[go: up one dir, main page]

KR100360091B1 - A METHOD FOR MANUFACTURING 60kg/㎟ GRADE STEEL WITHOUT QUENCHING AND TEMPERING - Google Patents

A METHOD FOR MANUFACTURING 60kg/㎟ GRADE STEEL WITHOUT QUENCHING AND TEMPERING Download PDF

Info

Publication number
KR100360091B1
KR100360091B1 KR1019980018322A KR19980018322A KR100360091B1 KR 100360091 B1 KR100360091 B1 KR 100360091B1 KR 1019980018322 A KR1019980018322 A KR 1019980018322A KR 19980018322 A KR19980018322 A KR 19980018322A KR 100360091 B1 KR100360091 B1 KR 100360091B1
Authority
KR
South Korea
Prior art keywords
temperature
less
rolling
thickness
final product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019980018322A
Other languages
Korean (ko)
Other versions
KR19990085728A (en
Inventor
우국제
정구현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019980018322A priority Critical patent/KR100360091B1/en
Publication of KR19990085728A publication Critical patent/KR19990085728A/en
Application granted granted Critical
Publication of KR100360091B1 publication Critical patent/KR100360091B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 산업기계나 중장비 부품용 소재로 사용되는 고인성 고장력 강판의 제조에 관한 것이며; 그 목적은 최종제품의 두께별로 조건을 부여하여 후속열처리가 필요없는 60kg/mm2급 고장력 강판의 제조방법을 제공함에 있다.The present invention relates to the production of high toughness high strength steel sheet used as a material for industrial machinery or heavy equipment parts; The purpose is to provide a manufacturing method of 60kg / mm grade 2 high tensile strength steel sheet that does not require subsequent heat treatment by giving conditions for the thickness of the final product.

상기 목적달성을 위한 본 발명은 중량%로, C: 0.09~0.12%, Si: 0.25~0.35%, Mn: 1.45~1.60%, P: 0.023%이하, S: 0.005%이하, Al: 0.030~0.050%, Ti: 0.010~0.020%, Nb: 0.040~0.060%, V: 0.050~0.080%, N: 0.0070%이하, 기타 Fe 및 불순물을 함유한 강 슬라브를 1150~1200℃의 범위에서 조압연한 다음, 최종제품의 두께가 12mm이하인 경우에는 850~690℃의 온도에서 사상압연하고 상온까지 공냉하고, 최종제품의 두께가 12mm초과 20mm이하인 경우에는 980~850℃의 온도에서 잔압하율이 70~80%의 범위가 되도록 1차 사상압연을 행한 후, 890~800℃의 온도에서 2차 사상압연을 개시하여 잔압하율이 40~70%가 되도록 하여 740~710℃의 온도에서 마무리압연을 행하여 상온까지 공냉하고, 그리고 최종제품의 두께가 18mm초과 20mm이하인 경우에는 상기 12mm초과 18mm이하의 압연조건과 같이 사상압연한 다음, 5~10℃/초의 속도로 가속냉각하는 비열처리형 60kg/mm2급 고장력 강판의 제조방법에 관한 것을 그 기술적 요지로 한다.The present invention for achieving the above object by weight, C: 0.09 ~ 0.12%, Si: 0.25 ~ 0.35%, Mn: 1.45 ~ 1.60%, P: 0.023% or less, S: 0.005% or less, Al: 0.030 ~ 0.050 %, Ti: 0.010 ~ 0.020%, Nb: 0.040 ~ 0.060%, V: 0.050 ~ 0.080%, N: 0.0070% or less, roughly rolled steel slab containing other Fe and impurities in the range of 1150 ~ 1200 ℃ When the thickness of final product is less than 12mm, it is hot-rolled at room temperature of 850 ~ 690 ℃ and air-cooled to room temperature. If the thickness of final product is more than 12mm and less than 20mm, residual pressure drop rate is 70 ~ 80 at temperature of 980 ~ 850 ℃. After performing primary finishing rolling so as to be in the range of%, start secondary finishing rolling at a temperature of 890 to 800 ° C. to bring the residual reduction rate to 40 to 70%, and finish rolling at a temperature of 740 to 710 ° C. to normal temperature. Air-cooled to the end of the product, if the thickness of the final product is more than 18mm and less than 20mm, rolling is carried out as the rolling conditions of more than 12mm and less than 18mm, then accelerated cooling at a rate of 5 ~ 10 ℃ / Sir, the technical gist of the method of manufacturing a non-heat treatment type 60kg / mm 2 high tensile steel sheet.

Description

비열처리형 60㎏/㎟급 고장력 강판의 제조방법{A METHOD FOR MANUFACTURING 60kg/㎟ GRADE STEEL WITHOUT QUENCHING AND TEMPERING}Manufacturing method of non-heat treatment type 60㎏ / ㎡ class high tensile steel sheet {A METHOD FOR MANUFACTURING 60kg / ㎡ GRADE STEEL WITHOUT QUENCHING AND TEMPERING}

본 발명은 산업기계나 중장비 부품용 소재로 사용되는 고인성 고장력 강판의 제조에 관한 것으로서, 보다 상세하게는 최종제품의 두께별로 조건을 부여하여 후속열처리가 필요없는 60kg/mm2급 고장력 강판의 제조방법에 관한 것이다.The present invention relates to the manufacture of high toughness high tensile strength steel sheet used as a material for industrial machinery or heavy equipment parts, and more specifically to the production of 60kg / mm grade 2 high tensile strength steel sheet is not required to be subjected to subsequent heat treatment conditions by thickness of the final product It is about a method.

최근 산업기계나 중장비 제작분야에서 소재의 경제성과 안정성이 동시에 요구되고, 작업의 효율성 및 에너지 절감 등의 차원에서 장비의 대형화가 필연적이므로 이러한 요구에 부응키 위해 고강도, 고인성, 고용접성 및 고작업성을 만족시키는 저합금 고장력 강재의 수요도 급증하고 있다. 특히, 60kg/mm2급 고장력 강판의 경우 산업기계나 중장비 제작분야에서 급격히 수요 급증함에 따라 이에 대한 물량공급이 큰 문제로 되어 왔다. 즉, 상기 60kg/mm2급 고장력 강판의 경우 종래에는 슬라브를 압연후 보통 소입-소려(quench-tempering)에 의해 목표 물성을 조정하여 제품 용도특성을 만족시켜 왔기 때문에 열처리 설비의 능력에 따라 생산공정이 크게 좌우되고 제품의 공급부족 및 납기지연이 빈번히 초래되고 있는 실정이다.Recently, economic and stability of materials are required in the field of manufacturing industrial machinery and heavy equipment, and the size of equipment is inevitably required in terms of efficiency of work and energy saving, so that high strength, high toughness, high employment resistance, high workability The demand for low alloy high tensile strength steels is also increasing rapidly. In particular, in the case of 60kg / mm class 2 high-tensile strength steel sheet is rapidly increasing demand in the field of manufacturing industrial machinery or heavy equipment has been a big problem supply. That is, in the case of the 60kg / mm class 2 high tensile strength steel sheet conventionally after the slab is rolled to adjust the target physical properties by quench-tempering to meet the product characteristics, the production process according to the capacity of the heat treatment equipment This situation is greatly influenced and the shortage of products and delay in delivery are frequently caused.

이에 본 발명은 기존의 소입-소려방식과는 달리 최종제품의 두께가 20mm이하인 박물재의 경우 미량의 합금원소와 제품두께별로 새로운 압연방식을 설계하므로써 기존의 소입-소려방식으로 생산된 고장력강과 동등이상의 물성을 갖는 60kg/mm2급 고장력 강판의 제조방법을 제공함에 그 목적이 있다.Therefore, the present invention is different from the conventional hardening-thinning method, in the case of a thin material having a thickness of 20mm or less in the final product, by designing a new rolling method according to a small amount of alloying elements and product thickness. It is an object of the present invention to provide a method for producing a 60kg / mm 2 high tensile steel sheet having physical properties.

상기 목적달성을 위한 본 발명은 중량%로, C: 0.09~0.12%, Si: 0.25~0.35%, Mn: 1.45~1.60%, P: 0.023%이하, S: 0.005%이하, Al: 0.030~0.050%, Ti: 0.010~0.020%, Nb: 0.040~0.060%, V: 0.050~0.080%, N: 0.0070%이하, 기타 Fe 및 불순물을 함유한 강 슬라브를 1150~1200℃의 범위에서 조압연한 다음,The present invention for achieving the above object by weight, C: 0.09 ~ 0.12%, Si: 0.25 ~ 0.35%, Mn: 1.45 ~ 1.60%, P: 0.023% or less, S: 0.005% or less, Al: 0.030 ~ 0.050 %, Ti: 0.010 ~ 0.020%, Nb: 0.040 ~ 0.060%, V: 0.050 ~ 0.080%, N: 0.0070% or less, roughly rolled steel slab containing other Fe and impurities in the range of 1150 ~ 1200 ℃ ,

최종제품의 두께가 12mm이하인 경우에는 850~690℃의 온도에서 사상압연하고 상온까지 공냉하고,If the thickness of the final product is less than 12mm, rolling is carried out at a temperature of 850 ~ 690 ℃ and air-cooled to room temperature,

최종제품의 두께가 12mm초과 20mm이하인 경우에는 980~850℃의 온도에서 잔압하율이 70~80%의 범위가 되도록 1차 사상압연을 행한 후, 890~800℃의 온도에서 2차 사상압연을 개시하여 잔압하율이 40~70%가 되도록 하여 740~710℃의 온도에서 마무리압연을 행하여 상온까지 공냉하고, 그리고If the thickness of the final product is more than 12mm and less than 20mm, the first finishing rolling is carried out at the temperature of 980 ~ 850 ℃ so that the residual reduction rate is in the range of 70 ~ 80%, and then the second finishing rolling is performed at the temperature of 890 ~ 800 ℃. Start and finish reduction rolling at a temperature of 740 ~ 710 ℃ with air residual reduction rate of 40 ~ 70%, and then air-cool to room temperature, and

최종제품의 두께가 18mm초과 20mm이하인 경우에는 980~850℃의 온도에서 잔압하율이 70~80%의 범위가 되도록 1차사상압연을 행한 후, 890~800℃의 온도에서 2차사상압연을 개시하여 잔압하율이 40~70%의 범위가 되도록하여 740~710℃의 온도에서 마무리압연을 행한 후, 5~10℃/초의 속도로 가속냉각함을 특징으로 하는 비열처리형60kg/mm2급 고장력 강판의 제조방법에 관한 것이다.If the thickness of the final product is more than 18mm or less than 20mm, the primary sequential rolling is carried out at the temperature of 980 ~ 850 ℃ so that the residual pressure reduction rate is in the range of 70 ~ 80%, and then the secondary sequential rolling is performed at the temperature of 890 ~ 800 ℃. Non-heat treatment type 60kg / mm 2 , characterized in that accelerated cooling at a rate of 5 ~ 10 ℃ / second after finishing rolling at a temperature of 740 ~ 710 ℃ to ensure that the residual pressure reduction rate is in the range of 40 ~ 70% It relates to a method for producing a high tensile steel sheet.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

우선 상기 탄소는 강도를 확보하기 위한 필수원소로서 후판압연중 강의 조직내에서 펄라이트마찰(pearlite friction) 증가로 강도향상을 가져오나 다량 첨가시 탄화물을 생성하여 강의 변태도중 심한 변형을 유발하게 되고 연성 및 충격인성 저하를 가져오는 동시에 용접시 열영향부(HAZ)에 경화조직을 형성시켜 취화에 의한 용접성을 저하시키기 때문에 그 함량을 0.09~0.12%로 제한하는 것이 바람직하다.First of all, the carbon is an essential element for securing strength, which leads to an increase in strength due to an increase in pearlite friction in the steel structure during thick plate rolling, but generates carbide when a large amount is added, causing severe deformation during transformation of the steel. It is preferable to limit the content to 0.09 to 0.12% because the impact toughness is lowered and the hardened structure is formed in the heat affected zone (HAZ) during welding to lower the weldability due to embrittlement.

상기 규소는 탄화물을 형성하며 페라이트상에 고용해서 경도, 탄성한계, 및 인장강도를 높이는 역할을 한다. 그러나, 규소량이 0.35% 초과 첨가되면 페라이트 조직 감소 및 비금속개재물의 형성으로 인성이 저하하고 소성가공성도 해치기 때문에 바람직하지 않다. 또한 강의 인장강도 60kg/mm2급 이상을 유지하기 위해서는 0.25%이상을 함유해야 한다.The silicon forms carbide and forms a ferrite phase to increase hardness, elastic limit, and tensile strength. However, the addition of more than 0.35% of silicon is not preferable because the toughness decreases due to the reduction of the ferrite structure and the formation of non-metallic inclusions, and the plastic workability is also impaired. In order to keep the river tensile strength 60kg / mm 2 or above must contain not less than 0.25%.

상기 망간은 탄화물(Mn3C)을 형성하여 페라이트 강화와 입자 미세화 효과에 의한 압연시 강도 및 인성을 향상시키는 주요 성분으로 작용하나 고장력강의 경우 1.45%이하로 첨가시 2상 형성이 어려워져 강도 향상에 기여하지 못하게 되며, 1.60%이상 과량 첨가시 오히려 강중의 S와 결합하여 MnS 등의 개재물을 형성하여 용접부 충격인성을 저하시키게 된다.The manganese acts as a major component to improve the strength and toughness during rolling by forming carbide (Mn 3 C) by ferrite reinforcement and particle refining effect, but in the case of high tensile steel, it is difficult to form two phase when added below 1.45% When the excessive amount of 1.60% or more is added, rather than binding to S in the steel to form inclusions such as MnS to reduce the impact toughness of the weld.

상기 인은 강중에서 Fe3P를 형성하여 충격저항을 감소시키며, 이로 인한 상온취성을 유발하여 충격인성을 해치고 고온에서도 쉽게 확산되지 않아 압연시 형성된 밴드구조(band structure)가 길이방향으로 연신되어 내부품질을 열화시키므로 그 함량을 0.023%이하로 설정하는 것이 바람직하다.The phosphorus reduces the impact resistance by forming Fe 3 P in the steel, thereby causing room temperature brittleness, thereby impairing the impact toughness and not easily spreading even at high temperatures, and thus extending the band structure formed in the longitudinal direction during rolling. It is preferable to set the content to 0.023% or less since it deteriorates the quality.

상기 황은 강중에서 MnS, Fe3P 등의 개재물에 의한 편석대를 형성하여 강재를 취화시키고 용접성을 저하시키므로 그 함량을 0.005%이하로 관리하는 것이 바람직하다.The sulfur forms a segregation zone by inclusions such as MnS, Fe 3 P in the steel to embrittle the steel and lower the weldability, so it is preferable to manage the content below 0.005%.

상기 알루미늄은 강탈산제로서 AlN을 석출하여 결정립미세화 효과를 나타내기는 하나 다량 첨가시 수지상의 탄화물을 형성하여 강을 취약하게 만들고, 연주 슬라브의 표면크랙 발생 및 충격인성을 저해하게 되므로 약 0.030~0.050%로 제한함이 바람직하다.The aluminum precipitates AlN as a strong deoxidizer, and exhibits a grain-fine effect, but when it is added in a large amount, dendritic carbides make the steel brittle and inhibit the surface cracks and impact toughness of the slab. Limited to.

상기 티타늄은 강의 응고과정에서 미세한 탄화물 및 질화물을 형성하여 오스테나이트의 결정립 성장을 억제하여 페라이트의 미세화에 기여하게 된다. 그러나, 강중에 그 함유량이 높아질 경우 질화물(TiN) 석출입자의 조대화 및 질화물에 비해 조대하게 석출되는 탄화물(TiC)의 석출로 오스테나이트의 결정립 성장을 억제하기가 어렵고 입계에 석출된 탄화물로 인해 지나친 조직의 취화가 발생하게 되며, 소량 첨가시 탄화물의 석출이 어렵기 때문에 그 함량을 0.010~0.020%로 제한하는 것이 바람직하다.The titanium forms fine carbides and nitrides during the solidification process of steel, thereby inhibiting grain growth of austenite, thereby contributing to the refinement of ferrite. However, when the content is high in the steel, it is difficult to suppress grain growth of austenite due to coarsening of nitride (TiN) precipitated particles and precipitation of carbide (TiC), which is coarse precipitated compared to nitride, and due to carbide precipitated at grain boundaries. Excessive tissue embrittlement occurs, and it is preferable to limit the content to 0.010 to 0.020% because it is difficult to precipitate carbides when a small amount is added.

상기 니오븀은 고온에서 결정립 조대화 온도를 상승시켜 결정립 조대화를 방지하며 상온 및 고온에서 경화능을 저하시켜 시효경화를 억제한다. 즉, 결정립미세화를 촉진시켜 강의 연성과 인성을 향상시키는데, 대체로 0.01%씩 첨가함에 따라 1.5~3.0kg/mm2의 강도 증가 효과가 있으나 0.06%이상 첨가시 증가효과는 거의 없고오히려 용접부의 내부품질에 영향을 미치므로 그 함량을 0.04~0.06%의 범위로 제한함이 바람직하다.The niobium increases the grain coarsening temperature at a high temperature to prevent grain coarsening and lowers the hardenability at room temperature and high temperature to inhibit age hardening. In other words, it promotes grain refinement and improves the ductility and toughness of steel. In general, when 0.01% is added, there is an effect of increasing strength of 1.5 ~ 3.0kg / mm 2 , but when it is added more than 0.06%, there is almost no increase effect. Since it affects the content is preferably limited to the range of 0.04 ~ 0.06%.

상기 바나듐은 탄질화물을 형성시켜 석출강화에 의한 페라이트의 입계 및 입내강화효과를 나타내며 일부는 페라이트의 핵생성 기점으로 작용하여 페라이트의 미세화에 유용하나 과량 첨가시 탄질화물의 조대화로 인해 충격인성을 열화시키므로 그 함량을 0.05~0.08%의 범위로 제한함이 바람직하다.The vanadium forms the carbonitride to show the grain boundary and intragranular strengthening effect of the ferrite by precipitation strengthening, and the vanadium acts as a starting point for nucleation of ferrite, and is useful for miniaturization of ferrite, but the impact toughness due to coarsening of carbonitride when excessively added Since it deteriorates, it is preferable to limit the content to 0.05 to 0.08% of range.

상기 질소는 강중에서 각종 개재물을 발생시켜 강의 내부품질 및 용접시 가공성을 저해하므로 극저관리가 유리하나 현 공정상 관리비용이 과다하고 관리의 어려움이 따르므로 70ppm이하의 범위내에서 관리하는 것이 경제성을 확보하기에 바람직하다.Nitrogen generates various inclusions in the steel, impairing the internal quality of the steel and the workability during welding, and thus extremely low management is advantageous. However, the management cost within 70 ppm is economical because the management cost is excessive and the management difficulties are incurred. It is preferable to secure.

이하, 상기와 같은 조성범위를 갖는 용강을 통상의 연속주조방법을 적용하여 슬라브를 제조하여 열처리를 생략할 경우에도 기존강의 재질특성 및 요구를 만족시키는 고장력강의 제조방법에 대하여 설명한다.Hereinafter, a method of manufacturing high tensile strength steel that satisfies the material properties and requirements of existing steel even when the slab is manufactured by applying a conventional continuous casting method to the slab to omit the heat treatment will be described.

보통 60kg/mm2급 고장력강은 일반압연을 거친 다음, 소입에 의해 강도를 확보하므로 일반압연전 통상 1250℃이상의 고온에서 재가열을 하게 되나 본 발명에서는 가열온도를 이보다 약 50~100℃ 정도 낮추어 슬라브를 1150~1200℃의 범위로 재가열한 후, 최종제품의 두께에 따라 압연조건 및 냉각조건을 제어하므로써 압연후 열처리를 생략하면서도 인장강도 60kg/mm2급의 고장력강을 제조한다.Usually 60kg / mm 2 high-strength steel is subjected to general rolling, and then secured by quenching, so reheating is normally performed at a high temperature of 1250 ℃ or higher before general rolling, but in the present invention, the heating temperature is lowered by about 50 to 100 ℃. After reheating in the range of 1150 ~ 1200 ℃, by controlling the rolling conditions and cooling conditions according to the thickness of the final product to produce high tensile steel of tensile strength 60kg / mm 2 grade without the heat treatment after rolling.

우선, 최종제품의 두께가 12mm이하인 경우에는 850~690℃의 온도에서 사상압연하고 상온까지 공냉한다. 즉, 최종두께가 12mm이하인 박물재의 경우 슬라브를 상기 재가열온도에서 재가열한 다음, 재가열된 슬라브를 850~690℃의 온도에서 저온압연을 실시후 공냉을 하면 TiN 질화물 석출에 의해 오스테나이트의 결정립 성장이 억제되어 오스테나이트의 입도가 미세하게 되고 더불어 오스테나이트에서 페라이트로 변태시 Nb, V 등의 탄질화물 석출에 의해 미세한 페라이트를 형성시켜 고인성을 갖는 고장력강을 얻을 수 있다.First, when the thickness of the final product is less than 12mm, it is subjected to finishing rolling at a temperature of 850 ~ 690 ℃ and air cooled to room temperature. That is, in the case of a thin material having a final thickness of 12 mm or less, the slabs are reheated at the reheating temperature, and the reheated slabs are subjected to low temperature rolling at a temperature of 850 to 690 ° C., followed by air cooling. The grain growth of austenite is caused by TiN nitride deposition. It is suppressed and the grain size of austenite becomes fine, and when a transformation from austenite to ferrite forms fine ferrite by precipitation of carbonitrides such as Nb and V, high tensile steel having high toughness can be obtained.

그러나, 일반압연재에 비해 12mm이상의 후물재의 경우 목표물성을 갖는 고장력강을 얻기 위해서는 상기 일반압연방식과는 달리 적정 제어압연(controlled rolling)과 가속냉각을 할 필요가 있다. 먼저, 최종두께가 12mm초과 20mm이하인 경우 압연중 충분한 이상역 변태가 이루어질 수 있도록 하기 위해 본 발명에서는 합금첨가를 고려하여 오스테나이트가 페라이트로 일부만 변태하는 미재결정역(980~850℃)에서 제어압연을 행한다. 구체적으로 본 발명의 제어압연은 980~850℃의 온도에서 잔압하율이 70~80%의 범위가 되도록 1차 사상압연을 행한 후, 890~800℃의 온도에서 2차 사상압연을 개시하여 잔압하율이 40~70%가 되도록 하여 740~710℃의 온도에서 마무리압연을 행하여 상온까지 공냉하는 것이다. 상기 제어압연시 잔압하율이 상기 범위보다 높거나 낮으면 압연후 오스테나이트 결정립의 성장이 진행되어 최종제품의 인성확보가 곤란한 문제가 있다.However, in order to obtain a high tensile strength steel having a target property in the case of a thick material of more than 12mm compared to the general rolling material, it is necessary to perform controlled controlled rolling and accelerated cooling, unlike the general rolling method. First, when the final thickness is greater than 12mm and 20mm or less in order to make a sufficient abnormal transformation during rolling in the present invention, in consideration of the alloy addition, in the unrecrystallized zone (980 ~ 850 ℃) austenite transformed only partly into ferrite Is done. Specifically, in the control rolling of the present invention, after performing primary finishing rolling at a temperature of 980 to 850 ° C. such that the residual reduction ratio is in a range of 70 to 80%, the secondary rolling is started at a temperature of 890 to 800 ° C. The reduction ratio is 40 to 70%, and finish rolling is carried out at a temperature of 740 to 710 ° C to air-cool to room temperature. If the residual reduction ratio during the control rolling is higher or lower than the above range, there is a problem that growth of austenite grains after rolling is difficult to secure toughness of the final product.

이때, 최종제품의 두께가 18mm초과 20mm이하인 경우에는 980~850℃의 온도에서 잔압하율이 70~80%의 범위가 되도록 1차사상압연을 행한 후, 890~800℃의 온도에서 2차사상압연을 개시하여 잔압하율이 40~70%의 범위가 되도록하여 740~710℃의 온도에서 마무리압연을 행한 후, 5~10℃/초의 속도로 가속냉각해야 한다. 즉, 최종제품의 두께가 18mm초과 20mm이하인 경우 제어압연만을 행하게 되면 강도확보에 어려움이 많지만 가속냉각을 병행하면 저온 변태조직이 얻어져 강도는 물론 인성확보에 유리하다. 저온변태조직으로는 베이나이트 조직과 마르텐사이트 조직이 있는데, Ms(마르텐사이트 변태개시온도)이상에서 가속냉각을 종료하면 베이나이트 조직이 얻어지며 Ms미만, 즉 상온까지 가속냉각을 적용하면 마르텐사이트 조직이 얻어진다. 가장 바람직하게는 베이나이트 조직이 강도와 인성에 유리하므로, 마르텐사이트 변태개시온도 이전에서 가속냉각을 종료하는 것이 좋다. 가속냉각의 경우 5℃/초 미만으로 되면 저온변태조직이 충분히 확보되지 않고 10℃/초이상이면 강도증가에는 효과적이나 충격치가 오히려 저하된다.At this time, when the thickness of the final product is more than 18mm and less than 20mm, after performing primary sequential rolling at a temperature of 980 ~ 850 ℃ so that the residual pressure reduction rate is in the range of 70 ~ 80%, secondary frosting at a temperature of 890 ~ 800 ℃ After rolling is started and finish rolling is carried out at a temperature of 740 to 710 DEG C so that the residual reduction ratio is in the range of 40 to 70%, acceleration cooling must be performed at a rate of 5 to 10 DEG C / sec. In other words, if the thickness of the final product is more than 18mm and less than 20mm, it is difficult to secure the strength if only the control rolling is carried out. The low temperature transformation tissues include bainite tissue and martensite tissue. When accelerated cooling is terminated above Ms (martensite transformation start temperature), bainite tissue is obtained. Is obtained. Most preferably, the bainite structure is advantageous in strength and toughness, so that the accelerated cooling is finished before the martensite transformation start temperature. In the case of accelerated cooling, when the temperature is less than 5 ° C./sec, the low temperature transformation tissue is not sufficiently secured. If the temperature is 10 ° C./sec or more, the strength is increased, but the impact value is lowered.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

하기표1과 같은 조성을 갖는 발명강을 각 제품두께에 따라 표2와 같은 압연조건 및 냉각조건으로 20mm이하의 강판을 제조하였다. 제조된 각각의 강판의 물성과 기존의 소입-소려방식에 의해 제조된 고장력강판(JS-SM570; 종래재)의 물성을 비교하여 표2에 나타내었다.Inventive steel having a composition as shown in Table 1 was produced in a steel sheet of 20mm or less according to the rolling conditions and cooling conditions as shown in Table 2 according to the thickness of each product. Table 2 compares the physical properties of each of the steel sheets produced and the properties of high tensile steel sheets (JS-SM570; conventional materials) manufactured by the conventional hardening-thinning method.

단위: 중량%Unit: weight% 구분division CC SiSi MnMn PP SS NbNb VV TiTi AlAl NN NiNi MoMo 종래강Conventional Steel 0.140.14 0.350.35 1.401.40 0.0200.020 0.0050.005 -- 0.030.03 -- -- -- 0.150.15 0.150.15 발명강Invention steel 0.1070.107 0.280.28 1.401.40 0.0210.021 0.0020.002 0.0410.041 0.0630.063 0.0130.013 0.0350.035 50ppm50 ppm -- --

실시예Example 강종Steel grade 최종제품의 두께(mm)Thickness of final product (mm) 압연방법Rolling method 압연조건Rolling condition 냉각조건Cooling condition 최종물성Final properties T3(℃)T3 (℃) 잔압하율(%)Residual Pressure Reduction Rate (%) T4(℃)T4 (℃) 잔압하율(%)Residual Pressure Reduction Rate (%) T5 (℃)T5 (℃) SCT(℃)SCT (℃) FCT(℃)FCT (℃) CS(℃/초)CS (° C / sec) YP(kg/mm2)YP (kg / mm 2 ) TS(kg/mm2)TS (kg / mm 2 ) vE-5vE-5 기준standard 6~206-20 ≥46≥46 60~7260-72 ≥4.8≥4.8 발명재1Invention 1 발명강Invention steel 66 ERER -- -- -- -- 690690 -- -- -- 55.655.6 64.464.4 11.511.5 발명재2Invention 2 1212 -- -- -- -- 850850 -- -- -- 53.753.7 65.665.6 17.017.0 발명재3Invention 3 1515 CRCR 850850 7070 800800 4040 710710 -- -- -- 55.555.5 64.164.1 23.223.2 발명재4Invention 4 1616 850850 8080 800800 6060 710710 -- -- -- 53.353.3 63.363.3 19.819.8 발명재5Invention 5 1616 980980 8080 890890 6060 740740 -- -- -- 47.047.0 62.862.8 23.023.0 비교재1Comparative Material 1 1616 CR+ TMCPCR + TMCP 980980 8080 890890 6060 740740 730730 540540 55 55.055.0 64.364.3 29.129.1 비교재2Comparative Material 2 1919 CRCR 980980 8080 890890 7070 740740 -- -- -- 52.652.6 60.060.0 27.027.0 발명재6Invention 6 1919 CR+ TMCPCR + TMCP 980980 8080 890890 7070 740740 730730 510510 1010 55.155.1 64.664.6 26.526.5 종래재Conventional 종래강Conventional Steel 2020 Q:910℃; T:640℃Q: 910 ° C; T: 640 ℃ -- -- -- 56.156.1 67.667.6 25.825.8 (주) ER: 일반압연 CR: 제어압연TMCP: 가속제어압연 T3: 1차 사상압연온도T4: 2차 사상압연개시온도 T5: 2차 사상압연종료온도SCT: 가속냉각시 압연종료온도 FCT: 가속냉각후 종료온도CS: 냉각속도 YP: 항복강도TS: 인장강도 vE-5: -5℃에서의 충격치Q: 소입온도 T: 소려온도(Note) ER: General rolling CR: Control rolling TMCP: Acceleration control rolling T3: Primary finishing rolling temperature T4: Secondary finishing rolling start temperature T5: Secondary finishing rolling end temperature SCT: End rolling temperature during accelerated cooling FCT: Acceleration End temperature after cooling CS: Cooling rate YP: Yield strength TS: Tensile strength vE-5: Impact value at -5 ° C Q: Hardening temperature T: Consideration temperature

상기 표2에 나타난 바와 같이, 최종제품의 두께가 12mm이하인 발명재(1)(2)의 경우 일반적인 압연방법에 의해서도 기존의 강종과 동등한 수준의 충격치와 강도를 유지함을 알 수 있었다.As shown in Table 2, in the case of the invention (1) (2) of the thickness of the final product is less than 12mm it can be seen that by the general rolling method to maintain the same impact value and strength as the existing steel grades.

한편, 최종제품의 두께가 12mm에서 20mm인 경우 본 발명에 따른 제어압연을 행해야 60kg/mm2급 고장력 강판을 얻을 수 있음이 확인되었다. 그러나, 최종제품의 두께가 12~20mm의 범위를 갖는 경우일지라도 두께가 16mm인 경우에는 제어압연과 가속냉각을 함께 행할 때[비교재(1)의 경우]에는 최종제품의 물성이 목표치를 만족하나 가속냉각에 의한 형상불량이 발생되어 이에 따른 교정작업공정이 부가되어 바람직하지 않음을 알 수 있었다. 즉, 최종제품의 두께가 12~18mm의 경우 가속냉각을 행하지 않고 단지 제어압연만을 행함이 보다 유리함을 알 수 있었다.On the other hand, when the thickness of the final product is 12mm to 20mm it was confirmed that 60kg / mm 2 high-tensile strength steel sheet can be obtained only by performing the control rolling according to the present invention. However, even if the thickness of the final product is in the range of 12 to 20 mm, when the thickness is 16 mm, when the control rolling and accelerated cooling are performed together (in the case of the comparative material (1)), the physical properties of the final product meet the target values. Shape defects due to accelerated cooling were generated, and thus a corrective work process was added. That is, it was found that it is more advantageous to perform only control rolling without performing accelerated cooling when the thickness of the final product is 12-18 mm.

반면, 최종제품의 두께가 19mm이고 단지 제어압연만을 행한 비교재(2)의 경우에는 충분한 강도가 확보되지 못하여 인장강도가 임계치를 나타내어 바람직하지 않음을 알 수 있었다. 즉, 최종제품의 두께가 18~20mm인 경우 제어압연만을 행하면 충분한 저온변태조직이 확보되지 못해 강도저하가 발생되어 상용화가 곤란한 점이 있었다.On the other hand, in the case of the comparative material 2 of which the thickness of the final product was 19 mm and only the control rolling was performed, sufficient strength was not secured, indicating that the tensile strength showed a threshold value, which was not preferable. In other words, if the final product thickness is 18 ~ 20mm only by performing the control rolling enough low temperature transformation structure is not secured, the strength decreases, it was difficult to commercialize.

상술한 바와 같이, 본 발명은 미량의 합금원소의 적절하게 첨가한 단일 성분계를 이용하면서 최종제품의 두께별로 일반압연, 제어압연 및 가속냉각을 적절히 설정하므로써 소입-소려 등의 열처리를 생략하고도 기존의 소입-소려에 의해 제조되는 고장력강과 동등이상의 물성을 지닌 60kg/mm2급 고장력 강판의 제조가 가능하고, 이에 따라 열처리부하 및 납기지연해소와 더불어 이 강종의 생산성 향상을 가져오는 효과가 있다.As described above, the present invention eliminates heat treatment such as quenching and souring by appropriately setting general rolling, control rolling, and accelerated cooling for each thickness of the final product while using a single component system appropriately added with a small amount of alloying elements. It is possible to manufacture 60kg / mm class 2 high tensile strength steel sheet having properties equal to or higher than that of high tensile strength steel produced by hardening-soaking. Thus, there is an effect of improving the productivity of the steel grade with heat treatment load and delayed delivery delay.

Claims (1)

중량%로, C: 0.09~0.12%, Si: 0.25~0.35%, Mn: 1.45~1.60%, P: 0.023%이하, S: 0.005%이하, Al: 0.030~0.050%, Ti: 0.010~0.020%, Nb: 0.040~0.060%, V: 0.050~0.080%, N: 0.0070%이하, 기타 Fe 및 불순물을 함유한 강 슬라브를 1150~1200℃의 범위에서 조압연한 다음, 최종제품의 두께가 12mm이하인 경우에는 850~690℃의 온도에서 사상압연하고 상온까지 공냉하고,By weight%, C: 0.09 to 0.12%, Si: 0.25 to 0.35%, Mn: 1.45 to 1.60%, P: 0.023% or less, S: 0.005% or less, Al: 0.030 to 0.050%, Ti: 0.010 to 0.020% , Nb: 0.040 ~ 0.060%, V: 0.050 ~ 0.080%, N: 0.0070% or less, The steel slab containing other Fe and impurities is rough-rolled in the range of 1150 ~ 1200 ℃, and the final product thickness is 12mm or less In the case of finishing rolling at a temperature of 850 ~ 690 ℃ and air-cooled to room temperature, 최종제품의 두께가 12mm초과 18mm이하인 경우에는 980~850℃의 온도에서 잔압하율이 70~80%의 범위가 되도록 1차 사상압연을 행한 후, 890~800℃의 온도에서 2차 사상압연을 개시하여 잔압하율이 40~70%의 범위가 되도록 하여 740~710℃의 온도에서 마무리압연을 행하여 상온까지 공냉하고, 그리고When the thickness of the final product is more than 12mm and less than 18mm, the primary finishing rolling is carried out at the temperature of 980 ~ 850 ℃ so that the residual reduction rate is in the range of 70 ~ 80%, and then the secondary finishing rolling is performed at the temperature of 890 ~ 800 ℃. Start and finish rolling at a temperature of 740-710 ° C. to allow the residual reduction rate to be in the range of 40 to 70%, and then air-cool to room temperature, and 최종제품의 두께가 18mm초과 20mm이하인 경우에는 980~850℃의 온도에서 잔압하율이 70~80%의 범위가 되도록 1차 사상압연을 행한 후, 890~800℃의 온도에서 2차 사상압연을 개시하여 잔압하율이 40~70%의 범위가 되도록 하여 740~710℃의 온도에서 마무리압연을 행한 후, 5~10℃/초의 속도로 가속냉각함을 특징으로 하는 비열처리형 60kg/mm2급 고장력 강판의 제조방법If the thickness of the final product is more than 18mm or less than 20mm, the primary finishing rolling is carried out at the temperature of 980 ~ 850 ℃ so that the residual reduction rate is in the range of 70 ~ 80%, and then the secondary finishing rolling is performed at the temperature of 890 ~ 800 ℃. Non-heat treatment type 60kg / mm 2 characterized in that after the finish rolling at a temperature of 740 ~ 710 ℃ to the residual pressure reduction rate in the range of 40 ~ 70%, accelerated cooling at a rate of 5 ~ 10 ℃ / second Manufacturing method of high tensile steel sheet
KR1019980018322A 1998-05-21 1998-05-21 A METHOD FOR MANUFACTURING 60kg/㎟ GRADE STEEL WITHOUT QUENCHING AND TEMPERING Expired - Fee Related KR100360091B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980018322A KR100360091B1 (en) 1998-05-21 1998-05-21 A METHOD FOR MANUFACTURING 60kg/㎟ GRADE STEEL WITHOUT QUENCHING AND TEMPERING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980018322A KR100360091B1 (en) 1998-05-21 1998-05-21 A METHOD FOR MANUFACTURING 60kg/㎟ GRADE STEEL WITHOUT QUENCHING AND TEMPERING

Publications (2)

Publication Number Publication Date
KR19990085728A KR19990085728A (en) 1999-12-15
KR100360091B1 true KR100360091B1 (en) 2002-12-18

Family

ID=37490489

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980018322A Expired - Fee Related KR100360091B1 (en) 1998-05-21 1998-05-21 A METHOD FOR MANUFACTURING 60kg/㎟ GRADE STEEL WITHOUT QUENCHING AND TEMPERING

Country Status (1)

Country Link
KR (1) KR100360091B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559660B1 (en) * 1999-12-15 2006-03-10 현대자동차주식회사 High Toughness Steel for Side Members
KR100940658B1 (en) * 2002-09-26 2010-02-05 주식회사 포스코 Manufacturing method of hot rolled wire with excellent descaling

Also Published As

Publication number Publication date
KR19990085728A (en) 1999-12-15

Similar Documents

Publication Publication Date Title
EP1559797B1 (en) Method for manufacturing a high strength steel sheet
JPH09118950A (en) Thick high hardness and high toughness wear resistant steel and method for producing the same
JP3846729B2 (en) Hot-rolled steel sheet for line pipe with excellent cryogenic impact toughness and method for producing the same
JP2023506822A (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and method for producing the same
KR20220073762A (en) Composite steel with high hole expandability and manufacturing method therefor
CN109385570B (en) High-strength steel plate and manufacturing method thereof
CN111542636B (en) High-strength steel material having excellent low yield ratio characteristics and method for producing same
CN120283076A (en) Steel plate and method for manufacturing the same
CN110073020B (en) High-strength hot-rolled steel sheet having excellent weldability and ductility, and method for producing same
KR100360091B1 (en) A METHOD FOR MANUFACTURING 60kg/㎟ GRADE STEEL WITHOUT QUENCHING AND TEMPERING
JP4264296B2 (en) Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same
KR100782761B1 (en) Manufacturing method of ultra thick steel sheet with excellent strength and toughness at center of thickness
KR100435482B1 (en) A METHOD FOR MANUFACTURING TS 50kgf/㎟ GRADE EXTRA THICK STEEL SHEET
JP3043519B2 (en) Manufacturing method of high strength hot rolled steel sheet
KR100340547B1 (en) A method of manufacturing 500MPa high strength steel having superior strength and low temperature-impact toughness
KR100452303B1 (en) Manufacturing method of high-tension steel for line pipe having excellent tenacity at low temperature
EP4026928A1 (en) Steel plate having excellent strength and low-temperature impact toughness and method for manufacturing same
JPH05148544A (en) Manufacturing method of high strength and high toughness steel plate with uniform hardness distribution in the plate thickness direction
KR102674148B1 (en) H-shaped steel and method of manufacturing the same
JPH05345917A (en) Method for manufacturing high strength hot rolled steel sheet
KR20240106705A (en) Hot rolled steel and method of manufacturing the same
KR20250102962A (en) High-strength cold-rolled precipitation hardening steel and method of manufacturing the same
KR20250062977A (en) Cold rolled steel sheet and method of manufacturing the same
KR20250093737A (en) Hot rolled steel sheet, and method for the same
KR20240061234A (en) Cold rolled steel sheet having high yield ratio and high yield strength and method of manufacturing the same

Legal Events

Date Code Title Description
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

A201 Request for examination
PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

PN2301 Change of applicant

St.27 status event code: A-3-3-R10-R13-asn-PN2301

St.27 status event code: A-3-3-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-3-3-R10-R18-oth-X000

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 9

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 10

FPAY Annual fee payment

Payment date: 20121022

Year of fee payment: 11

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 11

FPAY Annual fee payment

Payment date: 20131021

Year of fee payment: 12

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 12

FPAY Annual fee payment

Payment date: 20141015

Year of fee payment: 13

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 13

FPAY Annual fee payment

Payment date: 20151023

Year of fee payment: 14

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 14

FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 15

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 15

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20171026

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20171026

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000