KR100372097B1 - Method for thermal processing silicon wafer - Google Patents
Method for thermal processing silicon wafer Download PDFInfo
- Publication number
- KR100372097B1 KR100372097B1 KR10-2000-0081954A KR20000081954A KR100372097B1 KR 100372097 B1 KR100372097 B1 KR 100372097B1 KR 20000081954 A KR20000081954 A KR 20000081954A KR 100372097 B1 KR100372097 B1 KR 100372097B1
- Authority
- KR
- South Korea
- Prior art keywords
- wafer
- slm
- hydrogen
- heat treatment
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/322—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
- H01L21/3221—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
- H01L21/3223—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering using cavities formed by hydrogen or noble gas ion implantation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
본 발명은 실리콘 웨이퍼의 열처리 방법에 관한 것으로 웨이퍼에 수소(H2)를 2 slm 내지 50 slm로 흘리고 온도를 1100∼1300℃까지 상승시키면서 열처리하여 성장 결함을 제거하여 DZ층(Denuded Zone)을 형성하는 1단계와, 상기 웨이퍼에 수소(H2)에 질소(N2), 아르곤(Ar), 네온(Ne)의 불활성 가스를 0.5∼50%로 혼합하여 2 slm 내지 50 slm로 흘리고 온도를 1100∼1300℃로 유지시키면서 열처리하여 상기 웨이퍼 내부에 고밀도의 BMD(Bulk Micro Defect)를 생성하는 2단계와, 상기 웨이퍼에 질소(N2), 아르곤(Ar), 네온(Ne)의 불활성 가스, 수소(H2) 또는 질소(N2), 아르곤(Ar), 네온(Ne)의 불활성 가스에 수소(H2)를 혼합한 가스를 2 slm 내지 50 slm로 흘리고 온도를 하강시키면서 열처리하여 상기 고밀도의 BMD를 안정화시키는 3단계를 구비한다.The present invention relates to a heat treatment method of a silicon wafer, flowing hydrogen (H 2 ) in the wafer 2 slm to 50 slm and heat treatment while increasing the temperature to 1100 ~ 1300 ℃ to remove the growth defects to form a DZ layer (Denuded Zone) In step 1, the inert gas of nitrogen (N 2 ), argon (Ar), neon (Ne) is mixed with 0.5 to 50% of hydrogen (H 2 ) on the wafer, flowing at 2 slm to 50 slm, and the temperature is 1100. Heat treatment while maintaining at ~ 1300 ℃ to generate a high density BMD (Bulk Micro Defect) inside the wafer, inert gas of nitrogen (N 2 ), argon (Ar), neon (Ne), hydrogen on the wafer (H 2 ) or a gas mixed with hydrogen (H 2 ) to an inert gas of nitrogen (N 2 ), argon (Ar), neon (Ne) at 2 slm to 50 slm and heat-treated while lowering the temperature Three steps to stabilize the BMD.
Description
본 발명은 반도체 소자를 형성하기 위한 실리콘 웨이퍼 제조방법에 관한 것으로서, 특히, 웨이퍼에 있어서 단결정 잉곳 성장시 발생되는 성장 결함(grow-in defect)을 제거하면서 표면이 무결함을 갖고 내부가 고밀도의 산소 석출물층을 갖도록 하는 웨이퍼의 열처리 방법에 관한 것이다.전자, 정보 통신 및 항공 우주 분야 등의 다양한 분야에서 기술 발전이 빠른 속도로 진행되므로 반도체소자도 고집적도 및 고속 동작 등의 다양한 제품이 요구되고 있다. 이에 따라, 웨이퍼도 성장 결함(grow-in defect)이 제거되고 고청정도 및 고평탄도 등의 특성을 갖는 고품질 제품이 요구되고 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a silicon wafer for forming a semiconductor device, and in particular, has a surface defect and eliminates growth defects generated during single crystal ingot growth in a wafer. The present invention relates to a heat treatment method of a wafer having a precipitate layer. Since various technological advances are progressing rapidly in various fields such as electronics, information communication, and aerospace, various products such as high integration and high speed operation are required. . Accordingly, there is a demand for a high-quality product having a property such as high cleanliness and high flatness, in which wafer growth defects are eliminated.
상기에서 성장 결함(grow-in defect)에는 웨이퍼에 산소가 과포화되거나, 또는, 웨이퍼의 표면에 보이드(void)를 형성하는 COP(Crystal Originated Partical) 등이 있다. 이러한 결정 결함은 웨이퍼를 만들기 위한 단결정 잉곳을 성장할 때 무결함 결정을 성장시킬 수 있다. 그러나, 단결정 잉곳을 무결함 결정으로 성장시키기 위해서는 낮은 속도로 성장시켜야 하므로 생산성이 저하된다.The growth defects include a crystal originated partial (COP) that supersaturates oxygen on the wafer or forms voids on the surface of the wafer. Such crystal defects can grow defect-free crystals when growing single crystal ingots for making wafers. However, in order to grow a single crystal ingot into an intact crystal, it is necessary to grow at a low speed, thereby decreasing productivity.
그러므로, 단결정 잉곳을 가공하여 웨이퍼를 형성한 후 열처리하여 결정 결함을 제거하였다. 웨이퍼의 열처리는 수소(H2) 분위기의 확산로(diffusion furnace) 내에서 1200℃ 이상의 고온에서 1~5 시간 동안 진행한다. 이 때, 웨이퍼 표면 부근에 과포화된 산소(O2)를 외부로 확산시켜 산소 농도를 고체 용해도 보다 낮게 만들어 표면의 원자의 재배치를 이루도록 하며, 웨이퍼 표면의 COP는 수소(H2)에 의해 산소의 불포화로 인한 베이컨시(vacancy)와 표면 원자의 이동에 의해 보이드가 메워져 축소시키므로써 웨이퍼 표면의 성장 결함을 제거한다.Therefore, single crystal ingots were processed to form wafers, and then subjected to heat treatment to remove crystal defects. The heat treatment of the wafer is performed for 1 to 5 hours at a high temperature of 1200 ° C. or more in a diffusion furnace of hydrogen (H 2 ) atmosphere. At this time, the supersaturated oxygen (O 2 ) is diffused to the outside of the wafer surface to make the oxygen concentration lower than the solid solubility to achieve the rearrangement of atoms on the surface, the COP of the wafer surface is hydrogen (H 2 ) Vacancy due to unsaturation and movement of surface atoms fills and shrinks voids, thereby eliminating growth defects on the wafer surface.
그러나, 상술한 성장 결함을 제거하기 위한 확산로에서의 열처리하는 방법으로는 반도체소자의 활성층으로 이용되는 균일한 깊이의 DZ층(Denuded Zone)과 반도체 공정시 발생되는 중금속을 게터링(gettering)하기 위한 고밀도의 BMD(Bulk Micro Defect)를 형성시킬 수 없다.However, as a method of heat treatment in the diffusion furnace to remove the growth defects described above, gettering of a uniform depth DZ layer (Denuded Zone) used as an active layer of a semiconductor device and heavy metals generated during a semiconductor process is performed. It is not possible to form a high density bulk micro defect (BMD).
그러므로, 웨이퍼의 산소(O2) 농도 차와 무관하게 DZ층과 고밀도의 BMD를 형성시키기 위해 별도의 급속 열처리(Rapid Thermal Annealing : 이하, RTA라 칭함) 방법으로 열처리하였다. 이 RTA 방법은 웨이퍼의 표면에 수십 Å 정도 두께의 산화막을 형성시킨 후 급속 열처리 장비에서 1200℃ 이상의 높은 온도에서 질소(N2) 분위기로 열처리하면 질소(N2)가 웨이퍼 내부로 주입되어 산소(O2)의 석출을 용이하게 하는 핵(nuclei)으로 작용하여 표면에 DZ층이 형성되면서 내부에 고밀도의 BMD를 얻는다.그러나, 상술한 RTA 방법은 웨이퍼 표면의 COP를 제거하지 못한다.Therefore, heat treatment was performed by a separate rapid thermal annealing method (hereinafter referred to as RTA) to form a DZ layer and a high density BMD regardless of the oxygen (O 2 ) concentration difference of the wafer. In this RTA method, an oxide film having a thickness of about several tens of nanometers is formed on a surface of a wafer, and when heat-treated in a nitrogen (N 2 ) atmosphere at a high temperature of 1200 ° C. or higher in a rapid heat treatment apparatus, nitrogen (N 2 ) is injected into the wafer to obtain oxygen ( It acts as a nuclei that facilitates the precipitation of O 2 ) and forms a DZ layer on the surface to obtain a high density BMD therein. However, the above-described RTA method does not remove the COP on the wafer surface.
그러므로, 종래에는 웨이퍼를 제조할 때 성장 결함(grow-in defect)을 제거하기 위해 확산로에서 열처리한 후 균일한 깊이의 DZ층과 고밀도의 BMD를 형성하기 위한 RTA를 진행하여야 하는 문제점이 있었다.Therefore, there is a problem in the prior art that the RTA for forming a DZ layer having a uniform depth and a high-density BMD after the heat treatment in the diffusion furnace in order to remove the growth defect (grow-in defect) when manufacturing a wafer.
따라서, 본 발명의 목적은 성장 결함을 제거하면서 균일한 깊이의 DZ층과 고밀도의 BMD를 동시에 형성할 수 있는 웨이퍼의 열처리 방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a heat treatment method of a wafer capable of simultaneously forming a DZ layer having a uniform depth and a high density BMD while removing growth defects.
상기 목적을 달성하기 위한 본 발명의 실시 예에 따른 웨이퍼의 열처리 방법은 웨이퍼에 수소(H2)를 2 slm 내지 50 slm로 흘리고 온도를 1100∼1300℃까지 상승시키면서 열처리하여 성장 결함을 제거하여 DZ층(Denuded Zone)을 형성하는 1단계와, 상기 웨이퍼에 수소(H2)에 질소(N2), 아르곤(Ar), 네온(Ne)의 불활성 가스를 0.5∼50%로 혼합하여 2 slm 내지 50 slm로 흘리고 온도를 1100∼1300℃로 유지시키면서 열처리하여 상기 웨이퍼 내부에 고밀도의 BMD(Bulk Micro Defect)를 생성하는 2단계와, 상기 웨이퍼에 질소(N2), 아르곤(Ar), 네온(Ne)의 불활성 가스, 수소(H2) 또는 질소(N2), 아르곤(Ar), 네온(Ne)의 불활성 가스에 수소(H2)를 혼합한 가스를 2 slm 내지 50 slm로 흘리고 온도를 하강시키면서 열처리하여 상기 고밀도의 BMD를 안정화시키는 3단계를 구비한다.In the heat treatment method of the wafer according to the embodiment of the present invention for achieving the above object, by flowing hydrogen (H 2 ) to the wafer 2 slm to 50 slm and heat treatment while increasing the temperature to 1100 ~ 1300 ℃ to remove the growth defects DZ In the first step of forming a layer (Denuded Zone), and inert gas of nitrogen (N 2 ), argon (Ar), neon (Ne) to hydrogen (H 2 ) in 0.5 to 50% by 2 slm to 2 steps to generate a high density BMD (Bulk Micro Defect) inside the wafer by flowing at 50 slm and maintaining the temperature at 1100-1300 ° C., and nitrogen (N 2 ), argon (Ar), neon ( A gas in which hydrogen (H 2 ) is mixed with an inert gas of Ne, hydrogen (H 2 ) or nitrogen (N 2 ), argon (Ar), and neon (Ne) is flowed at 2 slm to 50 slm, and the temperature is decreased. Heat treatment while lowering is provided with three steps to stabilize the high-density BMD.
상기에서, 바람직하게, 1단계 내지 3단계를 확산로 또는 RTA(Rapid Thermal Annealing) 장치에서 진행한다.In the above, preferably, steps 1 to 3 are carried out in a diffusion furnace or RTA (Rapid Thermal Annealing) apparatus.
바람직하게, 1단계에서 수소(H2)를 2 slm 내지 50 slm로 흘려주며, 온도를 1초당 1℃∼100℃의 속도로 상승시키고킨다. DZ층(Denuded Zone)을 20∼50㎛의 깊이로 형성한다.Preferably, hydrogen (H 2 ) is flowed at 2 slm to 50 slm in one step, and the temperature is increased at a rate of 1 ° C. to 100 ° C. per second. A DZ layer (Denuded Zone) is formed to a depth of 20-50 μm.
바람직하게, 1단계에서 수소(H2)에 질소(N2), 아르곤(Ar), 네온(Ne)의 불활성 가스를 0.5∼50% 혼합한 가스를 사용한다.Preferably, a gas obtained by mixing 0.5 to 50% of an inert gas of nitrogen (N 2 ), argon (Ar), and neon (Ne) with hydrogen (H 2 ) in a first step is used.
바람직하게, 2단계를 수소(H2)에 질소(N2), 아르곤(Ar), 네온(Ne)의 불활성 가스를 0.5∼50%로 혼합하여 2 slm 내지 50 slm로 흘리면서 5초 내지 10시간 동안 진행한다.Preferably, the second step is mixed with an inert gas of nitrogen (N 2 ), argon (Ar), neon (Ne) to hydrogen (H 2 ) in 0.5 to 50% flowing in 2 slm to 50 slm for 5 seconds to 10 hours Proceed.
바람직하게, 3단계에서 질소(N2), 아르곤(Ar), 네온(Ne)의 불활성 가스, 수소(H2) 또는 질소(N2), 아르곤(Ar), 네온(Ne)의 불활성 가스에 수소(H2)를 혼합한 가스를 2 slm 내지 50 slm로 흘리면서 웨이퍼의 온도를 1초당 1℃∼100℃의 속도로 하강시킨다.Preferably, in an inert gas of nitrogen (N 2 ), argon (Ar), neon (Ne), hydrogen (H 2 ) or nitrogen (N 2 ), argon (Ar), neon (Ne) in three steps The temperature of the wafer is lowered at a rate of 1 ° C.-100 ° C. per second while flowing a gas mixed with hydrogen (H 2 ) at 2 slm to 50 slm.
바람직하게, 3단계에서 상기 혼합 가스는 수소(H2)에 질소(N2), 아르곤(Ar) 또는 네온(Ne)의 불활성 가스가 0.5∼50% 혼합된다.Preferably, in the third step, the mixed gas is mixed with hydrogen (H 2 ) 0.5 to 50% of an inert gas of nitrogen (N 2 ), argon (Ar) or neon (Ne).
도 1은 본 발명에 따른 웨이퍼의 열처리시 온도 구배를 도시하는 도면.1 shows a temperature gradient during heat treatment of a wafer according to the present invention.
도 2는 열처리 전 웨이퍼의 단면도.2 is a cross-sectional view of the wafer before heat treatment.
도 3은 본 발명에 따라 열처리된 웨이퍼의 단면도.3 is a cross-sectional view of a wafer heat treated according to the present invention.
이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 웨이퍼의 열처리시 온도 구배를 도시하는 도면이고, 도 2는 열처리 전 웨이퍼의 단면도이며, 도 3은 본 발명에 따라 열처리된 웨이퍼의 단면도이다.1 is a diagram showing a temperature gradient during heat treatment of a wafer according to the present invention, FIG. 2 is a cross-sectional view of the wafer before heat treatment, and FIG. 3 is a cross-sectional view of the wafer heat treated according to the present invention.
웨이퍼(11)는 열처리 전에는 도 2에 도시된 바와 같이 표면에 COP 등의 성장 결함(13)이 존재하나, 열처리 후에는 도 3에 도시된 바와 같이 표면에 성장 결함(13)이 제거되어 무결함층인 DZ층(17)이 형성되고 내부에 고밀도의 BMD(15)가 형성된다.Before the heat treatment, the wafer 11 has growth defects 13 such as COP on the surface as shown in FIG. 2, but after the heat treatment, the growth defects 13 are removed on the surface as shown in FIG. A layer DZ layer 17 is formed and a high density BMD 15 is formed therein.
먼저, 웨이퍼(11)를 확산로 또는 RTA 장치를 이용하여 1 단계 열처리한다. 상기에서 웨이퍼(11)에 수소(H2)를 2 slm 내지 50 slm 정도로 흘리고 온도를 1초당 1℃∼100℃의 속도로 1100∼1300℃ 정도까지 상승시키면서 1 단계 열처리한다. 이 때, COP 등의 보이드(void)를 형성하는 결함의 외벽이 SiO2로 형성되어져 있으므로수소(H2)는 SiO2와 결합을 통하여 결함을 제거하고, 도 3에 도시된 바와 같이 무결함층인 DZ층(15)을 20∼50㎛ 정도의 깊이를 갖도록 형성한다.First, the wafer 11 is subjected to a one-step heat treatment using a diffusion furnace or an RTA apparatus. As described above, hydrogen (H 2 ) is flowed to the wafer 11 at about 2 slm to about 50 slm, and the temperature is increased to about 1100 to 1300 ° C. at a rate of 1 ° C. to 100 ° C. per second, followed by a one-step heat treatment. At this time, since the outer wall of the defect forming the void such as COP is formed of SiO2, hydrogen (H2) removes the defect through bonding with SiO2, and as shown in FIG. (15) is formed to have a depth of about 20 to 50 µm.
DZ층(15)을 형성하기 위한 1단계 열처리시 수소(H2)에 질소(N2), 아르곤(Ar), 네온(Ne) 등의 불활성 가스를 0.5∼50% 정도 혼합한 가스를 사용할 수도 있다. 상기에서 수소(H2)에 질소(N2), 아르곤(Ar), 네온(Ne) 등의 불활성 가스는 베이컨시(vacancy) 또는 격자간 주입(interstitial injection)이 일어나도록 하여 BMD의 형성이 용이하도록 한다. 그러나, BMD는 산소 석출물이므로 수소(H2)와 반응하여 산소와 관련되어진 결함들이 완전히 제거되는 것을 막아 줌으로써 DZ층(15)이 20∼50㎛ 정도 보다 깊게 되는 것을 방지한다. 1단계 열처리 후, 웨이퍼(11)의 온도를 1100∼1300℃ 정도로 유지시키면서 5초 내지 10시간 정도 동안 2단계 열처리를 진행한다. 2단계 열처리는 수소(H2)에 질소(N2), 아르곤(Ar), 네온(Ne) 등의 불활성 가스를 0.5∼50% 정도 혼합한 가스를 2 slm 내지 50 slm 정도로 흘리면서 진행하는 데, 질소(N2), 아르곤(Ar) 또는 네온(Ne) 등의 불활성 가스는 웨이퍼(11)의 내부로 확산되어 산소(O2)의 석출을 용이하게 하는 핵으로 작용한다. 그러므로, 웨이퍼(11)의 내부, 즉, DZ층(15)의 하부에는 반도체소자 공정시 웨이퍼(11) 표면에 잔류하는 중금속 등을 게터링하기 위한 고밀도의 BMD(17)가 생성된다.In the one-step heat treatment to form the DZ layer 15, a gas obtained by mixing 0.5 to 50% of an inert gas such as nitrogen (N 2 ), argon (Ar), and neon (Ne) with hydrogen (H 2 ) may be used. have. In the above, inert gas such as nitrogen (N 2 ), argon (Ar), neon (Ne), etc. in hydrogen (H 2 ) causes vacancy or interstitial injection to easily form BMD. Do it. However, since BMD is an oxygen precipitate, it prevents the defects associated with oxygen from being completely removed by reacting with hydrogen (H2) to prevent the DZ layer 15 from being deeper than about 20 to 50 µm. After the first heat treatment, the second heat treatment is performed for 5 seconds to 10 hours while maintaining the temperature of the wafer 11 at about 1100 to 1300 ° C. The two-stage heat treatment is performed while flowing about 2 to 50 slm of a gas obtained by mixing about 0.5 to 50% of hydrogen (H 2 ) with an inert gas such as nitrogen (N 2 ), argon (Ar), and neon (Ne). An inert gas such as nitrogen (N 2 ), argon (Ar), or neon (Ne) diffuses into the wafer 11 and acts as a nucleus to facilitate the precipitation of oxygen (O 2 ). Therefore, a high density BMD 17 is generated inside the wafer 11, i.e., below the DZ layer 15, for gettering heavy metal or the like remaining on the surface of the wafer 11 during the semiconductor device process.
2단계 열처리 후, 웨이퍼(11)의 온도를 1초당 1℃∼100℃의 속도로 하강시키면서 3단계 열처리한다. 3단계 열처리는 웨이퍼(11)에 질소(N2), 아르곤(Ar), 네온(Ne) 등의 불활성 가스, 수소(H2) 또는 질소(N2), 아르곤(Ar), 네온(Ne) 등의 불활성 가스에 수소(H2)를 혼합한 가스를 2 slm 내지 50 slm 정도로 흘리면서 진행하여 퀸칭(quenching)효과등을 이용하여 고밀도의 BMD(17)를 안정화시킨다. 상기에서 혼합 가스로 수소(H2)에 질소(N2), 아르곤(Ar), 네온(Ne) 등의 불활성 가스를 0.5∼50% 정도 혼합한 것을 사용할 수 있다.After the two-stage heat treatment, the three-stage heat treatment is performed while the temperature of the wafer 11 is lowered at a rate of 1 ° C to 100 ° C per second. The three-step heat treatment is performed on an inert gas such as nitrogen (N 2 ), argon (Ar), neon (Ne), hydrogen (H 2 ) or nitrogen (N 2 ), argon (Ar), neon (Ne) on the wafer 11. A gas in which hydrogen (H 2 ) is mixed with an inert gas such as 2 slm to 50 slm is flowed to stabilize the high-density BMD 17 by using a quenching effect or the like. As the mixed gas, a mixture of inert gas such as nitrogen (N 2 ), argon (Ar), neon (Ne), and the like with hydrogen (H 2 ) may be used.
본 발명에 따라 웨이퍼(11)를 3단계 열처리하면 도 3에 도시된 바와 같이 성장 결함(13)이 제거되고, 웨이퍼(11)의 표면에 DZ층(15)이 형성되고 내부에 고밀도의 BMD(17)가 형성된다.According to the present invention, the three-step heat treatment of the wafer 11 removes the growth defect 13, as shown in FIG. 3, and forms a DZ layer 15 on the surface of the wafer 11 and a high-density BMD ( 17) is formed.
상술한 바와 같이 본 발명은 웨이퍼를 확산로 또는 RTA 장치 내에서 수소(H2)를 2 slm 내지 50 slm 정도로 흘리면서 온도를 1초당 1℃∼100℃의 속도로 1100∼1300℃ 정도까지 상승시켜 1단계 열처리하여 DZ층을 20∼50㎛ 정도의 깊이로 형성한 후, 수소(H2)에 질소(N2), 아르곤(Ar), 네온(Ne) 등의 불활성 가스를 0.5∼50% 정도 혼합한 가스를 2 slm 내지 50 slm 정도로 흘리면서 웨이퍼의 1100∼1300℃ 정도에서 5초 내지 10시간 정도 동안 2단계 열처리하여 고밀도의 BMD를 생성하고, 계속해서, 질소(N2), 아르곤(Ar), 네온(Ne) 등의 불활성 가스, 수소(H2) 또는 질소(N2), 아르곤(Ar), 네온(Ne) 등의 불활성 가스에 수소(H2)를 혼합한 가스를 2 slm 내지 50 slm 정도로 흘리고 웨이퍼의 온도를 1초당 1℃∼100℃의 속도로 하강시키면서 3단계 열처리하여 고밀도의 BMD를 안정화시킨다.As described above, the present invention increases the temperature to about 1100 to 1300 ° C. at a rate of 1 ° C. to 100 ° C. per second while flowing hydrogen (H 2 ) at about 2 slm to 50 slm in the diffusion furnace or the RTA apparatus. After the step heat treatment to form a DZ layer to a depth of about 20 to 50㎛, inert gas such as nitrogen (N 2 ), argon (Ar), neon (Ne) and the like mixed with hydrogen (H 2 ) about 0.5 to 50% A gas was flowed in a range of 2 slm to 50 slm and subjected to two-step heat treatment at 1100 to 1300 ° C. for about 5 seconds to 10 hours to produce a high density BMD. Subsequently, nitrogen (N 2 ), argon (Ar), 2 slm to 50 slm of a gas in which hydrogen (H 2 ) is mixed with an inert gas such as neon (Ne) or hydrogen (H 2 ) or inert gas such as nitrogen (N 2 ), argon (Ar), or neon (Ne) Flowing to such a degree, and the temperature of the wafer is lowered at a rate of 1 ℃ to 100 ℃ per second three steps of heat treatment to stabilize the high-density BMD.
따라서, 본 발명은 1번의 웨이퍼 열처리에 의해 단결정 잉곳 성장시 발생되는 성장 결함을 제거하면서 표면에 무결함층인 DZ층을 형성하고 내부에 고밀도의 BMD층을 형성할 수 있는 잇점이 있다.Accordingly, the present invention has the advantage of forming a DZ layer which is a defect-free layer on the surface and forming a high density BMD layer therein while removing growth defects generated during single crystal ingot growth by one wafer heat treatment.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0081954A KR100372097B1 (en) | 2000-12-26 | 2000-12-26 | Method for thermal processing silicon wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0081954A KR100372097B1 (en) | 2000-12-26 | 2000-12-26 | Method for thermal processing silicon wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020052565A KR20020052565A (en) | 2002-07-04 |
KR100372097B1 true KR100372097B1 (en) | 2003-02-14 |
Family
ID=27685945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0081954A Expired - Lifetime KR100372097B1 (en) | 2000-12-26 | 2000-12-26 | Method for thermal processing silicon wafer |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100372097B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100826782B1 (en) * | 2002-10-28 | 2008-04-30 | 동부일렉트로닉스 주식회사 | Silicon Wafer Manufacturing Method |
KR100531552B1 (en) | 2003-09-05 | 2005-11-28 | 주식회사 하이닉스반도체 | Silicon wafer and method of fabricating the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH088264A (en) * | 1994-06-17 | 1996-01-12 | Toshiba Ceramics Co Ltd | Method of manufacturing silicon wafer |
KR19990044945A (en) * | 1997-11-05 | 1999-06-25 | 와다 다다시 | SOI wafer heat treatment method and SOI wafer heat treated by the method |
KR100226374B1 (en) * | 1995-03-09 | 1999-10-15 | 후지이 아키히로 | Silicon Wafer Manufacturing Method |
KR20000022803A (en) * | 1998-09-03 | 2000-04-25 | 칼 하인쯔 호르닝어 | Combined preanneal/oxidation step using rapid thermal processing |
-
2000
- 2000-12-26 KR KR10-2000-0081954A patent/KR100372097B1/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH088264A (en) * | 1994-06-17 | 1996-01-12 | Toshiba Ceramics Co Ltd | Method of manufacturing silicon wafer |
KR100226374B1 (en) * | 1995-03-09 | 1999-10-15 | 후지이 아키히로 | Silicon Wafer Manufacturing Method |
KR19990044945A (en) * | 1997-11-05 | 1999-06-25 | 와다 다다시 | SOI wafer heat treatment method and SOI wafer heat treated by the method |
KR20000022803A (en) * | 1998-09-03 | 2000-04-25 | 칼 하인쯔 호르닝어 | Combined preanneal/oxidation step using rapid thermal processing |
Also Published As
Publication number | Publication date |
---|---|
KR20020052565A (en) | 2002-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1114441B1 (en) | Method of forming non-oxygen precipitating czochralski silicon wafers | |
KR100816696B1 (en) | Opened wafer with improved internal gettering | |
KR100424872B1 (en) | semiconductor wafer made from silicon and method for producing the silicon semiconductor wafer | |
KR101822479B1 (en) | Method for producing silicon wafer | |
KR100707728B1 (en) | Production Method for Silicon Wafer and Silicon Wafer | |
CN1217393C (en) | Method for thermal processing silicon chip and silicon chip produced with the same method | |
JPH11150119A (en) | Heat treatment method and apparatus for silicon semiconductor substrate | |
KR20030039122A (en) | A Semiconductor Silicon Wafer and a Method for making thereof | |
US6436846B1 (en) | Combined preanneal/oxidation step using rapid thermal processing | |
JP2003297839A (en) | Heat treatment method for silicon wafer | |
JP4055343B2 (en) | Heat treatment method for silicon semiconductor substrate | |
JP2003115491A (en) | Method for heat treating silicon semiconductor substrate | |
KR100372097B1 (en) | Method for thermal processing silicon wafer | |
US20120049330A1 (en) | Silicon wafer and method for producing the same | |
TWI855103B (en) | Carbon-doped silicon single crystal wafer and method for manufacturing the same | |
JP2005060168A (en) | Method for producing wafer | |
KR100432496B1 (en) | Manufacturing method for annealed wafer | |
US6579589B1 (en) | Semiconductor wafer with crystal lattice defects, and process for producing this semiconductor wafer | |
JP5045710B2 (en) | Silicon wafer manufacturing method | |
JP2000203999A (en) | Semiconductor silicon wafer and manufacturing method thereof | |
WO2004070824A1 (en) | Method for removing crystal originated particles from single-crystal silicon wafer | |
JP2002176058A (en) | Method for manufacturing silicon semiconductor substrate | |
JP2602857B2 (en) | Method of improving semiconductor crystal substrate | |
JP4414012B2 (en) | Heat treatment method for silicon single crystal wafer | |
JP2019145597A (en) | Heat treatment method of silicon single crystal wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20001226 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20020923 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20030108 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20030129 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20030130 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20060112 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20070103 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20080102 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20090102 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20091223 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20101222 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20120116 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20130111 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20130111 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20131223 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20131223 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20141223 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20141223 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20151223 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20151223 Start annual number: 14 End annual number: 14 |
|
FPAY | Annual fee payment |
Payment date: 20161227 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20161227 Start annual number: 15 End annual number: 15 |
|
FPAY | Annual fee payment |
Payment date: 20171222 Year of fee payment: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20171222 Start annual number: 16 End annual number: 16 |
|
FPAY | Annual fee payment |
Payment date: 20181226 Year of fee payment: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20181226 Start annual number: 17 End annual number: 17 |
|
FPAY | Annual fee payment |
Payment date: 20191219 Year of fee payment: 18 |
|
PR1001 | Payment of annual fee |
Payment date: 20191219 Start annual number: 18 End annual number: 18 |
|
PC1801 | Expiration of term |
Termination date: 20210626 Termination category: Expiration of duration |