[go: up one dir, main page]

KR100371055B1 - Bismuth-cerium Titanate Thin Film for Capacitor of Ferroelectric Random Access Memory - Google Patents

Bismuth-cerium Titanate Thin Film for Capacitor of Ferroelectric Random Access Memory Download PDF

Info

Publication number
KR100371055B1
KR100371055B1 KR10-2001-0020068A KR20010020068A KR100371055B1 KR 100371055 B1 KR100371055 B1 KR 100371055B1 KR 20010020068 A KR20010020068 A KR 20010020068A KR 100371055 B1 KR100371055 B1 KR 100371055B1
Authority
KR
South Korea
Prior art keywords
thin film
bismuth
cerium
titanic acid
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR10-2001-0020068A
Other languages
Korean (ko)
Other versions
KR20020079274A (en
Inventor
우성일
정현진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR10-2001-0020068A priority Critical patent/KR100371055B1/en
Publication of KR20020079274A publication Critical patent/KR20020079274A/en
Application granted granted Critical
Publication of KR100371055B1 publication Critical patent/KR100371055B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/682Capacitors having no potential barriers having dielectrics comprising perovskite structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • H01L2924/1435Random access memory [RAM]
    • H01L2924/1441Ferroelectric RAM [FeRAM or FRAM]

Landscapes

  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 장시간동안 사용하여도 박막의 피로현상이 없고, 낮은 열처리 온도에서도 뛰어난 전기적 특성을 나타내는 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막 및 전기 박막의 제조방법에 관한 것이다. 본 발명의 비스무스-세리움 티탄산 박막의 제조방법은 Ce/(Ce+Bi)가 0.01 내지 0.99인 조성비를 갖는 비스무스 전구체 및 세리움 전구체의 혼합물과, 티타늄 전구체를 30 내지 800℃, 1x10-9Torr 내지 100atm에서 습식 증착방법 또는 건식 증착방법으로 기판에 증착시키는 단계 및 증착된 박막을 100 내지 600oC/분의 온도상승률 및 200 내지 800℃의 온도로 열처리하는 단계를 포함한다. 본 발명의 비스무스-세리움 티탄산 박막은 자발분극(remnant polarization) 현상을 나타내고, 캐패시터의 피로현상이 나타나지 않으므로, 비휘발성 강유전체 랜덤 억세스 메모리용 캐패시터로서 유용하게 활용될 수 있을것이다.The present invention relates to a bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film and a method for manufacturing the electrical thin film, which have no fatigue phenomenon and have excellent electrical properties even at a low heat treatment temperature even after long use. will be. Method for producing a bismuth-cerium titanate thin film of the present invention is a mixture of bismuth precursor and cerium precursor having a composition ratio of Ce / (Ce + Bi) of 0.01 to 0.99, titanium precursor 30 to 800 ℃, 1x10 -9 Torr And depositing the substrate on the substrate by a wet deposition method or a dry deposition method at 100 atm, and heat-treating the deposited thin film at a temperature increase rate of 100 to 600 ° C./min and a temperature of 200 to 800 ° C. The bismuth-cerium titanate thin film of the present invention exhibits a spontaneous polarization phenomenon and no fatigue phenomenon of the capacitor, and thus may be usefully used as a capacitor for a nonvolatile ferroelectric random access memory.

Description

비휘발성 강유전체 랜덤 억세스 메모리의 캐패시터용 비스무스-세리움 티탄산 박막{Bismuth-cerium Titanate Thin Film for Capacitor of Ferroelectric Random Access Memory}Bismuth-cerium Titanate Thin Film for Capacitor of Ferroelectric Random Access Memory}

본 발명은 차세대 초고집적도 비휘발성 강유전체 랜덤 억세스 메모리(ferroelectric random access memory, FRAM)의 캐패시터용 비스무스-세리움 티탄산 박막에 관한 것이다. 좀 더 구체적으로, 본 발명은 장시간동안 사용하여도 박막의 피로현상이 없고, 낮은 열처리 온도에서도 뛰어난 전기적 특성을 나타내는 비스무스-세리움 티탄산 박막 및 전기 박막의 제조방법에 대한 것이다.The present invention relates to a bismuth-cerium titanate thin film for a capacitor of a next generation ultra high density nonvolatile ferroelectric random access memory (FRAM). More specifically, the present invention relates to a bismuth-cerium titanate thin film and an electric thin film manufacturing method which exhibits excellent electrical properties even at low heat treatment temperatures without fatigue phenomenon of the thin film even when used for a long time.

컴퓨터의 발달에 따라, 컴퓨터의 핵심부품인 반도체소자의 개발이 가속화되고 있다. 특히, 컴퓨터의 일시적인 저장공간을 제공하는 랜덤 억세스 메모리(random access memory, RAM)와 저장된 정보를 읽기만 할 수 있는 리드 온리 메모리(read only memory, ROM)의 발달이 두드러지게되어, 읽고 쓰기가 대단히 빠른 스태틱 랜덤 억세스 메모리(static random access memory, SRAM), 사용자가 기록된 내용을 수정할 수 있는 프로그래머블 리드 온리 메모리(programmable readonly memory, PROM), 메모리 속에 저장된 내용을 지우고 재 사용할 수 있는 EPROM인(erasable programmable read only memory, EPROM) 등이 개발되었다.With the development of computers, the development of semiconductor devices, which are the core parts of computers, is accelerating. In particular, the development of random access memory (RAM), which provides a temporary storage space of a computer, and read only memory (ROM), which can only read stored information, is noticeable, so that the read and write is very fast. Static random access memory (SRAM), programmable read-only memory (PROM) that allows the user to modify the recorded content, and erasable programmable read to erase and reuse content stored in memory only memory, EPROM).

이어, 읽고 쓰기가 대단히 빠른 SRAM의 장점과, 불휘발성이며 전자회로에 프로그래밍을 할 수 있는 EPROM의 장점이 조합된 비휘발성 강유전체 랜덤 억세스 메모리(ferroelectric random access memory, FRAM)이 개발되었다. 그러나, 한 개의 강유전체 캐패시터와 한 개의 트랜지스터로 구성된 FRAM은 1개의 칩에 32KB 정도의 밀도를 가지므로, 1개의 칩에 512KB의 밀도를 가지는 SRAM, 1개의 칩에 1MB의 밀도를 가지는 EPROM 및 1개의 칩에 8MB의 밀도를 가지는 DRAM에 비하여 현저히 낮아서 상품화되지 못하고 있는 실정이다. 이는 FRAM의 캐패시터로 사용되는 물질에 문제가 있기 때문인데, 종래에 캐패시터로 사용된 물질은 납 지르코늄-티탄산(Pb[Zr,Ti]O3) 또는 스트론티움 비스무스 탄탈리움산(SrBi2Ta2O9)이 사용되었는데, 납 지르코늄-티탄산 박막은 우수한 강유전체 특성을 나타내지만, 장시간 사용시 전기적 특성이 약화되는 피로현상(fatigue)을 나타내고, 후속 처리과정에서 납의 확산과 휘발이 소자의 안정성에 악영향을 미친다는 단점이 있으며, 스트론티움 비스무스 탄탈리움산 박막은 피로현상은 일어나지 않으나, 전기적 특성을 올리기 위한 열처리 온도가 750oC 이상이기 때문에 실제공정에 적용할 수 없다는 단점을 가지고 있다.Subsequently, a nonvolatile ferroelectric random access memory (FRAM) was developed that combines the advantages of SRAM, which is extremely fast to read and write, and the advantages of nonvolatile and electronically programmable EPROM. However, a FRAM composed of one ferroelectric capacitor and one transistor has a density of about 32 KB on one chip, so an SRAM having a density of 512 KB on one chip, an EPROM having a density of 1 MB on one chip, and one Compared with DRAM having a density of 8MB on the chip, it is significantly lower than commercialized. This is because there is a problem with a material used as a capacitor of the FRAM, and the material used as a capacitor conventionally is lead zirconium-titanic acid (Pb [Zr, Ti] O 3 ) or strontium bismuth tantalum acid (SrBi 2 Ta 2). an adverse effect on the titanate thin film stability indicates a phenomenon (fatigue) fatigue which exhibits excellent ferroelectric characteristics and weakening the electric properties for a long time use, the lead diffusion and volatilization in the subsequent process devices - O 9) is, lead zirconium was used The strontium bismuth tantalum acid thin film does not suffer from fatigue, but has a disadvantage in that it cannot be applied to an actual process because the heat treatment temperature for improving electrical properties is higher than 750 ° C.

따라서, 종래의 FRAM의 캐패시터용 박막의 단점이 극복된 새로운 캐패시터용 박막을 개발하여야 할 필요성이 끊임없이 대두되었다.Therefore, there is a constant need to develop a new capacitor thin film which overcomes the disadvantages of the conventional thin film for capacitor of FRAM.

이에, 종래의 FRAM의 캐패시터용 박막의 단점이 극복된 새로운 캐패시터용 박막을 개발하고자 예의 연구노력한 결과, 비스무스 티탄산(Bi4Ti3O12)과 세리움(Ce)이 1:99 내지 99:1(몰비)로 혼합된 비스무스-세리움 티탄산으로 제조된 박막을 사용할 경우, 저온에서 열처리가 가능하고, 박막의 피로현상도 발생하지 않음을 확인하고, 본 발명을 완성하게 되었다.Accordingly, as a result of intensive research to develop a new capacitor thin film for overcoming the shortcomings of the conventional FRAM thin film capacitor, bismuth titanic acid (Bi 4 Ti 3 O 12 ) and cerium (Ce) are 1:99 to 99: 1. When using a thin film made of bismuth-cerium titanic acid mixed in a (molar ratio), it was confirmed that heat treatment is possible at low temperature, and fatigue phenomenon of the thin film was not generated, thereby completing the present invention.

결국, 본 발명의 주된 목적은 FRAM의 캐패시터용 비스무스-세리움 티탄산 박막을 제공하는 것이다.After all, the main object of the present invention is to provide a bismuth-cerium titanate thin film for a capacitor of a FRAM.

본 발명의 다른 목적은 전기 비스무스-세리움 티탄산 박막의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing an electric bismuth-cerium titanate thin film.

본 발명의 비스무스-세리움 티탄산 박막은 Ce/(Ce+Bi)가 0.01 내지 0.99인 조성비를 갖는 비스무스 전구체 및 세리움 전구체의 혼합물과, 티타늄 전구체를 30 내지 800℃, 1x10-9Torr 내지 100atm에서 습식 증착방법 또는 건식 증착방법으로 기판에 증착시키는 공정; 및, 증착된 박막을 100 내지 600oC/분의 온도상승률 및 200 내지 800℃의 온도로 열처리하는 공정에 의하여 제조된다: 이때, 습식 증착방법으로는, 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 2-메톡시에탄올, 톨루엔, 벤젠, 페놀, 2-에틸헥사논산, 아세톤 또는 아세틸아세토네이트 등의 유기용매를 이용한 액적화학증착법(LSMCD, liquid source misted chemical deposition), 졸-겔법(Sol-gel) 또는 유기금속분해법(MOD, metalorganic decomposition)을 사용할 수 있고, 건식 증착방법으로는 유기금속기상화학증착법(MOCVD, metalorganic chemical vapor deposition), 레이저 어블레이션법(laser ablation), 휘발법(evaporation) 또는 스퍼터링법(sputtering)을 사용할 수 있으며, 기판은 텅스텐(W), 몰리브덴(Mo), 루테늄(Ru), 철(Fe), 이리듐(Ir), 로듐(Rh), 백금(Pt), 니켈(Ni), 구리(Cu), 알루미늄(Al), 금(Au) 또는 전기 금속의 산화물이 80 내지 120nm 두께로 코팅된 실리콘(Si) 웨이퍼(wafer)를 사용함이 바람직하다. 또한, 열처리 공정은 공기, 산소, 질소, 수증기, 비활성기체, 아산화질소, 오존, 암모니아, 일산화질소, 이산화질소, 황화수소 또는 일산화탄소로 포화된 대기에서 수행함이 바람직하다. 아울러, 상기한 방법으로 제조된 비스무스-세리움 티탄산 박막에, La, Pr, Nd, Sm 또는 Eu을 증착시키는 단계를 추가하거나, 또는 제조된 비스무스-세리움 티탄산 박막을 반응성 이온 플라즈마 또는 저압 고밀도 플라즈마를 이용하여 처리하는 공정을 추가로 포함할 수도 있다.The bismuth-cerium titanate thin film of the present invention is a mixture of bismuth precursor and cerium precursor having a composition ratio of Ce / (Ce + Bi) of 0.01 to 0.99, and titanium precursor at 30 to 800 ° C., 1 × 10 −9 Torr to 100 atm. Depositing on the substrate by a wet deposition method or a dry deposition method; And heat-treating the deposited thin film at a temperature increase rate of 100 to 600 ° C./min and a temperature of 200 to 800 ° C. In this case, as a wet deposition method, methanol, ethanol, propanol, isopropanol, butanol, Liquid source misted chemical deposition (LSMCD), sol-gel method using organic solvents such as 2-methoxyethanol, toluene, benzene, phenol, 2-ethylhexanoic acid, acetone or acetylacetonate Alternatively, metalorganic decomposition (MOD) may be used, and as the dry deposition method, metalorganic chemical vapor deposition (MOCVD), laser ablation, evaporation or sputtering may be used. Sputtering can be used and the substrate is tungsten (W), molybdenum (Mo), ruthenium (Ru), iron (Fe), iridium (Ir), rhodium (Rh), platinum (Pt), nickel (Ni) , Copper (Cu), aluminum (Al), gold (Au) or electroplated gold It is preferable to use a silicon (Si) wafer coated with an oxide of 80 to 120 nm thick. In addition, the heat treatment process is preferably performed in an atmosphere saturated with air, oxygen, nitrogen, water vapor, inert gas, nitrous oxide, ozone, ammonia, nitrogen monoxide, nitrogen dioxide, hydrogen sulfide or carbon monoxide. In addition, the step of depositing La, Pr, Nd, Sm or Eu on the bismuth-cerium titanate thin film prepared by the above method, or the prepared bismuth-cerium titanate thin film is a reactive ion plasma or low pressure high density plasma It may further include a step of treating using.

상기 방법으로 제조된 본 발명의 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막은 자발분극(remnant polarization)과 낮은 누설전류를 나타내며, 재현성이 우수함을 알 수 있었으므로, FRAM용 캐패시터로서 유용하게 활용될 수 있을 것이다.The bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film of the present invention produced by the above method exhibits spontaneous polarization and low leakage current, and thus has excellent reproducibility. It may be usefully used as a capacitor.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .

실시예 1: 유기화학증착법을 이용한 비스무스-세리움 티탄산 박막의 제조 Example 1 Preparation of Bismuth-Serium Titanate Thin Film by Organic Chemical Vapor Deposition

제조공정상의 열처리시 대기조건, 열처리온도에 따른 비스무스-세리움 티탄산 박막의 특성변화를 측정하였다.Characteristics of bismuth-cerium titanate thin films were measured according to atmospheric conditions and heat treatment temperatures during the manufacturing process.

실시예 1-1: 열처리시 질소조건에서 비스무스-세리움 티탄산 박막의 제조 Example 1-1 Preparation of Bismuth-Serium Titanate Thin Film Under Nitrogen Condition During Heat Treatment

비스무스 2-에틸헥사노에이트(Bi[OOCCH(C2H5)C4H9]3), 세리움 나이트레이트(Ce(NO3)3) 및 티타늄 이소프로폭사이드(Ti[OiC3H7]4)를 2-메톡시에탄올(CH3OCH2CH2OH)에 용해시키고, 130oC에서 24시간동안 증류하여, 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막용 전구용액을 수득하고, 이송가스로 고순도(99.999%) 아르곤(Ar)을 이용하여, 상온에서 700Torr의 압력으로 백금(Pt)이 100nm 두께로 코팅된 실리콘(Si) 웨이퍼(wafer) 기판에 박막의 형태로 증착하며, 질소의 대기조건 하에 650oC에서 1시간 동안 열처리하고, 백금(Pt)을 얇게 증착한 다음, 질소의 대기조건 하에 650oC에서 다시 열처리하여 350nm 두께의 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막을 제조하였다. 제조된 박막은 10V의 전압에서 자발분극(remnant polarization) 8.0(μC/cm2)과 분극반전전계(coercive fieid) 76(kV/cm)를 나타내었다.Bismuth 2-ethylhexanoate (Bi [OOCCH (C 2 H 5 ) C 4 H 9 ] 3 ), cerium nitrate (Ce (NO 3 ) 3 ) and titanium isopropoxide (Ti [O i C 3) H 7 ] 4 ) is dissolved in 2-methoxyethanol (CH 3 OCH 2 CH 2 OH) and distilled at 130 ° C. for 24 hours to give bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) A thin film precursor solution, and a silicon (Si) wafer substrate coated with 100 nm thick platinum (Pt) at a pressure of 700 Torr at room temperature using high purity (99.999%) argon (Ar) as a transfer gas. Deposited in the form of a thin film, heat-treated at 650 o C for 1 hour under nitrogen atmosphere, thinly deposited platinum (Pt), and then heat-treated again at 650 o C under nitrogen atmosphere to obtain 350 nm thick bismuth- A cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film was prepared. The prepared thin film exhibited a spontaneous polarization 8.0 (μC / cm 2 ) and a coercive fieid 76 (kV / cm) at a voltage of 10V.

실시예 1-2: 열처리시 산소조건에서 비스무스-세리움 티탄산 박막의 제조 Example 1-2 Preparation of Bismuth-Serium Titanate Thin Film Under Oxygen Condition During Heat Treatment

열처리시 대기조건이 질소가 아닌 산소인 것을 제외하고는, 실시예 1-1과 동일한 방법으로 비스무스-세리움 티탄산 박막을 제조하였다.A bismuth-cerium titanate thin film was manufactured in the same manner as in Example 1-1, except that the atmospheric condition was oxygen instead of nitrogen.

실시예 1-3: 변화된 온도조건에서 비스무스-세리움 티탄산 박막의 제조 Example 1-3 Preparation of Bismuth-Serium Titanate Thin Film at Changed Temperature Conditions

열처리시 대기조건이 질소가 아닌 산소를 사용하고, 열처리온도가 600oC인 것을 제외하고는, 실시예 1-1과 동일한 방법으로 비스무스-세리움 티탄산 박막을 제조하고, 실시예 1-1 및 1-2에서 제조된 박막과 특성을 비교하였다(참조: 표 1).A bismuth-cerium titanate thin film was prepared in the same manner as in Example 1-1, except that oxygen was used instead of nitrogen for the heat treatment, and the heat treatment temperature was 600 ° C., Example 1-1 and The thin film prepared in 1-2 was compared with the characteristics (see Table 1).

열처리시 대기조건의 변화에 따른 박막의 특성비교Comparison of Characteristics of Thin Films with Changes in Atmospheric Conditions During Heat Treatment 실시예Example 10V에서의 자발분극(remnant polarization, μC/cm2)Spontaneous polarization at 10V (μC / cm 2 ) 분극반전전계(coercive fieid, kV/cm)Coercive fieid (kV / cm) 1-11-1 8.08.0 7676 1-21-2 9.29.2 8787 1-31-3 8.18.1 105105

상기 표 1에서 보듯이, 열처리시의 대기조건 또는 열처리온도가 변하여도 유사한 수준의 자발분극현상이 발생되었고, 낮은 온도에서 분극반전전계가 증가함을 알 수 있었다. 또한, 누설전류밀도(leakage current density)가 5V에서 2.78x10-7 As shown in Table 1, the spontaneous polarization phenomenon of a similar level was generated even when the atmospheric conditions or the heat treatment temperature were changed during the heat treatment, and it was found that the polarization inversion field was increased at a low temperature. Also, leakage current density is 2.78x10 -7 at 5V.

(A/cm2)이고, 5V의 전압에서 분극반전 사이클 1012까지 자발분극이 감소하지 않아서, 박막의 피로현상이 발생하지 않음을 알 수 있었다.(A / cm 2 ), the spontaneous polarization did not decrease until the polarization inversion cycle 10 12 at a voltage of 5V, it can be seen that the fatigue phenomenon of the thin film does not occur.

실시예 2: 스퍼터링법을 이용한 비스무스-세리움 티탄산 박막의 제조 Example 2 Preparation of Bismuth-Serium Titanic Thin Films by Sputtering

스퍼터링법에 사용된 스퍼터링 장비는 13.56MHz 라디오 주파수(radio frequency: rf)를 이용하며, 이온 농도를 증가시키기 위하여 자기장을 형성시켰다. 이어, RF power 100W에서 Ce/(Ce+Bi)=0.025, 0.075, 0.125, 0.1875 및 0.25의 조성으로 스퍼터링용 타겟을 준비하고, 각각의 타겟에 스퍼터링 장비로 이온을 방출하여 타겟을 분사시키고, 아르곤을 반응가스로 사용하고, 200℃, 30mTorr의 압력으로백금 (Pt)이 100nm 두께로 코팅된 실리콘 (Si) 웨이퍼에 300nm 두께의 비스무스-세리움 티탄산을 증착시켰다. 이어, 증착된 기판을 650oC에서 열처리하고, 백금(Pt)을 얇게 증착한 다음, 650oC에서 다시 열처리하여 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막을 제조하였다. 각 조성으로 제조된 박막의 자발분극값과 분극반전전계 값을 측정한 결과, Ce/(Ce+Bi)=0.125에서 최대 자발분극값 7.3(μC/cm2)과 분극반전전계(coercive fieid) 75(kV/cm)를 나타냄을 알 수 있었다.The sputtering equipment used in the sputtering method uses a 13.56 MHz radio frequency (rf) and forms a magnetic field to increase the ion concentration. Subsequently, a target for sputtering was prepared with a composition of Ce / (Ce + Bi) = 0.025, 0.075, 0.125, 0.1875, and 0.25 at RF power 100W, and the target was sprayed by emitting ions by sputtering equipment to each target, and argon Was used as a reaction gas, and 300 nm thick bismuth-cerium titanic acid was deposited on a silicon (Si) wafer coated with platinum (Pt) 100 nm thick at a pressure of 200 ° C. and 30 mTorr. Subsequently, the deposited substrate was heat-treated at 650 ° C., platinum (Pt) was thinly deposited, and then heat-treated again at 650 ° C. to produce a bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film. It was. As a result of measuring the spontaneous polarization value and the polarization inversion field value of the thin films manufactured with the respective compositions, the maximum spontaneity polarization value of 7.3 (μC / cm 2 ) and the polarization inversion field (coercive fieid) at Ce / (Ce + Bi) = 0.125 (kV / cm) was found.

실시예 3: 유기금속 기상 증착법을 이용한 비스무스-세리움 티탄산 박막의 제조 Example 3 Preparation of Bismuth-Serium Titanate Thin Films by Organometallic Vapor Deposition

비스무스 2-에틸헥사노에이트(Bi[OOCCH(C2H5)C4H9]3), 세리움 이소프로폭사이드(Ce[OiC3H7]4) 및 티타늄 이소프로폭사이드(Ti[OiC3H7]4)를 Ce/(Ce+Bi)=0.15의 값으로 혼합하고, 각 물질의 휘발온도에 맞게 가열한 다음, 산소를 이용하여 챔버로 이송시킨 후, 30Torr의 압력 및 200 내지 700oC에서 백금(Pt)이 100nm 두께로 코팅된 실리콘(Si) 웨이퍼(wafer) 기판에 증착시켰다. 이때, 온도는 200, 250, 300, 350, 400, 450, 500, 550, 600, 650 및 700oC에서 각각 증착시켜서 결정화를 위한 최적온도를 측정하였다. 이어, 산소로 포화된 대기조건 하에 600oC에서 열처리하여, 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막을 제조하였다. 그 결과, 박막의 결정화를 위한 최적온도는 500 내지 600oC이고, 최대 자발분극값은 8.3(μC/cm2)이며, 분극반전전계(coercive fieid)는 65(kV/cm)를 나타냄을 알 수 있었다.Bismuth 2-ethylhexanoate (Bi [OOCCH (C 2 H 5 ) C 4 H 9 ] 3 ), cerium isopropoxide (Ce [O i C 3 H 7 ] 4 ) and titanium isopropoxide ( Ti [O i C 3 H 7 ] 4 ) was mixed to a value of Ce / (Ce + Bi) = 0.15, heated to the volatilization temperature of each material, and then transferred to a chamber using oxygen, followed by 30 Torr of At pressure and 200-700 ° C., platinum (Pt) was deposited on a 100 nm thick coated silicon (Si) wafer substrate. At this time, the temperature was deposited at 200, 250, 300, 350, 400, 450, 500, 550, 600, 650 and 700 ° C, respectively to determine the optimum temperature for crystallization. Then, a bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film was prepared by heat treatment at 600 ° C. under atmospheric conditions saturated with oxygen. As a result, it can be seen that the optimum temperature for crystallization of the thin film is 500 to 600 o C, the maximum spontaneous polarization value is 8.3 (μC / cm 2 ), and the coercive fieid shows 65 (kV / cm). Could.

이상에서 상세히 설명하고 입증하였듯이, 본 발명은 장시간동안 사용하여도 박막의 피로현상이 없고, 낮은 열처리 온도에서도 뛰어난 전기적 특성을 나타내는 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막 및 전기 박막의 제조방법을 제공한다. 본 발명의 비스무스-세리움 티탄산 박막은 자발분극(remnant polarization)현상을 나타내고, 캐패시터의 피로현상이 나타나지 않으므로, 비휘발성 강유전체 랜덤 억세스 메모리용 캐패시터로서 유용하게 활용될 수 있을 것이다.As described and demonstrated in detail above, the present invention is a bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film that exhibits excellent electrical properties even at low heat treatment temperatures without fatigue of the thin film even after long use. And it provides a method for producing an electric thin film. Since the bismuth-cerium titanate thin film of the present invention exhibits spontaneous polarization and no fatigue of the capacitor, it may be usefully used as a capacitor for a nonvolatile ferroelectric random access memory.

Claims (11)

(ⅰ) Ce/(Ce+Bi)가 0.01 내지 0.99인 조성비를 갖는 비스무스 전구체 및 세리움 전구체의 혼합물과, 티타늄 전구체를 30 내지 800℃, 1x10-9Torr 내지 100atm에서 습식 증착방법 또는 건식 증착방법으로 기판에 증착시키는 공정; 및,(Iii) a wet deposition method or a dry deposition method of a mixture of bismuth precursor and cerium precursor having a composition ratio of Ce / (Ce + Bi) of 0.01 to 0.99 and a titanium precursor at 30 to 800 ° C. and 1 × 10 −9 Torr to 100 atm. Depositing on the substrate by a process; And, (ⅱ) 증착된 박막을 100 내지 600oC/분의 온도상승률 및 200 내지 800℃의 온도로 열처리하는 공정을 포함하는 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막의 제조방법.(Ⅱ) of the deposited thin film includes a step of heat treatment at a temperature of 100 to 600 o C / min temperature ramp rate, and from 200 to 800 ℃ of bismuth-three Solarium titanate ([Bi, Ce] 4 Ti 3 O 12) of the thin film Manufacturing method. 제 1항에 있어서,The method of claim 1, 습식 증착방법은 유기용매를 이용한 액적화학증착법(LSMCD, liquidWet deposition method is chemical vapor deposition using organic solvent (LSMCD, liquid source misted chemical deposition), 졸-겔법(sol-gel) 또는 유기금source misted chemical deposition, sol-gel or organic gold 속분해법(MOD, metalorganic decomposition)인 것을 특징으로 하는Characterized in that the metalorganic decomposition (MOD) 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막의 제조방법.Method for preparing a bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film. 제 2항에 있어서,The method of claim 2, 유기용매는 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 2-메톡Organic solvents include methanol, ethanol, propanol, isopropanol, butanol and 2-methok 시에탄올, 톨루엔, 벤젠, 페놀, 2-에틸헥사논산, 아세톤 또는 아세틸Ethanol, toluene, benzene, phenol, 2-ethylhexanoic acid, acetone or acetyl 아세토네이트인 것을 특징으로 하는It is characterized in that it is acetonate 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막의 제조방법.Method for preparing a bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film. 제 1항에 있어서,The method of claim 1, 건식 증착방법은 유기금속기상화학증착법(MOCVD, metalorganicThe dry deposition method is organic metal vapor chemical vapor deposition (MOCVD, metalorganic) chemical vapor deposition), 레이저 어블레이션법(laser ablation),chemical vapor deposition, laser ablation, 휘발법(evaporation) 또는 스퍼터링법(sputtering)인 것을Evaporation or sputtering 특징으로 하는Characterized 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막의 제조방법.Method for preparing a bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film. 제 1항에 있어서,The method of claim 1, 기판은 텅스텐(W), 몰리브덴(Mo), 루테늄(Ru), 철(Fe), 이리듐(Ir),Substrates include tungsten (W), molybdenum (Mo), ruthenium (Ru), iron (Fe), iridium (Ir), 로듐(Rh), 백금(Pt), 니켈(Ni), 구리(Cu), 알루미늄(Al), 금(Au) 또는Rhodium (Rh), platinum (Pt), nickel (Ni), copper (Cu), aluminum (Al), gold (Au) or 전기 금속의 산화물이 80 내지 120nm 두께로 코팅된 실리콘(Si) 웨이Silicon (Si) way coated with 80-120 nm thick oxide of electrometal 퍼(wafer)인 것을 특징으로 하는Characterized in that it is a wafer (wafer) 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막의 제조방법.Method for preparing a bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film. 제 1항에 있어서,The method of claim 1, 열처리는 공기, 산소, 질소, 수증기, 비활성기체, 아산화질소, 오존,Heat treatment includes air, oxygen, nitrogen, water vapor, inert gas, nitrous oxide, ozone, 암모니아, 일산화질소, 이산화질소, 황화수소 또는 일산화탄소로 포화Saturated with ammonia, nitrogen monoxide, nitrogen dioxide, hydrogen sulfide or carbon monoxide 된 대기에서 수행하는 것을 특징으로 하는Characterized by performing in 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막의 제조방법.Method for preparing a bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film. 제 1항의 방법에 의하여 제조된 비스무스-세리움 티탄산 박막에, La, Pr, Nd, Sm 또는 Eu을 증착시키는 공정을 추가로 포함하는 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막의 제조방법.Bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 , further comprising the step of depositing La, Pr, Nd, Sm or Eu on the bismuth-cerium titanic thin film prepared by the method of claim 1 ) Manufacturing method of thin film. 제 1항의 방법에 의하여 제조된 비스무스-세리움 티탄산 박막을 반응성 이온 플라즈마 또는 저압 고밀도 플라즈마를 이용하여 처리하는 공정을 추가로 포함하는 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막의 제조방법.A bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) further comprising the step of treating the bismuth-cerium titanate thin film prepared by the method of claim 1 using a reactive ion plasma or a low pressure high density plasma. Method for producing a thin film. 제 1항의 방법으로 제조된 비휘발성 강유전체 랜덤 억세스 메모리의 캐패시터용 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막.A bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film for a capacitor of a nonvolatile ferroelectric random access memory prepared by the method of claim 1. 제 7항의 방법으로 제조된 비휘발성 강유전체 랜덤 억세스 메모리의 캐패시터용 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막.A bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film for a capacitor of a nonvolatile ferroelectric random access memory prepared by the method of claim 7. 제 8항의 방법으로 제조된 비휘발성 강유전체 랜덤 억세스 메모리의 캐패시터용 비스무스-세리움 티탄산([Bi,Ce]4Ti3O12) 박막.A bismuth-cerium titanic acid ([Bi, Ce] 4 Ti 3 O 12 ) thin film for a capacitor of a nonvolatile ferroelectric random access memory prepared by the method of claim 8.
KR10-2001-0020068A 2001-04-14 2001-04-14 Bismuth-cerium Titanate Thin Film for Capacitor of Ferroelectric Random Access Memory Expired - Fee Related KR100371055B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0020068A KR100371055B1 (en) 2001-04-14 2001-04-14 Bismuth-cerium Titanate Thin Film for Capacitor of Ferroelectric Random Access Memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0020068A KR100371055B1 (en) 2001-04-14 2001-04-14 Bismuth-cerium Titanate Thin Film for Capacitor of Ferroelectric Random Access Memory

Publications (2)

Publication Number Publication Date
KR20020079274A KR20020079274A (en) 2002-10-19
KR100371055B1 true KR100371055B1 (en) 2003-02-05

Family

ID=27701143

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0020068A Expired - Fee Related KR100371055B1 (en) 2001-04-14 2001-04-14 Bismuth-cerium Titanate Thin Film for Capacitor of Ferroelectric Random Access Memory

Country Status (1)

Country Link
KR (1) KR100371055B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072220B2 (en) * 2005-12-06 2012-11-14 キヤノン株式会社 Thin film manufacturing method and electron-emitting device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236847A (en) * 1996-12-25 1998-09-08 Nippon Sheet Glass Co Ltd Optical thin film, its forming composition and ultraviolet-absorbing and heat ray-reflecting glass using the composition
KR19990018333A (en) * 1997-08-27 1999-03-15 윤덕용 SBT ferroelectric thin film manufacturing method
KR19990032086A (en) * 1997-10-16 1999-05-06 윤종용 Manufacturing Method of SBT Ferroelectric Thin Film Using Sol-Gel Method
KR19990078109A (en) * 1998-03-23 1999-10-25 구라우치 노리타카 SQUID using a sapphire substrate and a process for the preparation thereof
JP2000058788A (en) * 1998-08-13 2000-02-25 Oki Electric Ind Co Ltd Ferroelectric thin film and manufacture therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236847A (en) * 1996-12-25 1998-09-08 Nippon Sheet Glass Co Ltd Optical thin film, its forming composition and ultraviolet-absorbing and heat ray-reflecting glass using the composition
KR19990018333A (en) * 1997-08-27 1999-03-15 윤덕용 SBT ferroelectric thin film manufacturing method
KR19990032086A (en) * 1997-10-16 1999-05-06 윤종용 Manufacturing Method of SBT Ferroelectric Thin Film Using Sol-Gel Method
KR19990078109A (en) * 1998-03-23 1999-10-25 구라우치 노리타카 SQUID using a sapphire substrate and a process for the preparation thereof
JP2000058788A (en) * 1998-08-13 2000-02-25 Oki Electric Ind Co Ltd Ferroelectric thin film and manufacture therefor

Also Published As

Publication number Publication date
KR20020079274A (en) 2002-10-19

Similar Documents

Publication Publication Date Title
JP6141380B2 (en) Ferroelectric PZT film and method for manufacturing the same, capacitor, and FeRAM device
EP0990059B1 (en) Low temperature chemical vapor deposition process for forming bismuth-containing ceramic thin films useful in ferroelectric memory devices
KR100760078B1 (en) Forming method of oxide film, forming method of nitride film, forming method of oxynitride film, sputtering method of oxide film, sputtering method of nitride film, sputtering method of oxynitride film, forming method of gate insulating film
US7005303B2 (en) Low temperature chemical vapor deposition process for forming bismuth-containing ceramic thin films useful in ferroelectric memory devices
JP4212774B2 (en) Low temperature CVD method for forming a ferroelectric film using Bi alkoxide
JP3683158B2 (en) Lead germanium oxide film growth method and capacitor
KR100318457B1 (en) A method for forming ferroelectric film using plasma
KR100398495B1 (en) DEPOSITION AND ANNEALING OF MULTICOMPONENT ZrSnTi AND HfSnTi OXIDE THIN FILMS USING SOLVENTLESS LIQUID MIXTURE OF PRECURSORS
KR100371055B1 (en) Bismuth-cerium Titanate Thin Film for Capacitor of Ferroelectric Random Access Memory
JP2001107238A (en) Single-phase perovskite ferroelectric film on platinum electrode and method for forming the same
JP3500787B2 (en) Method for producing bismuth compound and dielectric substance of bismuth compound
KR100393486B1 (en) Process for the formation of la-substituted bismuth titanate film with a sol coating method
US5908658A (en) Process for forming thin film metal oxide materials having improved electrical properties
Shin et al. Ferroelectric properties of SrBi2Ta2O9 thin films with Bi2O3 buffer layer by liquid-delivery metalorganic chemical vapor deposition
KR100340951B1 (en) Process for Preparing Strontium-lead Titanate Thin Film for Capacitor of ULSI DRAM
KR100438769B1 (en) Metal oxide thin film formation method of semiconductor device using chemical vapor deposition method and capacitor formation method using same
KR100503822B1 (en) Yttrium-dopped bismuth titanate thin film and preparation thereof
Zhang et al. Deposition and properties of spin on Pb5Ge3O11 ferroelectric thin film
JPH1143328A (en) Thin film of ferroelectric substance, its production and production apparatus therefor

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20010414

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20021030

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20030122

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20030123

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20051213

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20061227

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20080102

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20090115

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20091208

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20100830

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20100830

Start annual number: 9

End annual number: 10

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee