[go: up one dir, main page]

KR100361087B1 - Preparation method of catalyst for polymerization and copolymerization of olefin - Google Patents

Preparation method of catalyst for polymerization and copolymerization of olefin Download PDF

Info

Publication number
KR100361087B1
KR100361087B1 KR1019970016301A KR19970016301A KR100361087B1 KR 100361087 B1 KR100361087 B1 KR 100361087B1 KR 1019970016301 A KR1019970016301 A KR 1019970016301A KR 19970016301 A KR19970016301 A KR 19970016301A KR 100361087 B1 KR100361087 B1 KR 100361087B1
Authority
KR
South Korea
Prior art keywords
compound
transition metal
catalyst
magnesium compound
polymerization
Prior art date
Application number
KR1019970016301A
Other languages
Korean (ko)
Other versions
KR19980078708A (en
Inventor
공갑경
황교현
Original Assignee
삼성종합화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성종합화학주식회사 filed Critical 삼성종합화학주식회사
Priority to KR1019970016301A priority Critical patent/KR100361087B1/en
Publication of KR19980078708A publication Critical patent/KR19980078708A/en
Application granted granted Critical
Publication of KR100361087B1 publication Critical patent/KR100361087B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6423Component of C08F4/64 containing at least two different metals
    • C08F4/6425Component of C08F4/64 containing at least two different metals containing magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE: A method for preparing a heterogeneous catalyst for the polymerization or copolymerization of an olefin is provided, to enable a polymer with a narrow distribution of composition and the wide distribution of molecular weight and to improve the morphology and the processability of a polymer. CONSTITUTION: The method comprises the steps of reacting tetrabromocresol with a Grinard reagent to prepare a liquid magnesium compound; heating the obtained magnesium compound to 40-50 deg.C to prepare a solid magnesium compound; and reacting the obtained magnesium compound with the chelated transition metal compound represented by the formula I, wherein R1 and R2 are an aliphatic or aromatic hydrocarbon group; M is a transition metal of group 4; X is a halogen atom; and A and B are O or other heteroatoms. Also the method comprises the steps of reacting a mixture of tetrabromocresol and a chelate ligand in the ratio of 10:3 to 10: 1.5 in an ether solvent, with a Grinard reagent to prepare a solid chelate ligand-containing magnesium compound; heating and reacting the obtained magnesium compound with the transition metal compound of group 4.

Description

올레핀 중합 및 공중합용 촉매의 제조방법Process for preparing catalyst for olefin polymerization and copolymerization

본 발명은 적어도 한 개 이상의 알콕시기(alkoxide) 리간드에 의해 킬레이트된 전이금속화합물이 그리냐드 시약과 테트라브로모 크레졸의 반응에 의해 생성된 마그네슘 화합물 담지체에 담지되어 있는 올레핀 중합 및 공중합용 비균일계 (Heterogeneous) 촉매의 제조방법에 관한 것이다.The present invention is a non-uniform for olefin polymerization and copolymerization in which a transition metal compound chelated by at least one alkoxide ligand is supported on a magnesium compound carrier produced by the reaction of a Grignard reagent with tetrabromo cresol. The present invention relates to a method for preparing a heterogeneous catalyst.

80년대 들어 각광을 받기 시작한 메탈로센 화합물을 이용한 균일계 촉매가 우수한 (공)중합성에도 불구하고 메탈로센 촉매에 의해 제조된 폴리머는 분자량이 작은 문제점을 노출하고 있거나 사이클로펜타다이에닐기에 전자적 또는 입체 공간적인 환경을 조절하는 인데닐기(Indenyl), 사이클로헵타디엔기(Cycloheptadiene) 및 후로레닐기(Fluorenyl)와 같은 특수한 치환기를 갖는 사이클로펜타다이에닐기의 합성이 요구되고 또한 이렇게 복잡한 치환기를 가진 메탈로센 화합물의 합성은 그 제조원가가 매우 비싸지는 등의 단점을 내포하고 있으며, 일반적인 균일계 촉매가 갖는 단점인 폴리머의 입자 성상을 조절하기 어려운 문제점이 있다. 한편 전통적인 사염화티탄(TiCl4)을 기본으로 하는 마그네슘 담지형 촉매는 폴리머의 입자성상 조절능력이 우수한 반면 공중합성이 열세하거나 분자량 분포 및 폴리머의 조성 분포가 넓어 폴리머의 충격 강도, 투명성, 안티-블록킹(Anti-blocking)성, 열 밀봉 (heat sealing)온도 등에서 메탈로센 촉매에 비해 열세를 보이는 단점을 노출하고 있다. 이에 메탈로센과 같이 합성이 까다롭지 않은 전이금속 화합물을 포함하는 킬레이트된 유기금속 화합물을 이용한 촉매의 개발을 위한 노력이 지속되고 있거나 메탈로센과 같은 화합물을 비균일계 담지체 성분에 담지시켜 비균일계 메탈로센 촉매를 개발하려는 노력이 지속되고 있다. 예를 들어, 알콕시기에 의해 킬레이트된 티탄화합물이나 지르코니움화합물은 그 합성이 매우 용이하고 까다로운 유기금속화학적 반응조건이 요구되지 않아 연구가 활발히 진행되고 있다. 일본국 공개특허 제 소 63-191811호에는 티탄할라이드 화합물의 할라이드 리간드를 TBP 리간드(6-터트 부틸-4-메틸페녹시)로 치환한 화합물을 촉매성분으로 하여 에틸렌 및 프로필렌을 중합한 결과를 발표하였다. MAO를 조촉매로 사용하여 에틸렌 및 프로필렌을 중합한 결과 고활성이면서도 분자량이 높은(평균 분자량 = 3,600,000 이상) 폴리머가 형성되었음을 보고하였다. 미합중국 특허 제5,134,104호에는 사염화티탄의 할라이드 리간드를 부피가 큰 아민 리간드로 바꾼 다이옥틸아민티탈할라이드[(C8H17)2NTiCl3] 화합물을 촉매 성분으로 한 올레핀 중합용 촉매를 발표하였다. 미국의 J. Am. Chem. Soc 제117호 3008페이지에는 전이금속의 입체적 공간을 제한할 수 있는 킬레이트 화합물로 티탄이나 지르코니움 전이금속에 1,1'-바이-2,2'-나프톡시 리간드(1,1'-bi-2,2'-naphthol)를 킬레이트 결합시킨 화합물 및 그 유도체를 사용한 올레핀 중합용 촉매를 발표하였고 일본국 공개특허 제 평6-140711호 및 유럽특허 제0606125A2호에는 티탄할라이드 및 지르코니움 할라이드 화합물의 할라이드 리간드를 킬레이트된 페녹시그룹으로 치환하여 고분자량의 중합체를 생성하면서도 분자량분포가 좁은 킬레이트 올레핀 중합용 촉매를 발표하였다. 상기한 킬레이트된 전이금속 화합물을 이용한 촉매는 일반적으로 메탈로센 촉매에서 보여주는 바와 같은 우수한 (공)중합성을 갖는 것으로 예상된다. 즉, 티탄 또는 지르코니움에 결합된 킬레이트 리간드의 입체적 구조는 전이금속의 파이(π) 전자궤도(orbital)를 입체적으로 제한(localize)하여 활성점인 티탄이나 지르코니움과 올레핀이 배위결합하는 데에 사용되는 시그마(σ) 전자궤도(orbital)에 보다 넓은 공간을 제공하여 공중합체의 접근이 보다 용이하게 되어 공중합성이 증가하는 경향을 보여준다. 그러나 상기에 보고된 알콕시기에 의해 킬레이트 결합된 티탄이나 지르코니움 화합물을 이용한 촉매는 메탈로센 화합물을 이용한 촉매보다는 유기금속적인 합성이 까다롭지 않은 장점은 있는 반면, 균일계 촉매로 사용하는 바, 폴리머의 입자형상 (morphology)를 조절하기 어렵고 기존의 상업공정에 직접 적용하기에는 중합공정의 변경 및 조절이 필요한 단점이 있고 값비싼 메틸알루미녹산(MAO) 또는 보론화합물을 조촉매로 사용해야 하는 단점이 있다.Despite the excellent (co) polymerization of homogeneous catalysts with metallocene compounds, which have been in the spotlight in the 1980s, polymers produced by metallocene catalysts exhibit problems of low molecular weight or cyclopentadienyl groups. Synthesis of cyclopentadienyl groups with special substituents such as Indenyl, Cycloheptadiene and Fluorenyl, which controls the electronic or steric space environment, is required. Synthesis of the metallocene compound has a disadvantage that the production cost is very expensive, and there is a problem that it is difficult to control the particle properties of the polymer, which is a disadvantage of a general homogeneous catalyst. Magnesium-supported catalysts based on traditional titanium tetrachloride (TiCl 4 ), on the other hand, have excellent polymer particle control properties, but are poorly copolymerizable or have a wide molecular weight distribution and polymer composition distribution. (Anti-blocking), heat sealing (heat sealing), etc. are exposed to the disadvantages that show a poor compared to the metallocene catalyst. Accordingly, efforts have been made to develop catalysts using chelated organometallic compounds including transition metal compounds, such as metallocenes, which are not difficult to synthesize, or are heterogeneous by supporting compounds such as metallocenes on non-uniform carrier components. Efforts have been made to develop catalysts based on metallocenes. For example, titanium compounds or zirconium compounds chelated by an alkoxy group are very easy to synthesize, and demanding organometallic chemical reaction conditions are not actively studied. Japanese Patent Application Laid-Open No. 63-191811 discloses the result of polymerizing ethylene and propylene using a catalyst component in which a halide ligand of a titanium halide compound is substituted with a TBP ligand (6-tert butyl-4-methylphenoxy). It was. Polymerization of ethylene and propylene using MAO as a promoter reported the formation of a high activity, high molecular weight polymer (average molecular weight = 3,600,000 or more). U.S. Patent No. 5,134,104 discloses a catalyst for olefin polymerization using a dioctylaminetitahalide [(C 8 H 17 ) 2 NTiCl 3 ] compound as a catalyst component in which a halide ligand of titanium tetrachloride is replaced with a bulky amine ligand. J. Am. Chem. Soc No. 117 3008, a chelate compound that can limit the steric space of transition metals, contains 1,1'-bi-2,2'-naphthoxy ligands (1,1'-bi) on titanium or zirconium transition metals. -2,2'-naphthol) has been disclosed a catalyst for olefin polymerization using a compound chelate-bonded and derivatives thereof, and Japanese Unexamined Patent Publication Nos. 6-140711 and 0606125A2 have a titanium halide and a zirconium halide compound A catalyst for polymerizing a chelated olefin with a narrow molecular weight distribution while producing a high molecular weight polymer by replacing a halide ligand with a chelated phenoxy group. Catalysts using the chelated transition metal compounds described above are generally expected to have good (co) polymerization as shown in metallocene catalysts. That is, the three-dimensional structure of the chelate ligand bound to titanium or zirconium stericly localizes the pi (π) orbital of the transition metal so that the active site of titanium, zirconium and olefins is coordinated. It provides a wider space for the sigma orbital used to make the copolymer easier to access and shows a tendency to increase copolymerizability. However, while the catalyst using the titanium or zirconium compound chelate-bonded by the alkoxy group reported above has the advantage that the organometallic synthesis is not more difficult than the catalyst using the metallocene compound, it is used as a homogeneous catalyst. It is difficult to control the morphology of the polymer, and there is a disadvantage that it is necessary to change and control the polymerization process and apply expensive methylaluminoxane (MAO) or boron compound as a promoter for direct application to existing commercial processes. .

한편, 최근 들어 메탈로센을 무기담지체에 담지시켜 비균일계 촉매로 제조하고자 하는 연구가 매우 활발히 진행되어 많은 진전을 보이고 있다. 이는 비균일계 촉매를 사용하는 기존의 상업 공정에 메탈로센 촉매를 직접 적용하도록 하는 노력으로 이해된다. 예를 들어 미합중국 특허 제5,439,995호 및 미합중국 특허제5,455,316호 등에는 지르코노센 및 타이타노센 화합물을 마그네슘 또는 실리카 화합물에 담지시켜 입자 성상이 우수하고 공중합 특성이 우수한 비균일계 촉매의 제조를 발표하였다. 그러나 현재까지 마그네슘 화합물의 담지체 성분에 담지시킨 메탈로센 올레핀 중합시 필요한 조촉매로 값비싼 메틸알루미녹산(MAO) 또는 보론화합물을 조촉매로 사용해야 하는 단점이 있다. 메탈로센 촉매 또는 킬레이트된 유기금속화합물에 의해 제조된 폴리머의 또 다른 특징은 분자량 분포가 좁은 폴리머 (Mw/Mn=2∼5)를 생성하는 것이어서 현재까지는 폴리머의 가공측면에서 불리한 면을 갖고 있다. 최근 들어 긴 가지 사슬(long chain branch)을 갖는 폴리머를 생성하는 억제된 기하(Constrained Geometry)를 갖는 메탈로센이 개발되어 폴리머의 가공성이 향상된 메탈로센 촉매의 개발이 진행되고 있으나 Z/N 촉매가 갖는 넓은 분자량 분포의 폴리머가 갖는 우수한 가공성에는 못 미치고 있다.On the other hand, in recent years, research to manufacture a non-uniform catalyst by supporting the metallocene on the inorganic carrier has been very active, showing a lot of progress. This is understood as an effort to directly apply metallocene catalysts to existing commercial processes using non-homogeneous catalysts. For example, U. S. Patent No. 5,439, 995 and U. S. Patent No. 5, 455, 316, etc., disclose the preparation of non-uniform catalysts having excellent particle properties and excellent copolymerization properties by supporting zirconocene and titanocene compounds on magnesium or silica compounds. . However, to date, expensive methylaluminoxane (MAO) or boron compounds have to be used as cocatalysts as cocatalysts required for the polymerization of metallocene olefins supported on the support component of magnesium compounds. Another characteristic of polymers produced by metallocene catalysts or chelated organometallic compounds is the production of polymers with narrow molecular weight distribution (Mw / Mn = 2-5), which has been disadvantageous in terms of processing of polymers to date. . Recently, metallocenes with constrained geometries that produce polymers with long chain branches have been developed to develop metallocene catalysts with improved processability. It does not reach the outstanding workability which the polymer of the wide molecular weight distribution which has has.

이에 본 발명의 방법은 킬레이트 결합된 4족 전이금속 화합물(예를 들면, 티탄 또는 지르코니움 화합물)의 촉매 성분을 특정한 방법에 의해 제조된 마그네슘 화합물에 담지시켜 비균일계 촉매로 제조하는 것을 특징으로 하며, 폴리머의 입자성상(morphology)이 우수하고 공중합 특성이 우수하여 중합체의 조성 분포가 좁으며 넓은 분자량 분포를 가지므로써 폴리머의 가공성이 우수한 제4세대 촉매 및 값비싼 메틸알루미녹산(MAO) 또는 보론화합물을 조촉매로 사용하지 않고 트리알킬 알루미늄화합물과 같은 유기금속 알루미늄 화합물을 조촉매로 사용하는 올레핀 중합 및 공중합 방법을 제공하는 것을 목적으로 한다.Therefore, the method of the present invention is characterized in that a catalyst component of a chelate-bonded Group 4 transition metal compound (eg, titanium or zirconium compound) is supported on a magnesium compound prepared by a specific method to prepare a non-uniform catalyst. 4th generation catalyst with excellent processability of polymer and expensive methylaluminoxane (MAO) or polymer because of excellent polymer morphology and excellent copolymerization characteristics, narrow composition distribution of polymer and broad molecular weight distribution An object of the present invention is to provide an olefin polymerization and copolymerization method using an organometallic aluminum compound such as a trialkyl aluminum compound as a promoter without using the boron compound as a promoter.

본 발명의 올레핀 중합 및 공중합용 촉매는 전이금속성분으로 이루어진 주촉매 성분과 유기금속알루미늄 화합물로 이루어진 조촉매 성분으로 구성된다. 전이금속 성분으로 이루어진 주촉매 성분은 그리냐드 화합물에 특정의 할라이드 및 하이드록기를 포함하는 방향족 화합물을 반응시킴으로써 마그네슘 할라이드 성분의 담지체성분을 제조하고 여기에 하기 일반식(I)로 표시되는 킬레이트된 전이금속(예를들면, 티타니움 또는 지르코니움) 화합물을 접촉 반응시켜 제조된다. 조촉매 성분은 값비싼 메틸알루미녹산(MAO)을 사용하지 않고 트리알킬 알루미늄과 같은 유기금속알루미늄 화합물을 사용하는 것을 특징으로 한다.The catalyst for olefin polymerization and copolymerization of the present invention is composed of a main catalyst component composed of a transition metal component and a cocatalyst component composed of an organometallic aluminum compound. The main catalyst component composed of a transition metal component prepares a carrier component of the magnesium halide component by reacting a Grignard compound with an aromatic compound including a specific halide and a hydroxyl group, and a chelated transition represented by the following general formula (I) Prepared by contact reaction of a metal (eg, titanium or zirconium) compound. The promoter component is characterized by the use of organometallic aluminum compounds such as trialkyl aluminum without the use of expensive methylaluminoxanes (MAO).

Figure pat00001
Figure pat00001

여기에서, R1및 R2는 지방족 또는 방향족 탄화수소, M은 4족 전이금속원소, X는 할라이드 원소, A 및 B는 각각 산소원자 또는 헤테로 원자를 나타낸다.Here, R 1 and R 2 are aliphatic or aromatic hydrocarbons, M is a Group 4 transition metal element, X is a halide element, and A and B each represent an oxygen atom or a hetero atom.

이하 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따르면, 전이금속 성분으로 이루어진 주촉매 성분의 제조에 있어서 마그네슘 화합물의 담지체 성분은 하기 반응식(1)에 나타난 바와 같이 부틸마그네슘 클로라이드와 같은 그리냐드 시약과 테트라브로모크레졸과 같이 특수한 구조를 지닌 할라이드 성분과의 반응에 의해 제조된다.According to the present invention, in the preparation of the main catalyst component consisting of transition metal components, the carrier component of the magnesium compound has a special structure such as Grignard reagent such as butylmagnesium chloride and tetrabromocresol, as shown in the following reaction formula (1). It is prepared by reaction with a halide component having

반응식(1)Scheme (1)

2RMgCl + Br4(Me)C6(OH) → [Br4(Me)C6OMgCl]n[RMgCl]m(R2O)P (투명용액)2RMgCl + Br 4 (Me) C 6 (OH) → [Br 4 (Me) C 6 OMgCl] n [RMgCl] m (R 2 O) P (clear solution)

Figure pat00002
Figure pat00002

테트라브로모크레졸은 그리냐드 시약과 상온에서 반응시 하이드록시기의 수소가 마그네슘 성분에 치환되면서 에테르 용매에 잘 용해되는 액상의 마그네슘 화합물을 생성한다. 이렇게 생성되는 투명한 액상의 마그네슘 화합물을 포함하는 액상의 용액을 서서히 승온하여 잔여의 그리냐드 시약이 방향족 탄소에 결합된 브로마이드를 치환시키는 반응에 의해 고체의 마그네슘 화합물을 생성하게 되는데, 이때 반응온도의 조절에 의해 생성되는 마그네슘 화합물의 입자 성상을 조절할 수 있다. 일반적으로 공지되어 있는 것처럼, 투명한 액상상태의 마그네슘 화합물의 생성은 우수한 입자 성상을 갖는 마그네슘 화합물의 생성에 매우 중요하나 일반적으로 알콕시기 또는 아릴록시기를 갖는 마그네슘 할라이드 성분은 에테르 용매에서 액상으로 존재하기가 어려운 것으로 알려져 있다. 그러나, 본 발명에 의하면, 반응시키는 그리냐드 시약의 몰비를 반응시키는 하이드록시기의 당량수의 2배로 반응시키면 에테르 용매속에서 균일한 액상의 투명용액을 얻을 수 있다. 또한 투명 용액을 얻은 후, 추가 반응을 통해 고체상태의 마그네슘 화합물을 단계적으로 제조함으로써 우수한 입자 성상을 갖는 마그네슘 할라이드의 담지체 성분을 제조하는 것을 특징으로 한다. 이는 테트라브로모크레졸이 갖는 하이드록시기와 4개의 브로마이드기의 상호작용에 의한 것으로 예상된다. 구체적으로 설명하면, 부틸마그네슘할라이드 또는 다이부틸마그네슘과 같은 그리냐드 시약과 테트라브로모크레졸을 2∼3 : 1의 당량비로 에테르용매 하에 10℃∼20℃의 온도에서 반응시키면 반응 초기에 흰색 고체의 마그네슘화합물이 생성되었다가 곧 다시 투명한 액상의 마그네슘 화합물 용액으로 변화하게 된다. 이렇게 투명한 액상 용액으로 변한 마그네슘 화합물 용액을 온도 40∼50℃의 미지근한 온도에서 서서히 반응시키면 미반응한 그리냐드 시약과 아릴 브로마이드가 반응을 하여 고체상태의 마그네슘 담지체 성분이 제조된다, 또 다른 방법으로는 그리냐드 시약을 에테르 용매와 혼합한 후, 그리냐드 시약에 테트라브로모크레졸 용액을 미지근한 온도인 40∼50℃에서 서서히 적가하므로써 입자 성상이 우수한 마그네슘 화합물의 담지체 성분을 제조한다. 이 반응에 사용될 수 있는 에테르용매로는 끊는점이 60℃ 이상인 다이부틸에테르 또는 다이아이소아밀에테르 등이 적합하며, 반응온도는 상기한 대로 40∼50℃가 적합하며 반응 후에는 충분한 반응을 위해 80∼90℃에서 1시간 이상 충분히 반응시킨다. 이렇게 제조된 마그네슘 화합물은 모양이 타원형이며 크기가 20∼60μm의 분포를 갖는다. 이렇게 제조된 담지체는 탄화수소 용매에 의해 세척함으로써 미반응물질을 제거한다. 특이한 점은 하이드록시기 또는 할라이드기를 포함하는 다른 종류의 방향족 유기 화합물(예를 들면 2,4,6-트리브로모페놀. 2,3-다이브로모프로파놀, 카본테트라클로라이드, 클로로벤젠 등)은 갖은 반응조건에서 그리냐드 시약과 반응하여 액상의 마그네슘화합물을 만들지 못한다는 것이다. 이들은 그리냐드 시약과 반응시 곧바로 고체의 마그네슘 화합물을 만들기 때문에 입자 성상의 조절이 용이하지 않아 다른 방법에 의해 담체의 입자 성상을 조절해야 한다. 그러나 이렇게 테트라브로모클레졸의 액상의 마그네슘 화합물을 만들 수 있는 독특한 특성은 테트라브로모크레졸이 갖는 구조적 특성에서 오는 것이라 사료된다.Tetrabromocresol generates a liquid magnesium compound that dissolves well in an ether solvent while hydrogen of a hydroxy group is substituted with a magnesium component when reacting with a Grignard reagent at room temperature. The liquid solution containing the transparent liquid magnesium compound thus produced is gradually heated to produce a solid magnesium compound by a reaction in which the remaining Grignard reagent substitutes bromide bonded to the aromatic carbon, wherein the reaction temperature is controlled. It is possible to adjust the particle properties of the magnesium compound produced by. As is generally known, the production of a transparent liquid phase magnesium compound is very important for the production of a magnesium compound having excellent particle properties, but in general, the magnesium halide component having an alkoxy group or an aryloxy group is not present in the liquid phase in an ether solvent. It is known to be difficult. However, according to the present invention, when the molar ratio of the Grignard reagent to be reacted is twice as large as the equivalent number of the hydroxy group to be reacted, a uniform liquid transparent solution can be obtained in an ether solvent. In addition, after obtaining a clear solution, the carrier component of the magnesium halide having excellent particle properties by producing a magnesium compound in a solid state through a further reaction is characterized in that the manufacturing. This is expected to be due to the interaction of the hydroxyl group and four bromide groups of tetrabromocresol. Specifically, when a Grignard reagent such as butylmagnesium halide or dibutylmagnesium and tetrabromocresol are reacted at an temperature of 10 ° C. to 20 ° C. under an ether solvent in an equivalent ratio of 2 to 3: 1, a white solid is obtained at the beginning of the reaction. Magnesium compounds are produced and soon converted into clear liquid magnesium compound solutions. When the magnesium compound solution, which is turned into a transparent liquid solution, is slowly reacted at a lukewarm temperature of 40 to 50 ° C., an unreacted Grignard reagent and an aryl bromide react to produce a solid magnesium carrier component. After the Grignard reagent was mixed with an ether solvent, a tetrabromocresol solution was slowly added dropwise to the Grignard reagent at 40 to 50 ° C. at a lukewarm temperature to prepare a carrier component of a magnesium compound having excellent particle properties. As the ether solvent that can be used for this reaction, dibutyl ether or diisoamyl ether having a breaking point of 60 ° C. or higher is suitable, and the reaction temperature is preferably 40 to 50 ° C. as described above. It is made to fully react at 90 degreeC for 1 hour or more. The magnesium compound thus prepared is oval in shape and has a distribution of 20 to 60 µm in size. The thus prepared support is removed by washing with a hydrocarbon solvent. Of particular note are other types of aromatic organic compounds (e.g., 2,4,6-tribromophenol, 2,3-dibromopropanol, carbon tetrachloride, chlorobenzene, etc.) containing hydroxyl or halide groups Under various reaction conditions, it cannot react with Grignard reagent to form liquid magnesium compound. Since they form a solid magnesium compound upon reaction with the Grignard reagent, it is not easy to control the particle properties. Therefore, the particle properties of the carrier must be controlled by other methods. However, the unique characteristic that can make the liquid magnesium compound of tetrabromocresol comes from the structural characteristics of tetrabromocresol.

킬레이트된 전이금속 화합물의 제조는 일반적인 유기금속 화학적 합성방법에 의하여 이루어진다. 구체적으로 하기 반응식(II)에 나타난 바와 같이, 하이드록시기 또는 아미녹시기와 같이 전이금속할라이드 화합물과 결합할 수 있는 결합기를 갖는 킬레이트 리간드를 다이클로로메탄과 같은 알킬할라이드 용매하애 티타니움할라이드 또는 지르코니움할라이드 같은 전이금속할라이드 성분과 반응시켜 킬레이트된 전이금속 화합물을 합성한다. 전이금속화합물로서 티타니움 화합물을 사용할 경우 TiCl4(THF)2형태의 고체 화합물을 사용해도 반응은 무난히 이루어지며 반응용매로는 톨루엔과 같은 탄화수소를 사용하는 것보다 클로로포름이나 다이클로로메탄과 같은 알킬할라이드 용매를 사용하면 반응생성물의 분리가 쉽다.The preparation of chelated transition metal compounds is by conventional organometallic chemical synthesis methods. Specifically, as shown in the following scheme (II), a chelate ligand having a linking group capable of bonding with a transition metal halide compound, such as a hydroxyl group or an amino group, may be substituted with an alkyl halide solvent such as dichloromethane or titanium halide or zirconia. A chelated transition metal compound is synthesized by reacting with a transition metal halide component such as umhalide. In the case of using a titanium compound as a transition metal compound, even if a solid compound of the TiCl 4 (THF) 2 type is used, the reaction is performed well, and an alkyl halide solvent such as chloroform or dichloromethane is used as a reaction solvent rather than using a hydrocarbon such as toluene. The separation of the reaction product is easy using.

반응식(II)Scheme (II)

Figure pat00003
Figure pat00003

(여기에서 R1및 R2는 지방족 또는 방향족 탄화수소, A 및 B는 산소원자 또는 헤테로 원자를 나타낸다.)(Wherein R 1 and R 2 are aliphatic or aromatic hydrocarbons, A and B represent an oxygen atom or a hetero atom).

상기 반응에 사용될 수 있는 알콕사이드 혹은 아미녹시기를 갖는 킬레이트 리간드의 예로는 에틸렌글리콜, 프로필렌글리콜, 펜타에릴트리톨, 2,2-바이페놀 및 그 유도체, 캐티콜, 테트라브로모캐티콜, 테트라클로로캐티콜, 2,3-다이히드록시나프탈렌, 1,8-다이하이드록시나프탈렌, 1,10-다이하이드록시페난트린, 2,3-다이히드록시피리딘, 2,3-다이히드록시퀴녹사린, 2,2'-하이드록시바이페닐에테르 및 그 유도체, 1,8-다이히드록시안트라퀴논, 2-아세틸피롤, 2-벤조일피롤, 8-하이드록시퀴논, 메틸아세틸아세톤, 메틸아세틸아세토네이트 등을 들 수 있다. 더욱 바람직한 킬레이트 리간드로는 4족 전이금속과 반응하여 오원환(5-membered ring)의 구조를 이루는 캐티를, 테트라브로모캐티콜, 테트라클로로캐티콜, 2,3-다이히드록시나프탈렌, 4-t-부틸캐티콜, 2,3-다이히드록시피리딘, 8-하이드록시퀴논 등이 있다.Examples of chelating ligands having alkoxides or aminoxy groups that can be used in the reaction include ethylene glycol, propylene glycol, pentaerythritol, 2,2-biphenol and derivatives thereof, catholic, tetrabromocatholic, tetra Chlorocatechol, 2,3-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 1,10-dihydroxyphenanthrine, 2,3-dihydroxypyridine, 2,3-dihydroxyquinoxa Lean, 2,2'-hydroxybiphenyl ether and derivatives thereof, 1,8-dihydroxyanthraquinone, 2-acetylpyrrole, 2-benzoylpyrrole, 8-hydroxyquinone, methylacetylacetone, methylacetylacetonate Etc. can be mentioned. More preferred chelate ligands include a catiyl which reacts with a Group 4 transition metal to form a 5-membered ring, tetrabromocatechol, tetrachlorocatechol, 2,3-dihydroxynaphthalene, 4-t. Butyl cationic, 2,3-dihydroxypyridine, 8-hydroxyquinone and the like.

이렇게 제조된 킬레이트 화합물을 탄화수소 용매하에 상기에서 제조한 마그네슘화합물의 담지체 성분과 반응시킴으로써 촉매의 제조는 완성된다. 즉, Ti/Mg 또는 Zr/Mg의 반응 몰비율을 0.6∼0.2로 하여 상기에서 제조한 마그네슘 화합물의 담지체 성분과 티타니움 할라이드 또는 지르코니움할라이드 같은 전이금속 할라이드 화합물을 반응온도 70∼90℃ 사이에서 접촉 반응시킴으로써 촉매의 제조는 이루어진다. Ti/Mg 또는 Zr/Mg의 몰비율이 0.6 이상이면 마그네슘 표면에 전이 금속 성분의 분포가 조밀하게 되어 생성되는 폴리머의 입자 성상(morphology)이 조악해지는 경향이 있다. 좀 더 편리한 제조방법으로는 반응식(n)에 기재한 반응을 기 제조한 마그네슘 화합물의 담지체 성분의 존재하에 진행시키는 것이다. 이 방법에 의하면 킬레이트된 전이금속화합물을 제조한 후 별도로 마그네슘 화합물의 담지체 성분에 추가로 반응시키는 과정을 생략할 수 있어 반응공정을 단순화시킬 수 있는 장점이 있다. 즉, 하이드록시기 또는 아미녹시기와 같이 전이금속 할라이드 화합물과 킬레이트 결합할 수 있는 킬레이트 리간드를 탄화수소 용매하에 마그네슘 화합물의 담지체 성분과 충분히 교반한 후, 전이금속 할라이드 화합물을 적가시킴으로써 반응식(Ⅱ)의 반응이 마그네슘 할라이드 화합물의 접촉 표면에서 일어나도록 하여 킬레이트된 전이금속 화합물이 직접 마그네슘 화합물의 담지체 성분에 담지된 촉매를 제조할 수 있다. 즉, 상기에서 제조한 마그네슘 화합물의 담지체 성분을 탄화수소 용매에 현탁시킨 후, 킬레이트 리간드를 마그네슘 성분과의 비율이 0.6∼0.2가 되게 혼합한 후, 킬레이트 리간드와 반응할 수 있는 당량수만큼의 티타니움클로라이드 혹은 지르코니움할라이드 화합물을 반응시킴으로써 편리하게 촉매를 제조할 수 있다.The preparation of the catalyst is completed by reacting the chelate compound thus prepared with the carrier component of the magnesium compound prepared above in a hydrocarbon solvent. That is, the carrier component of the magnesium compound prepared above and the transition metal halide compound such as titanium halide or zirconium halide with a reaction molar ratio of Ti / Mg or Zr / Mg of 0.6 to 0.2 are used at a reaction temperature of 70 to 90 ° C. The catalyst is prepared by the catalytic reaction at. If the molar ratio of Ti / Mg or Zr / Mg is 0.6 or more, the distribution of transition metal components on the magnesium surface becomes dense, resulting in a poor grain morphology of the resulting polymer. A more convenient production method is to proceed the reaction described in Scheme (n) in the presence of the carrier component of the magnesium compound prepared previously. According to this method, the process of preparing a chelated transition metal compound and then reacting additionally with the carrier component of the magnesium compound can be omitted, thereby simplifying the reaction process. That is, the chelating ligand capable of chelation with the transition metal halide compound, such as a hydroxy group or an amino group, is sufficiently stirred with the carrier component of the magnesium compound in a hydrocarbon solvent, and then dropwise added the transition metal halide compound is represented by the reaction formula (II). Reaction can occur at the contact surface of the magnesium halide compound to prepare a catalyst in which the chelated transition metal compound is directly supported on the support component of the magnesium compound. That is, after suspending the carrier component of the magnesium compound prepared above in a hydrocarbon solvent, the chelating ligand is mixed in a ratio of 0.6 to 0.2 with the magnesium component, and then the titanium is equivalent to the number of equivalents of the titanium that can react with the chelating ligand. The catalyst can be conveniently prepared by reacting a chloride or zirconium halide compound.

또 다른 방법으로는 하기 반응식(Ⅲ)에 나타난 바와 같이 테트라브로모크레졸을 에테르 용매하에 킬레이트 리간드와 혼합한 후, 그리냐드 시약과 반응시킴으로써 마그네슘 화합물의 담지체 성분과 마그네슘에 결합된 킬레이트 화합물이 혼합된 고체를 제조하고 이렇게 제조된 고체에 티타니움할라이드 같은 4족 전이금속 화합물을 반응시켜 킬레이트 화합물이 마그네슘 화합물의 담지체 성분에 담지된 비균일계 촉매를 제조하는 방법이 있다.In another method, tetrabromocresol is mixed with a chelating ligand in an ether solvent, and then reacted with a Grignard reagent, as shown in Scheme (III), to mix the carrier component of the magnesium compound with the chelate compound bound to magnesium. There is a method of preparing a non-uniform catalyst in which a chelate compound is supported on a carrier component of a magnesium compound by preparing a solid, and reacting the thus prepared solid with a Group 4 transition metal compound such as titanium halide.

반응식 (Ⅲ)Scheme (III)

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

즉, 상기 반응식(Ⅲ)에 나타난 바와 같이 테트라브로모크레졸과 킬레이트리간드를 10:3∼10:1.5의 비율로 혼합하여 에테르용매에 녹인 후, 테트라브로모크레졸 당량수보다 2∼3배 큰 당량수의 그리냐드 시약에 40∼50℃에서 서서히 적가함으로써 고체 성상의 마그네슘담지체 성분과 킬레이트리간드가 마그네슘에 결합된 화합물을 제조한다. 이때에 반응을 완결시키기 위해 적가가 완료된 후에 70∼80℃에서 1시간 이상 반응시키는 것이 바람직하다. 반응 후에는 미반응된 화합물을 제거하기 위하여 고체성분을 분리하고 탄화수소 용매로 세척하여 순수한 고체성분을 분리한다. 이렇게 킬레이트리간드가 마그네슘에 결합된 화합물을 다시 티타니움할라이드 화합물과 반응시킴으로써 킬레이트된 티타니움 화합물이 마그네슘 화합물의 담지체 성분에 담지된 고체 성상의 촉매가 제조된다.That is, as shown in the reaction formula (III), tetrabromocresol and chelate ligand were mixed in a ratio of 10: 3 to 10: 1.5, dissolved in an ether solvent, and then equivalent to 2 to 3 times larger than the tetrabromocresol equivalent number. By slowly dropwise addition to a number of Grignard reagents at 40 to 50 ° C., a compound in which the magnesium carrier component of the solid phase and the chelate ligand is bound to magnesium is prepared. At this time, after completion of the dropwise addition to complete the reaction, it is preferable to react at 70 to 80 ℃ for 1 hour or more. After the reaction, to remove the unreacted compound, the solid component is separated and washed with a hydrocarbon solvent to separate the pure solid component. By reacting the compound in which the chelate ligand is bound to magnesium again with the titanium halide compound, a catalyst in the solid state in which the chelate titanium compound is supported on the carrier component of the magnesium compound is prepared.

본 발명에서, 중합반응시 사용되는 조촉매는 RnCl3-nAl (n=1,2,3)로 표시되는 일반적인 유기금속 알루미늄 화합물이다. 메틸알루미녹산(MAO)을 조촉매로 사용시중합활성은 일반적인 유기금속 알루미늄 화합물을 사용한 경우와 비슷하지한 분자량 분포가 좁아지는 경향이 있으나 메틸알루미녹산(MAO)은 값이 비싼 단점이 있다. 중합반응의 조촉매로 RnCl3-nAl (n=1,2,3)로 표시되는 일반적인 유기금속 알루미늄 화합물을 사용하는 경우 Al/Ti의 비율은 50∼150이 적절하고 중합반응 온도는 40℃ ∼90℃가 적절하다.In the present invention, the promoter used in the polymerization reaction is a general organometallic aluminum compound represented by R n Cl 3-n Al (n = 1,2,3). When methylaluminoxane (MAO) is used as a promoter, the polymerization activity tends to be narrow in molecular weight distribution, which is not similar to that of a general organometallic aluminum compound, but methylaluminoxane (MAO) has a disadvantage of being expensive. In the case of using a general organometallic aluminum compound represented by R n Cl 3-n Al (n = 1,2,3) as a promoter of the polymerization reaction, the ratio of Al / Ti is appropriately 50 to 150 and the polymerization temperature is 40 degreeC-90 degreeC is suitable.

또한 본 발명에 의해 제조된 올레핀 중합용 촉매는 에틸렌 단독 중합 및 알파(α) 올레핀과의 공중합이 가능하며 에틸렌과 공중합이 가능한 알파 올레핀으로는 탄소수가 3개에서 10개 사이의 알파 올레핀이 적합하다. 예를 들어 프로필렌,1-부텐, 1-펜텐, 1-헥신, 4-메틸-1-펜텐, 1-옥텐의 알파 올레핀이 에틸렌과의 공중합이 가능하고 공중합시 에틸렌의 중량비 함량이 최소 70% 이상인 것이 바람직하다. 본 발명에 의한 올레핀 중합용 촉매로 슬러리 또는 기상 중합에 적합하며 슬러리 중합시 용매로는 지방족 및 방향족 탄화수소가 바람직하다. 슬러리 중합시는 헥산, 헵탄, 펜탄, 사이클로헥산, 벤젠, 톨루엔 등의 탄화수소를 용매로 사용하여 중합시 온도는 50℃에서 120℃가 바람직하다. 슬러리 중합시 본 발명에 의한 촉매의 투입량은 변화될 수 있으며 탄화수소 용매 1 리터에 약 0.005mmol∼1mmol의 촉매를 사용하는 것이 바람직하고 더욱 바람직하게는 용매 1리터에 0.01∼0.1mmol을 사용하는 것이 바람직하다. 에틸렌 중합시 에틸렌의 압력은 2∼50kg/cm3·G이 적합하다. 분자량 크기의 조절은 온도 및 올레핀 압력의 조절, 수소압의 조절 등을 통해 이루어질 수 있다. 본 발명에 의한 중합용 촉매는 슬러리 중합시 에틸렌 및 알파(α) 올레핀 공중합에 의해 0.900∼0.960g/cm3의 밀도를 가진 중합체를 얻을 수 있다.In addition, the catalyst for olefin polymerization prepared according to the present invention is capable of ethylene homopolymerization and copolymerization with alpha (α) olefins, and alpha olefins having 3 to 10 carbon atoms are suitable as alpha olefins copolymerizable with ethylene. . For example, alpha olefins of propylene, 1-butene, 1-pentene, 1-hexyne, 4-methyl-1-pentene, and 1-octene can be copolymerized with ethylene and have a weight ratio of ethylene of at least 70% or more. It is preferable. The catalyst for olefin polymerization according to the present invention is suitable for slurry or gas phase polymerization, and aliphatic and aromatic hydrocarbons are preferable as a solvent in slurry polymerization. In the slurry polymerization, hydrocarbons such as hexane, heptane, pentane, cyclohexane, benzene, and toluene are used as the solvent, and the polymerization temperature is preferably 50 ° C to 120 ° C. In slurry polymerization, the dosage of the catalyst according to the present invention can be varied, and it is preferable to use about 0.005 mmol to 1 mmol of catalyst for 1 liter of hydrocarbon solvent, and more preferably 0.01 to 0.1 mmol for 1 liter of solvent. Do. In the ethylene polymerization, the pressure of ethylene is preferably 2 to 50 kg / cm 3 · G. Control of molecular weight size can be achieved through control of temperature and olefin pressure, control of hydrogen pressure, and the like. In the polymerization catalyst according to the present invention, a polymer having a density of 0.900 to 0.960 g / cm 3 can be obtained by ethylene and alpha (α) olefin copolymerization during slurry polymerization.

이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

실시예 1Example 1

촉매의 제조에 사용한 탄화수소 용매는 나트륨 존재하에 증류함으로써 수분을 제거하였고 할로겐화탄화수소는 칼슘하이드라이드 존재하에 증류하여 수분을 제거하였다.Hydrocarbon solvents used in the preparation of the catalyst were removed by distillation in the presence of sodium and halogenated hydrocarbons were distilled in the presence of calcium hydride to remove the water.

<촉매의 제조><Production of Catalyst>

(A) 테트라브로모캐티콜에 의해 킬레이트된 티탄 화합물의 제조(A) Preparation of Titanium Compound Chelated by Tetrabromocatechol

5ml의 사염화티탄(TiCl4)을 200ml 디클로로메탄(CH2Cl2)에 용해한 용액에 10.6g의 테트라브로모캐티콜을 200ml 디클로로메탄에 녹인 용액을 상온에서 천천히 적가하였다. 혼합한 용액을 상온에서 30분 동안 교반한 후, 500ml의 헥산을 서서히 투입하여 고체를 석출시켰다. 다시 800ml의 헥산으로 3회 세척한 후, 150ml의 디클로로메탄에 고체를 녹였다. 헥산 300ml를 플라스크 벽면을 따라 서서히 적가하여 적갈색의 결정을 석출하였다. 다시 용액 부분을 따라 내고 40℃/5mmHg의 진공으로 잔여 용매를 제거하여 13.5g의 킬레이트 티탄 화합물[분자식=(Br4C6O2)TiCl2]을 분리하였다. 원소 분석 결과는 다음과 같다. C : 13.11%, H : 0.05%, Ti : 8.73%,To a solution of 5 ml of titanium tetrachloride (TiCl 4 ) in 200 ml of dichloromethane (CH 2 Cl 2 ), a solution of 10.6 g of tetrabromocatechol in 200 ml of dichloromethane was slowly added dropwise at room temperature. After the mixed solution was stirred at room temperature for 30 minutes, 500 ml of hexane was slowly added to precipitate a solid. After washing three times with 800 ml of hexane again, the solid was dissolved in 150 ml of dichloromethane. 300 ml of hexane was slowly added dropwise along the flask wall to precipitate reddish brown crystals. The solution was again poured out and the residual solvent was removed by vacuum at 40 ° C./5 mmHg to separate 13.5 g of chelate titanium compound [molecular formula = (Br 4 C 6 O 2 ) TiCl 2 ]. Elemental analysis results are as follows. C: 13.11%, H: 0.05%, Ti: 8.73%,

(B) 테트라브로모캐티콜에 의해 킬레이트된 티탄 화합물의 제조(B) Preparation of Titanium Compounds Chelated with Tetrabromocatechol

50mmol의 BuMgCl을 200ml의 Bu2O에 녹인 용액을 40℃로 가열한 후 10.55g의 테트라브로모크레졸을 100ml Bu2O 및 100ml의 헵탄을 혼합한 혼합용액에 1시간에 걸쳐 서서히 적가하였다. 적가에 의해 흰색 고체가 생성되지만 곧 투명용액으로 된다. 적가 중에는 흰색 고체의 생성 후 투명 용액의 생성을 반복하다가 적가가 종료되는 시점에 흰색 고체가 생성된다. 다시, 용액의 온도를 80℃로 승온하여 1시간 반응시킴으로써 반응을 완결하였다. 생성된 흰색 고체를 분리한 후, 500ml의 헥산으로 세척하였다.A solution of 50 mmol of BuMgCl dissolved in 200 ml of Bu 2 O was heated to 40 ° C., and then 10.55 g of tetrabromocresol was slowly added dropwise to the mixed solution of 100 ml Bu 2 O and 100 ml of heptane over 1 hour. The dropwise addition produces a white solid, but soon becomes a clear solution. During the dropping, the white solid is generated after the formation of the white solid, and then the white solid is generated at the end of the dropping. Again, the reaction was completed by raising the temperature of the solution to 80 ° C and reacting for 1 hour. The resulting white solid was separated and washed with 500 ml of hexane.

상기에서 제조한 마그네슘 화합물에 테트라브로모캐티콜로 킬레이트 된(Br4C6O2)TiCl2화합물 13.5g을 200ml의 톨루엔에 녹인 용액을 주입하였다. 주입후, 80℃에서 1시간 동안 반응시켜 촉매의 제조를 완성하였다. 촉매의 제조를 완성한 후, 상등액을 따라 내고 톨루엔으로 세척한 다음 다시 헥산으로 세척하여 촉매의 제조를 완성하였다.To a magnesium compound prepared above, a solution in which 13.5 g of (Br 4 C 6 O 2 ) TiCl 2 compound chelated with tetrabromocatechol was dissolved in 200 ml of toluene was injected. After injection, the reaction was carried out at 80 ° C. for 1 hour to complete the preparation of the catalyst. After the preparation of the catalyst was completed, the supernatant was poured out, washed with toluene, and then washed with hexane to complete the preparation of the catalyst.

(에틸렌 중합반응)(Ethylene polymerization)

충분히 질소 치환된 내용적 2리터의 오토클레이브에 실온에서 중합 용매인 헥산을 1000ml를 가한 후, 오토클레이브내의 질소를 에틸렌으로 치환하였다. 실온에서 AlEt3을 2mmol 가한 후 상기에서 제조한 촉매를 티탄 농도가 0.02mmol/l 되게 주입한다. 60℃에서 수소를 1Kg중/cm2로 가하고 에틸렌으로 가압하여 총압력이 6Kg중/cm2로 유지하고 온도를 70℃로 승온하였으며 중합은 촉매 첨가후 1시간 동안 진행하였다. 중합된 폴리마를 헥산으로부터 분리하여 건조하였다. 중합 결과180g의 폴리마를 회수하였다. 중합 반응결과 MFR(g/10분)이 0.05/2.16kg이고 겉보기 밀도가 0.35인 폴리에틸렌을 얻었다1000 ml of hexane as a polymerization solvent was added to a 2 liter autoclave, which was sufficiently nitrogen-substituted at room temperature, and then nitrogen in the autoclave was replaced with ethylene. After adding 2 mmol of AlEt 3 at room temperature, the catalyst prepared above was injected to a titanium concentration of 0.02 mmol / l. Hydrogen was added at 1 Kg / cm 2 at 60 ° C. and pressurized with ethylene to maintain a total pressure of 6 Kg / cm 2 and the temperature was raised to 70 ° C., and polymerization was carried out for 1 hour after the addition of the catalyst. The polymerized polymer was separated from hexane and dried. 180 g of polyma was recovered as a result of the polymerization. As a result of the polymerization, polyethylene having a MFR (g / 10 min) of 0.05 / 2.16 kg and an apparent density of 0.35 was obtained.

실시예 2~6Examples 2-6

상기 실시예 1에서 제조한 촉매를 사용하여 에틸렌/l-부텐 공중합 반응을 실시하였다. 충분히 질소 치환된 내용적 2리터의 오토클레이브에 실온에서 중합 용매인 헥산을 1000ml 가한 후, 오토클레이브내의 질소를 에틸렌으로 치환하였다. 실온에서 AlEt3을 8mmol 가한 후 상기에서 제조한 촉매를 티탄 농도가 0.08mmol/l되게주입한다. 온도를 40℃로 유지하고 수소 50ml를 질량 흐름 조절기(Mass Flow Controller)를 통해서 주입한 후, 에틸렌으로 가압하여 총압력이 20 psi로 유지하였다. 에틸렌과 함께 1-부텐을 하기 표1에 표시된 양으로 1시간에 걸쳐 주입하면서 1시간 동안 중합하였다. 중합된 폴리마를 헥산으로부터 분리하여 건조하였으며 중합결과는 하기 표1에 표시하였다.Ethylene / l-butene copolymerization reaction was carried out using the catalyst prepared in Example 1. After 1000 ml of hexane as a polymerization solvent was added to a 2 liter autoclave, which was sufficiently nitrogen-substituted at room temperature, nitrogen in the autoclave was replaced with ethylene. After adding 8 mmol of AlEt 3 at room temperature, the catalyst prepared above was injected with a titanium concentration of 0.08 mmol / l. The temperature was maintained at 40 ° C. and 50 ml of hydrogen were injected through a mass flow controller, then pressurized with ethylene to maintain a total pressure of 20 psi. 1-butene with ethylene was polymerized for 1 hour while injecting over an hour in the amounts shown in Table 1 below. The polymerized polymer was separated from hexane and dried, and the polymerization results are shown in Table 1 below.

실시예 7Example 7

(A) 테트라브로모캐티콜에 의해 킬레이트된 티탄 화합물의 제조(A) Preparation of Titanium Compound Chelated by Tetrabromocatechol

5ml의 사염화티탄(TiCl4)을 200ml 디클로로메탄(CH2Cl2)에 용해한 용액에 10.6g의 테트라브로모캐티콜을 200ml CH2Cl2에 녹인 용액을 상온에서 천천히 적가하였다. 혼합용액을 상온에서 30분 동안 교반한 후, 500ml의 헥산을 서서히 투입하여 고체를 석출시켰다. 다시 800ml의 헥산으로 3회 세척한 후, 150ml의 CH2Cl2에 고체를 녹였다. 헥산 300ml를 플라스크 벽면을 따라 서서히 적가하여 적갈색의 결정을 석출하였다. 다시 용액 부분을 따라 내고 40℃/5mmHg의 진공으로 잔여 용매를 제거하여 13.5g의 킬레이트 티탄화합물((Br4C6O2)TiCl2)을 분리하였다. 원소 분석 결과는 다음과 같다. C : 13.11%, H : 0.05%, Ti : 8.73%.To a solution of 5 ml of titanium tetrachloride (TiCl 4 ) in 200 ml of dichloromethane (CH 2 Cl 2 ), a solution of 10.6 g of tetrabromocatechol in 200 ml of CH 2 Cl 2 was slowly added dropwise at room temperature. After the mixed solution was stirred at room temperature for 30 minutes, 500 ml of hexane was slowly added to precipitate a solid. After washing three times with 800 ml of hexane again, the solid was dissolved in 150 ml of CH 2 Cl 2 . 300 ml of hexane was slowly added dropwise along the flask wall to precipitate reddish brown crystals. The solution was again poured out and the remaining solvent was removed by vacuum at 40 ° C./5 mmHg to separate 13.5 g of chelate titanium compound ((Br 4 C 6 O 2 ) TiCl 2 ). Elemental analysis results are as follows. C: 13.11%, H: 0.05%, Ti: 8.73%.

(B) 테트라브로모캐티콜에 의해 킬레이트된 티탄 화합물의 제조(B) Preparation of Titanium Compounds Chelated with Tetrabromocatechol

50mmol의 BuMgCl을 200ml의 Bu2O에 녹인 용액을 10.55g의 테트라브로모크레졸을 100ml의 Bu2O에 녹인 용액에 상온에서 서서히 적가하였다. 적가에 의해 흰색고체가 생성되지만 곧 투명 용액으로 된다. 이렇게 제조된 액상의 마그네슘 화합물의 담지체 성분 용액의 온도를 40℃로 승온하여 1시간 반응하여 흰색 고체를 제조하고 다시 60℃로 승온하여 1시간 반응시킴으로써 흰색 고체의 생성을 완결하였다. 생성된 흰색 고체를 분리한 후, 500ml 헥산으로 세척하여 마그네슘 화합물의 담지체성분을 제조하였다.The solution was dissolved in 50mmol BuMgCl of Bu 2 O was slowly added dropwise to 200ml of tetrabromo-cresol at room temperature to a solution of 10.55g was dissolved in 100ml of Bu 2 O. The white solid is produced by dropping, but soon becomes a transparent solution. The temperature of the carrier component solution of the liquid magnesium compound thus prepared was raised to 40 ° C. for 1 hour to prepare a white solid, and then heated to 60 ° C. for 1 hour to complete the production of a white solid. The resulting white solid was separated and washed with 500 ml hexane to prepare a carrier component of the magnesium compound.

상기에서 제조한 마그네슘 화합물에 테트라브로모캐티콜로 킬레이트된 (Br4C6O2) TiCl2화합물 13.5g을 200ml의 톨루엔에 녹인 용액을 주입하였다. 주입후, 80℃에서 1시간 동안 반응시켜 촉매의 제조를 완성하였다. 촉매의 제조를 완성한 후, 상등액을 따라 내고 톨루엔으로 세척하고 다시 헥산으로 세척하여 촉매의 제조를 완성하였다.To a magnesium compound prepared above, 13.5 g of (Br 4 C 6 O 2 ) TiCl 2 compound chelated with tetrabromocatechol was dissolved in 200 ml of toluene. After injection, the reaction was carried out at 80 ° C. for 1 hour to complete the preparation of the catalyst. After the preparation of the catalyst was completed, the supernatant was poured out, washed with toluene and again with hexane to complete the preparation of the catalyst.

(에틸렌 중합 반응)(Ethylene polymerization reaction)

상기에서 제조한 촉매를 이용하여 상기 실시예 1과 같은 방법으로 에틸렌중합 반응을 실시하였다. 중합결과 175g의 폴리에틸렌을 생성하였고 MFR(g/10분)은 0.07/2.l6kg이고 겉보기 밀도는 0.34이었다.Ethylene polymerization was carried out in the same manner as in Example 1 using the catalyst prepared above. The polymerization resulted in 175 g of polyethylene with an MFR (g / 10 min) of 0.07 / 2.16 kg and an apparent density of 0.34.

실시예 8~12Examples 8-12

상기에서 제조한 촉매를 이용하여 상기 실시예 1과 같은 방법으로 에틸렌/1-부텐 공중합 반응을 실시하였다. 중합 결과는 하기 표1에 나타내었다.Ethylene / 1-butene copolymerization was carried out in the same manner as in Example 1 using the catalyst prepared above. The polymerization results are shown in Table 1 below.

실시예 13Example 13

(촉매의 제조)(Production of Catalyst)

테트라클로로캐티콜모노하이드레이트 1.33g을 테트라브로모크레졸 10.5g과 혼합한 후, 250ml의 Bu2O에 녹였다. 녹인 용액을 50mmol의 BuMgCl을 250ml의 Bu2O에 희석시킨 용액에 40℃에서 서서히 1시간에 걸쳐 적가하였다. 적가 후 온도를 승온하여 70℃에서 1시간 동안 반응시켜 반응을 완결하였다. 반응 후 상층 용액을 따라내고 데칸으로 세척하여 고체 성분을 분리하였다. 분리한 고체에 데칸을 250ml주입하여 10분간 교반한 후, 5ml의 사염화티탄을 주입하였다. 주입 후, 90℃에서 1시간 동안 반응시켜 반응을 완결하였다. 반응이 완결된 후에 고체 성분을 분리하고 헥산으로 세척하여 고체 성분을 분리하여 촉매의 제조를 완결하였다.1.33 g of tetrachlorocatechol monohydrate was mixed with 10.5 g of tetrabromocresol and then dissolved in 250 ml of Bu 2 O. The dissolved solution was slowly added dropwise at 40 ° C. over 1 hour to a solution of 50 mmol of BuMgCl diluted in 250 ml of Bu 2 O. After the dropwise addition, the temperature was raised and reacted at 70 ° C. for 1 hour to complete the reaction. After the reaction, the supernatant was decanted and washed with decane to separate the solid components. 250 ml of decane was injected into the separated solid, followed by stirring for 10 minutes, followed by 5 ml of titanium tetrachloride. After injection, the reaction was completed at 90 ° C. for 1 hour to complete the reaction. After the reaction was completed, the solid component was separated and washed with hexane to separate the solid component to complete the preparation of the catalyst.

(에틸렌 중합반응)(Ethylene polymerization)

상기 실시예 1에서 실시한 것과 동일한 방법으로 에틸렌 중합반응을 실시하였다. 중합결과 190g의 폴리머를 회수하였다. 중합반응 결과 MFR(g/10분)이 0.03/2.16kg이고 겉보기 밀도가 0.35인 폴리에틸렌을 얻었다.Ethylene polymerization was carried out in the same manner as in Example 1. As a result of the polymerization, 190 g of the polymer was recovered. As a result of the polymerization, polyethylene having a MFR (g / 10 min) of 0.03 / 2.16 kg and an apparent density of 0.35 was obtained.

실시예 14~18Examples 14-18

상기 실시예 13에서 제조한 촉매를 이용하여 상기 실시예 1과 같은 방법으로 에틸렌/1-부텐공중합 반응을 실시하였다. 중합반응 결과는 하기 표1에 나타내었다.Ethylene / 1-butene copolymerization was carried out in the same manner as in Example 1 using the catalyst prepared in Example 13. The polymerization results are shown in Table 1 below.

실시예 19Example 19

(킬레이트 촉매의 제조)(Production of Chelate Catalyst)

50mmol의 BuMgCl을 200ml의 Bu2O에 녹인 용액을 10.55g의 테트라브로모크레졸을 100ml의 Bu2O에 녹인 용액에 상온에서 서서히 적가하였다. 적가에 의해 흰색고체가 생성되나 곧 투명 용액으로 된다. 이렇게 제조된 액상의 마그네슘 화합물의 담지체 성분용액의 온도를 40℃로 승온하여 1시간 동안 반응시켜 흰색 고체를 제조하고 다시 60℃로 승온하여 1시간 동안 반응시킴으로써 흰색 고체의 생성을 완결하였다. 생성된 흰색 고체를 분리한 후, 500ml의 헥산으로 세척하여 마그네슘 화합물의 담지체 성분을 제조하였다. Cl4C6(OH)2·H2O 6.6g을 200ml 톨루엔에 현탁시킨 후 Et3Al 25mmol을 상온에서 주입하여 반응시킴으로써 테트라클로로캐티콜을 포함하는 액상의 투명용액을 제조하였다. 이렇게 제조된 투명 용액을 상기에서 제조한 마그네슘 화합물의 담지체 성분에 주입한 후, 30분간 교반하였다. 다시 이 용액에 TiCl4를 5ml 주입한 후, 상온에서 1시간 반응시키고 온도를 80℃로 승온하여 1시간반응시킴으로써 반응을 완결하였다. 생성된 갈색 고체를 분리한 후, 300ml의 톨루엔으로 1회 세척하고 500ml의 헥산으로 다시 세척하여 촉매의 제조를 완성하였다.The solution was dissolved in 50mmol BuMgCl of Bu 2 O was slowly added dropwise to 200ml of tetrabromo-cresol at room temperature to a solution of 10.55g was dissolved in 100ml of Bu 2 O. A white solid is produced by dropping, but soon becomes a transparent solution. The temperature of the carrier component solution of the liquid magnesium compound thus prepared was increased to 40 ° C. for 1 hour to prepare a white solid, and then heated to 60 ° C. for 1 hour to complete the production of a white solid. The resulting white solid was separated and washed with 500 ml of hexane to prepare a carrier component of the magnesium compound. 6.6 g of Cl 4 C 6 (OH) 2 .H 2 O was suspended in 200 ml toluene, and then 25 mmol of Et 3 Al was injected at room temperature to prepare a liquid transparent solution containing tetrachlorocaticol. The transparent solution thus prepared was injected into the carrier component of the magnesium compound prepared above, followed by stirring for 30 minutes. After 5 ml of TiCl 4 was injected into the solution, the reaction was completed at room temperature for 1 hour, and the reaction was completed by raising the temperature to 80 ° C for 1 hour. The resulting brown solid was separated, washed once with 300 ml of toluene and again with 500 ml of hexane to complete the preparation of the catalyst.

(에틸렌 중합반응)(Ethylene polymerization)

상기 실시예 1과 같은 방법으로 에틸렌 중합반응을 실시하였다. 중합 결과 200g의 폴리머를 회수하였다. 중합반응 결과 MFR(g/10분)이 0.1/2.16g이고 겉보기밀도가 0.35인 폴리에틸렌을 얻었다.Ethylene polymerization was carried out in the same manner as in Example 1. As a result of the polymerization, 200 g of the polymer was recovered. As a result of the polymerization, polyethylene having a MFR (g / 10 min) of 0.1 / 2.16 g and an apparent density of 0.35 was obtained.

실시예 20~24Examples 20-24

상기 실시예 1과 같은 방법으로 에틸렌/1-부텐 공중합 반응을 실시하였다. 중합결과는 하기 표1에 나타내었다.Ethylene / 1-butene copolymerization was carried out in the same manner as in Example 1. The polymerization results are shown in Table 1 below.

비교예 1Comparative Example 1

(촉매의 제조)(Production of Catalyst)

질소분위기하에서 정제된 데칸 50ml에 무수염화마그네슘 4.76g(0.05몰)을 현탁시키고 2-에틸헥실알코올 31ml(0.2몰)를 주입하여 서서히 가열시켜 110℃에서 2시간동안 반응시켜 고체 입자가 완전히 없어진 무색투명한 균일 용액을 제조하였다. 이 용액은 실온으로 온도를 낮추어도 침전물이 생기지 않고 무색 투명한 상태로 존재하였다. 다시 온도를 상온으로 낮추고 티타늄테트라클로라이드 33ml(0.3몰)를 적가하고 80℃에서 2시간 동안 반응을 시켜 고체상의 촉매를 제조하였다. 고체상의 촉매를 헥산으로 3회 이상 세척하였다. 고체 촉매 중, 티탄 성분의 함량은 4.7%(무게)였다.50 ml of decane purified under nitrogen atmosphere was suspended in 4.76 g (0.05 mol) of anhydrous magnesium chloride, and 31 ml (0.2 mol) of 2-ethylhexyl alcohol was added thereto, heated slowly, and reacted at 110 ° C. for 2 hours to completely remove solid particles. A clear homogeneous solution was prepared. This solution was present as a colorless transparent state without depositing even when the temperature was lowered to room temperature. The temperature was lowered to room temperature again, and 33 ml (0.3 mol) of titanium tetrachloride was added dropwise and reacted at 80 ° C. for 2 hours to prepare a solid catalyst. The solid catalyst was washed three more times with hexane. In the solid catalyst, the content of the titanium component was 4.7% (weight).

(에틸렌 중합반응)(Ethylene polymerization)

상기 실시예 1과 같은 방법으로 에틸렌 중합반응을 실시하였다. 중합결과 180g의 폴리머를 회수하였다. 중합반응 결과 MFR(g/10분)이 0.1/2.16kg이고 겉보기 밀도가 0.28인 폴리에틸렌을 얻었다.Ethylene polymerization was carried out in the same manner as in Example 1. As a result of the polymerization, 180 g of the polymer was recovered. As a result of the polymerization, polyethylene having a MFR (g / 10 min) of 0.1 / 2.16 kg and an apparent density of 0.28 was obtained.

(에틸렌/1-부텐 공중합 반응)(Ethylene / 1-butene copolymerization reaction)

상기 실시예 1과 동일한 방법으로 공중합 반응을 실시하였다. 중합 결과는(비교예 1∼4)에 하기 표1에 나타내었다.The copolymerization reaction was carried out in the same manner as in Example 1. The polymerization results are shown in Table 1 below (Comparative Examples 1 to 4).

Claims (4)

하기 일반식 (I)로 표시되는 킬레이트된 전이금속 화합물이 마그네슘 화합물 담지체에 담지된 올레핀 중합 및 공중합용 촉매의 제조방법으로서,As a method for producing a catalyst for olefin polymerization and copolymerization in which a chelated transition metal compound represented by the following general formula (I) is supported on a magnesium compound carrier, 그리냐드 시약과 테트라브로모크레졸의 반응에 의해 액상의 마그네슘화합물을 제조한 다음, 이 화합물을 40∼50℃로 승온하여 반응시켜 고체의 마그네슘 화합물을 제조한 다음, 이를 하기 일반식(I)의 킬레이트된 4족 전이금속 화합물과 반응시키는 공정을 포함하여 이루어지는 것을 특징으로 하는 방법.After preparing a liquid magnesium compound by the reaction of Grignard reagent and tetrabromocresol, the compound was heated to 40-50 ° C. to react to prepare a solid magnesium compound, which was obtained by the following general formula (I) Reacting with a chelated Group 4 transition metal compound.
Figure pat00006
Figure pat00006
(여기에서 R1및 R2는 지방족 또는 방향족 탄화수소, M은 4족 전이금속 원소, X는 할라이드원소, A 및 B는 산소원자 또는 헤테로 원자를 나타낸다.)(Wherein R 1 and R 2 are aliphatic or aromatic hydrocarbons, M is a Group 4 transition metal element, X is a halide element, A and B represent an oxygen atom or a hetero atom).
하기 일반식 (I)로 표시되는 킬레이트된 전이금속 화합물이 마그네슘 화합물 담지체에 담지된 올레핀 중합 및 공중합용 촉매의 제조방법으로서,As a method for producing a catalyst for olefin polymerization and copolymerization in which a chelated transition metal compound represented by the following general formula (I) is supported on a magnesium compound carrier, 테트라브로모크레졸과 킬레이트 리간드를 에테르 용매하에 10 : 3∼10 :1.5의 비율로 혼합한 용액과 그리냐드 시약의 반응에 의해 고체상태의 킬레이트 리간드 함유 마그네슘 화합물 담지체를 제조한 다음, 이 화합물을 4족 전이금속 화합물과 반응시키는 공정을 포함하여 이루어지는 것을 특징으로 하는 방법.A magnesium chelate ligand-containing magnesium compound carrier was prepared by reacting a solution of tetrabromocresol and a chelated ligand in an ether solvent at a ratio of 10: 3 to 10: 1.5 with a Grignard reagent, and then preparing the compound. A method comprising reacting with a Group 4 transition metal compound.
Figure pat00007
Figure pat00007
(여기에서 R1및 R2는 지방족 또는 방향족 탄화수소, M은 4족 전이금속 원소, X는 할라이드원소, A 및 B는 산소원자 또는 헤테로 원자를 나타낸다.)(Wherein R 1 and R 2 are aliphatic or aromatic hydrocarbons, M is a Group 4 transition metal element, X is a halide element, A and B represent an oxygen atom or a hetero atom).
제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 그리냐드 시약과 테트라브로모크레졸의 당량비는 2∼3 : 1임을 특징으로 하는 방법.The equivalent ratio of Grignard reagent and tetrabromocresol is 2 to 3: 1. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 킬레이트 리간드는 오원환 구조를 이루는 테트라브로모캐티콜, 테트라클로로캐티콜, 2,3-다이히드록시나프탈렌, 4-t-부틸캐티콜, 2,3-다이히드록시피리딘 또는 8-하이드록시 퀴논인 것을 특징으로 하는 방법.Chelating ligands are tetrabromocatiform, tetrachlorocaticol, 2,3-dihydroxynaphthalene, 4-t-butylcati, 2,3-dihydroxypyridine or 8-hydroxy quinone Characterized in that the method.
KR1019970016301A 1997-04-29 1997-04-29 Preparation method of catalyst for polymerization and copolymerization of olefin KR100361087B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970016301A KR100361087B1 (en) 1997-04-29 1997-04-29 Preparation method of catalyst for polymerization and copolymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970016301A KR100361087B1 (en) 1997-04-29 1997-04-29 Preparation method of catalyst for polymerization and copolymerization of olefin

Publications (2)

Publication Number Publication Date
KR19980078708A KR19980078708A (en) 1998-11-25
KR100361087B1 true KR100361087B1 (en) 2003-02-14

Family

ID=37490626

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970016301A KR100361087B1 (en) 1997-04-29 1997-04-29 Preparation method of catalyst for polymerization and copolymerization of olefin

Country Status (1)

Country Link
KR (1) KR100361087B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136049A (en) * 1992-10-30 1994-05-17 Mitsubishi Kasei Corp Olefin polymerization catalyst and method for producing olefin polymer
JPH06136048A (en) * 1992-10-30 1994-05-17 Mitsubishi Kasei Corp Catalyst for polymerization of olefin and production of olefin polymer
JPH08176217A (en) * 1994-12-27 1996-07-09 Sumitomo Chem Co Ltd Olefin polymerization catalyst and method for producing ethylene-α-olefin copolymer
JPH08245713A (en) * 1995-03-08 1996-09-24 Sumitomo Chem Co Ltd Olefin polymerization catalyst and method for producing ethylene-α-olefin copolymer
JPH09110920A (en) * 1995-08-11 1997-04-28 Sumitomo Chem Co Ltd Olefin polymerization catalyst component, olefin polymerization catalyst and method for producing olefin polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136049A (en) * 1992-10-30 1994-05-17 Mitsubishi Kasei Corp Olefin polymerization catalyst and method for producing olefin polymer
JPH06136048A (en) * 1992-10-30 1994-05-17 Mitsubishi Kasei Corp Catalyst for polymerization of olefin and production of olefin polymer
JPH08176217A (en) * 1994-12-27 1996-07-09 Sumitomo Chem Co Ltd Olefin polymerization catalyst and method for producing ethylene-α-olefin copolymer
JPH08245713A (en) * 1995-03-08 1996-09-24 Sumitomo Chem Co Ltd Olefin polymerization catalyst and method for producing ethylene-α-olefin copolymer
JPH09110920A (en) * 1995-08-11 1997-04-28 Sumitomo Chem Co Ltd Olefin polymerization catalyst component, olefin polymerization catalyst and method for producing olefin polymer

Also Published As

Publication number Publication date
KR19980078708A (en) 1998-11-25

Similar Documents

Publication Publication Date Title
EP1363955B1 (en) Multinuclear metallocene catalyst
KR100240519B1 (en) New chelating catalyst for olefin polymerization and olefin polymerization method using the same
KR100223105B1 (en) Olefin polymerization catalyst and olefin polymerization using the same
EP2559695A2 (en) Group 4 metal compound of thiophene-fused cyclopentadienyl ligand tetrahydroquinoline derivative, and olefin polymerization using same
EP1373282B1 (en) Bimetallic catalysts for olefin polymerization
JP2001514183A (en) Novel organometallic compound, method for producing the same, and method for polymerizing olefin with catalyst composition containing the organometallic compound
CA2364011C (en) Metallocene compounds and their use for olefin polymerization
EP1095944B1 (en) Single-carbon bridged bis cyclopentadienyl compounds and metallocene complexes thereof
US7211538B2 (en) Catalytic systems for the polimerization and copolimerization of alpha-olefins
KR101228582B1 (en) Metallocene catalyst for polyolefin polymerization and preparation method of polyolefin using the same
KR100430979B1 (en) Producing process for an olefin polymerization chelate catalyst
KR100361087B1 (en) Preparation method of catalyst for polymerization and copolymerization of olefin
KR100714847B1 (en) Olefin polymerization catalyst and polymerization method using the same
KR20020048483A (en) Catalyst and olefin polymerization method using the same
JP4216431B2 (en) Catalyst for producing ethylene polymer, method for producing the same, and method for producing ethylene polymer
KR100430849B1 (en) Manufacturing method of new olefin polymerization chelate catalyst
KR100430980B1 (en) Heterogeneous transition metal catalyst supported on magnesium compound for polymerization and copolymerization of ethylene, and polymerization method using the same for producing polymer having excellent processability
KR100361088B1 (en) Chelate catalyst for olefin polymerization and preparation method
KR100334166B1 (en) Catalyst for olefin polymerization and copolymerization, preparation method thereof, and olefin polymerization method using the same
KR100209859B1 (en) Method for preparation of polyethylene copolymer
KR100427145B1 (en) Chelate catalyst for olefin polymerization and olefin polymerization method using the same
JP2003119210A (en) Catalyst for polymerizing olefin and method for producing olefin polymer using the same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19970429

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19990821

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19970429

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20010818

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20020401

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20020801

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20021101

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20021101

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20050926

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20060921

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20070920

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20080919

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20090929

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20090929

Start annual number: 8

End annual number: 8

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20111010