉각된 압축공기와 열교환시켜 압축공기의 온도를 가열 상승시키고 냉매는 응축기(3)에서 응축된 온도보다 더 낮은 온도로 2차 냉각시킴을 특징으로 하는 냉매와 공기의 예냉방식을 이용한 냉동식 제습시스템.A compressor (1) for compressing the refrigerant at a high temperature and high pressure, a condenser (3) for condensing the refrigerant into a liquid phase, an expansion device (5) for adiabatic expansion and expansion of the liquid refrigerant, and a filter dryer (4) for impurity filtration, and a refrigerant And a chiller (8) for exchanging compressed air, a condensate separator (9) for separating condensed water, and a Richter (6) for exchanging dehumidified low-temperature compressed air with hot compressed air to reheat it. In the condenser 3, the refrigerant condensed in the condenser 3 is introduced into the Richter 6 to be circulated to the compressor 1 through the chiller 8, and the hot compressed air is introduced into the chiller 8 to condensate separator 9 After the dehumidification is carried out to the Richter (6), the refrigerant cooled first in the condenser (3) through the chiller (8) from the Richter (6) heat exchanged with the compressed air cooled to low temperature to heat the temperature of the compressed air And the refrigerant condenses in the condenser (3) Refrigeration dehumidification system using a pre-cooling method of the refrigerant and air, characterized in that the secondary cooling to a lower temperature than the temperature. 냉매를 고온 고압으로 압축시키는 압축기(1)와, 상기 냉매를 액상으로 응축시키는 응축기(3)와, 불순물 여과용 필터드라이어(4)와 액상의 냉매를 단열 팽창시키는 팽창장치(5)와, 냉매와 압축공기를 열교환시키는 칠러(8)와, 응축수를 분리하는 응축수 분리기(9)와, 제습된 저온의 압축공기를 고온의 압축공기와 열교환시켜 재가열시키는 리히터(6)로 이루어진 냉동식 제습기에 있어서, 압축공기 유입관(11)과 보다 적은 직경의 냉매유출관(12)을 상하로 당접시켜 코일형상으로 권회한칠러(8)와, 압축공기 토출관(11')과 보다 적은 직경의 냉매유입관(12')을 상하로 당접시켜 코일형상으로 권회한 리히터(6)를 단열재(13)로서 내외로 분리되게 이중으로 중첩 설치함을 특징으로 하는 냉매와 공기의 예냉방식을 이용한 냉동식 제습기.A compressor (1) for compressing the refrigerant at a high temperature and high pressure, a condenser (3) for condensing the refrigerant into a liquid phase, an expansion device (5) for adiabatic expansion and expansion of the liquid refrigerant, and a filter dryer (4) for impurity filtration, and a refrigerant And a chiller (8) for exchanging compressed air, a condensate separator (9) for separating condensate, and a Richter (6) for exchanging dehumidified low-temperature compressed air with hot compressed air to reheat it. And the chiller 8 wound in a coil shape by contacting the compressed air inlet pipe 11 and the coolant outlet pipe 12 of smaller diameter up and down, and the compressed air discharge pipe 11 'and the coolant inlet of smaller diameter. A refrigerant dehumidifier using a pre-cooling method of refrigerant and air, characterized by overlapping and installing a Richter 6 wound in a coil shape by abutting the pipe 12 'up and down to separate the inside and the outside as a heat insulating material 13.
KR10-2001-0011973A 2001-03-08 2001-03-08 The freezing dehumidifier its system using refrigeratory material and air-precooling method Expired - Lifetime KR100390047B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0011973A KR100390047B1 (en) 2001-03-08 2001-03-08 The freezing dehumidifier its system using refrigeratory material and air-precooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0011973A KR100390047B1 (en) 2001-03-08 2001-03-08 The freezing dehumidifier its system using refrigeratory material and air-precooling method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR2020010006225U Division KR200234358Y1 (en) 2001-03-08 2001-03-08 The freezing dehumidifier using refrigeratory material and air-precooling method

Publications (2)

Publication Number Publication Date
KR20010044583A KR20010044583A (en) 2001-06-05
KR100390047B1 true KR100390047B1 (en) 2003-07-04

Family

ID=19706631

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0011973A Expired - Lifetime KR100390047B1 (en) 2001-03-08 2001-03-08 The freezing dehumidifier its system using refrigeratory material and air-precooling method

Country Status (1)

Country Link
KR (1) KR100390047B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814378B1 (en) * 2006-02-06 2008-03-18 이충기 Refrigeration system with improved energy efficiency and refrigerant condensation method using the system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358514A (en) * 1991-06-05 1992-12-11 Hitachi Plant Eng & Constr Co Ltd How to dehumidify compressed air
JPH06201206A (en) * 1992-12-28 1994-07-19 Nippon Sanso Kk Low temperature air generation method and device
JPH07218035A (en) * 1994-02-02 1995-08-18 Hitachi Ltd Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358514A (en) * 1991-06-05 1992-12-11 Hitachi Plant Eng & Constr Co Ltd How to dehumidify compressed air
JPH06201206A (en) * 1992-12-28 1994-07-19 Nippon Sanso Kk Low temperature air generation method and device
JPH07218035A (en) * 1994-02-02 1995-08-18 Hitachi Ltd Air conditioner

Also Published As

Publication number Publication date
KR20010044583A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
US5761923A (en) Air conditioning system
CN106225116B (en) A kind of efficient fresh air dehumidifier based on heat pump recuperation of heat and double evaporating temperatures
KR100510774B1 (en) Hybrid dehumidified cooling system
KR101081821B1 (en) Energy-efficient refrigerated air dryer dehumidify device
JP3585308B2 (en) Desiccant air conditioner
WO1991016584A1 (en) Efficient dehumidification system
CN101175898A (en) Systems and methods for managing water content in fluids
CN214581894U (en) Temperature control system and temperature control device
JP4948513B2 (en) Air conditioner, its operating method and air conditioning system
CN112050618B (en) Three-effect heat recovery type mixed air heat pump drying system and its application
CN103316568B (en) Combined type compressed air deep cooling dehumidifier
CN106345237A (en) Cold air circulating type compressed air freeze dryer
JP3765732B2 (en) Heat pump and dehumidifying air conditioner
CN105899882A (en) Air conditioner and control method for air conditioner
CN215909269U (en) Heat pump type low-temperature regeneration runner fresh air frequency conversion dehumidification system for radiant air conditioner
JP2530859B2 (en) Method for dehydrating city gas, etc.
CN203342632U (en) A Combined Compressed Air Cryogenic Dehumidifier
KR100390047B1 (en) The freezing dehumidifier its system using refrigeratory material and air-precooling method
KR200234358Y1 (en) The freezing dehumidifier using refrigeratory material and air-precooling method
CN111692779A (en) Wet-cooling double-effect recovery type high-efficiency heat pump unit for drying sea sedge
US20040118133A1 (en) Heat pump and dehumidifying air-conditioning apparatus
KR100493871B1 (en) Equipment for dehumidification and dryness
KR102538185B1 (en) cooling dehumidifier
JP2948776B2 (en) Air conditioning system
US12138992B2 (en) Air supply systems for vehicles

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20010308

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20030428

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20030621

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20030623

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20060524

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20070503

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20080516

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20090427

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20100415

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20110427

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20120410

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20120410

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20130411

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20130411

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20160607

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20170530

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20170530

Start annual number: 15

End annual number: 15

FPAY Annual fee payment

Payment date: 20180516

Year of fee payment: 16

PR1001 Payment of annual fee

Payment date: 20180516

Start annual number: 16

End annual number: 16

FPAY Annual fee payment

Payment date: 20190619

Year of fee payment: 17

PR1001 Payment of annual fee

Payment date: 20190619

Start annual number: 17

End annual number: 17

PC1801 Expiration of term

Termination date: 20210908

Termination category: Expiration of duration