KR100355450B1 - Means to increase the quench current density of superconductors - Google Patents
Means to increase the quench current density of superconductors Download PDFInfo
- Publication number
- KR100355450B1 KR100355450B1 KR1020000063038A KR20000063038A KR100355450B1 KR 100355450 B1 KR100355450 B1 KR 100355450B1 KR 1020000063038 A KR1020000063038 A KR 1020000063038A KR 20000063038 A KR20000063038 A KR 20000063038A KR 100355450 B1 KR100355450 B1 KR 100355450B1
- Authority
- KR
- South Korea
- Prior art keywords
- current
- quench
- current density
- superconducting
- superconductor
- Prior art date
Links
- 238000010791 quenching Methods 0.000 title claims abstract description 36
- 239000002887 superconductor Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 2
- 230000006866 deterioration Effects 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 5
- 230000008859 change Effects 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 230000006872 improvement Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/08—Limitation or suppression of earth fault currents, e.g. Petersen coil
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
- H02H9/023—Current limitation using superconducting elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/001—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Emergency Protection Circuit Devices (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
본 발명은 초전도체에 관한 것으로서, 상세하게는 기 확립된 제조공정을 통하여 만들어진 초전도 한류기의 특성저하를 발생시키지 않는 방법과 단계별 인가전압상승을 통하여 초전도 한류기의 켄치전류밀도를 향상시키는 초전도체의 켄치전류밀도 증가 방법에 관한 것이다.The present invention relates to a superconductor, and more particularly, a method of not causing a deterioration of characteristics of a superconducting current limiter made through an established manufacturing process, and a quench of a superconductor for improving the quench current density of the superconducting current limiter by increasing the applied voltage step by step. The present invention relates to a method for increasing current density.
종래의 켄치전류밀도 향상기술은 초전도체를 만드는 제조공정 중간에 열처리 공정 및 도핑 물질의 첨가등을 통하여 꾸준히 향상되어 왔으나, 일단 제조 공정을 통하여 제작 및 완료된 초전도체는 시간이 경과하면 지속적으로 특성저하가 발생하는 문제점이 있다.Conventional quench current density improvement techniques have been steadily improved through the heat treatment process and the addition of doping materials in the middle of the manufacturing process of making superconductors, but the characteristics of the superconductors manufactured and completed through the manufacturing process are continuously deteriorated over time. There is a problem.
본 발명은 이미 제작, 완료된 초전도 한류기에 대하여 첫째로 인가전압을 고정한 상태에서 정상전류값의 20∼30배의 급격한 전류변화를 3∼7 주기 동안 약 100회 가량 단계적으로 실시함으로써 켄치전류밀도의 특성저하가 없는 조건을 제시하였으며, 두 번째로 인가전압 상승을 통한 사고전류의 단계적인 상승을 통하여 켄치전류밀도 특성을 약 6%가량 향상시키는 효과가 있다.In the present invention, the characteristics of the quench current density are performed by performing a rapid current change of about 20 to 30 times the normal current value for about 3 to 7 cycles in a state where the applied voltage is first fixed to the already manufactured and completed superconducting current limiter. The condition that no deterioration is presented, and secondly, the quench current density characteristic is improved by about 6% through the stepwise increase of the fault current through the increase of the applied voltage.
Description
본 발명은 초전도체에 관한 것으로서, 상세하게는 기 확립된 제조공정을 통하여 만들어진 초전도 한류기의 특성저하를 발생시키지 않는 방법과 단계별 인가전압상승을 통하여 초전도 한류기의 켄치전류밀도를 향상시키는 초전도체의 켄치전류밀도 증가 방법에 관한 것이다.The present invention relates to a superconductor, and more particularly, a method of not causing a deterioration of characteristics of a superconducting current limiter made through an established manufacturing process, and a quench of a superconductor for improving the quench current density of the superconducting current limiter by increasing the applied voltage step by step. The present invention relates to a method for increasing current density.
일반적으로, 전력계통의 어느 한 곳에 1선 지락사고와 같은 계통 사고가 발생하였을 때, 사고지점에서 가장 가까운 차단기가 동작하여 사고를 제거하게 된다. 이때 차단기의 동작시간은 3∼6 주기(약 50∼100 msec)가 소요되는데, 차단기의 전단에 설치하여 운용되는 초전도 한류기는 이 기간 동안 열이 발생하게 된다. 이러한 동작이 사고가 발생할 때마다 반복적으로 초전도 한류기에 가해지면 이로 인하여 초전도 한류기의 특성저하 및 수명단축이 이루어질 수 있다.In general, when a system accident such as a one-wire ground fault occurs in any one of the power systems, the circuit breaker closest to the accident point is operated to eliminate the accident. At this time, the operation time of the circuit breaker takes 3 to 6 cycles (about 50 to 100 msec), and the superconducting current limiter installed at the front of the circuit breaker generates heat during this period. If such an operation is repeatedly applied to the superconducting fault current limiter whenever an accident occurs, this may result in deterioration of the characteristics of the superconducting fault current limiter and shortening of lifespan.
따라서 연속 운전에 따른 초전도 한류기의 특성저하를 막고 나아가 켄치전류밀도 특성을 향상시키는 것은 초전도 한류기 운전의 안정성을 위해 매우 중요한 요소이다.Therefore, preventing the deterioration of the superconducting fault current limiter according to continuous operation and further improving the quench current density characteristics is a very important factor for the stability of the superconducting fault current limiter operation.
초전도(superconductor) 한류기는 일정전류에 대해서는 전기저항이 0이 되고 설계치 이상의 과전류에 대해서는 상전도체화 되어 전기저항이 순간적으로 발생하는 초전도체 고유의 성질을 이용하는 기기이다. 통상적으로 많이 사용하는 초전도 한류기의 주요부분을 이루는 초전도체는 BiSrCaCuO계 혹은 YBa2Cu3O7계 초전도체가 주류를 이루고 있다.A superconductor current limiter is a device that uses the inherent properties of superconductors, in which the electrical resistance becomes zero for a constant current and the phase conductor becomes an overconductor for overcurrent above a design value. The superconductor that forms the main part of the commonly used superconducting current limiter is BiSrCaCuO-based or YBa 2 Cu 3 O 7- based superconductor.
한편, 켄치(quench)전류밀도 향상기술은 초전도체를 만드는 제조공정 중간에열처리 공정 및 도핑 물질의 첨가 등을 통하여 꾸준히 향상되어 왔으며 그에 대한 특허도 국내외에서 다수 출원되어 있는 상태이다.Meanwhile, the quench current density improvement technology has been steadily improved through the heat treatment process and the addition of the doping material in the middle of the manufacturing process of making the superconductor, and a number of patents thereof have been applied at home and abroad.
그러나, 종래에는 초전도체가 제조공정을 통하여 제작, 완료된 후에는 시간이 경과하면서 지속적으로 특성저하가 발생되는 문제점이 있다.However, conventionally, after the superconductor is manufactured and completed through the manufacturing process, there is a problem in that characteristic deterioration occurs continuously over time.
본 발명은 상기한 문제점을 개선하기 위하여 안출된 것으로서, 첫 번째로 초전도 한류기에 켄치전류 이하의 전류를 흘려준 상태에서 그 값의 약 20∼30배 정도의 사고전류를 3∼4단계로 구분하여 100회 정도 반복 인가함으로써 켄치전류밀도의 특성저하가 전혀 없는 조건을 제시하며, 두 번째로 초전도 한류기에 켄치전류 이하의 전류를 흘려준 상태에서 인가전압 상승을 통하여 사고전류를 단계적으로 올려가며 급격한 열충격을 초전도체에 가함으로써 켄치 전류밀도를 향상시키는 방법을 목적으로 한다.The present invention has been made in order to improve the above problems, firstly divided the fault current of about 20 to 30 times the value in three to four stages in the state of flowing a current below the quench current to the superconducting current limiter By applying it over 100 times, it suggests the condition that there is no characteristic deterioration of the quench current density, and secondly, it rapidly raises the accidental current by increasing the applied voltage in the state of flowing the current below the quench current to the superconducting current limiter, and then rapidly thermal shock. The purpose of the method is to improve the quench current density by adding to the superconductor.
도1은 본 발명에 따른 박막형 초전도 한류기를 도시한 도면.1 is a view showing a thin film type superconducting fault current limiter according to the present invention;
도2는 켄치전류밀도 향상을 위한 회로시험장치를 도시한 도면.2 is a diagram showing a circuit test apparatus for improving the quench current density.
도3은 일정전압하에서 고장전류의 반복인가에 의한 켄치전류특성 그래프.3 is a graph of quench current characteristics by repetitive application of a fault current under a constant voltage.
도4는 단계적인 전압상승에 의한 켄치전류 특성 그래프.4 is a graph of quench current characteristics due to gradual voltage rise;
도5는 인가 전압상승에 따른 켄치전류밀도 특성 그래프.5 is a graph of quench current density characteristics according to an applied voltage increase.
도6은 초전도 한류기를 포함한 켄치전류밀도 향상 시스템의 개략도.6 is a schematic diagram of a quench current density enhancement system including a superconducting fault current limiter.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
11 : 입력단자 15 : 출력단자11: input terminal 15: output terminal
12 : 사고발생장치 13 : 초전도 한류기12: Accident generating device 13: Superconducting fault current limiter
14 : 데이터 획득장치14: data acquisition device
상술한 바와 같은 목적을 달성하기 위한 본 발명의 특징은, 기 제작, 완료된 박막형 초전도 한류기에 있어서, 정상전류보다 많은 소정의 사고전류를 소정의 주기 동안 흘리는 과정과, 전류를 차단하는 과정과, 소정 횟수 이상 사고전류를 실시하여도 초전도 한류기의 특성을 유지시키는 과정을 포함한다.Features of the present invention for achieving the object as described above, in the prefabricated, completed thin film type superconducting fault current limiter, the process of flowing a predetermined accident current more than the normal current for a predetermined period, the process of blocking the current, It includes the process of maintaining the characteristics of the superconducting fault current limiter even if the fault current is performed more than the number of times.
또한 본 발명은, 초전도 한류기는 단계적인 전압상승을 통하여 단계적으로사고전류를 높여가며 소정의 주기 동안 흘려서 켄치전류밀도를 증가시키는 것을 특징으로 한다.In addition, the present invention is characterized in that the superconducting current limiter increases the quench current density by flowing the fault current step by step through a voltage increase step by step for a predetermined period.
이하, 본 발명에 따른 실시 예를 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
첨부된 도면 도1은 본 발명에 따른 초전도 한류기를 미로선 형태로 패턴한 구조를 나타내는 도면이고, 도2는 초전도 한류기 전단에 사고발생장치(12)를 연결하여 전류를 단속하는 회로도를 나타낸다. 도3은 일정 전압조건하에서 사고전류를 반복하여 인가함으로써 반복동작에 의해서도 특성저하가 발생하지 않는 켄치전류특성 그래프이며, 도4는 전압상승을 통하여 단계별로 사고전류를 높여가며 인가함으로써 켄치전류밀도를 향상시키는 특성 그래프이다.1 is a view showing a structure in which a superconducting fault current limiter is patterned in a maze line form according to the present invention, and FIG. 2 is a circuit diagram for connecting an accident generating device 12 to a front end of the superconducting fault current limiter to interrupt a current. FIG. 3 is a graph of quench current characteristics in which characteristic deterioration does not occur even after repeated operation by repeatedly applying an accident current under a constant voltage condition. FIG. 4 shows quench current density by applying an accident current step by step through a voltage increase. It is a characteristic graph to improve.
도2에서 V0는 시스템의 정격전압을 나타내며 R0은 전류값 측정을 위한 표준저항으로써 1 Ω이다. 부하저항 RL은 정상상태 전류와 가혹한 조건에 대한 실험을 위하여 필요에 따라 적절히 조절할 수 있으며 여기서는 정상 상태에서 회로에 흐르는 전류값이 임계전류 이하가 되도록 조절하였다. 이때 회로 소자값은 박막의 임계전류 및 전류제한 특성을 고려하고 최초 켄치(quench) 조건 및 최종 전류제한 조건을 감안하여 필요한 값으로 결정한다.In Fig. 2, V 0 represents the rated voltage of the system and R 0 is 1 Ω as a standard resistor for measuring the current value. The load resistance R L can be properly adjusted as necessary for the experiment on the steady state current and the harsh conditions, and in this case, the current value flowing through the circuit in the steady state is adjusted below the threshold current. At this time, the value of the circuit element is determined as a necessary value in consideration of the critical current and current limiting characteristics of the thin film and considering the initial quench condition and the final current limit condition.
도3에서 중요한 점은 사고발생장치(12)에서 정상전류의 20∼30배 이상의 사고전류를 3∼7 주기 동안 흘려준 후 곧바로 사고발생장치(12)를 통하여 전류를 끊어주어 액체질소 내에서 시편을 급속하게 냉각을 하여야 한다. 그러면 도면에서 보는 바와 같이 초전도 한류기의 초전도체가 약 100회 정도의 사고전류를 경험하고도 거의 특성저하가 발생하지 않고 고정화되는 것을 알 수 있다.3, the important point is that the fault generating device 12 flows 20-30 times more than the normal current for 3 to 7 cycles, and immediately cuts off the current through the fault generating device 12 to test the specimen in liquid nitrogen. Should be cooled rapidly. Then, as shown in the figure, it can be seen that the superconductor of the superconducting fault current limiter is immobilized with almost no deterioration of characteristics even after experiencing about 100 fault currents.
도4는 시편을 액체질소 내에서 충분히 냉각한 다음, 초전도 한류기에 인가전압을 통하여 흐르는 전류를 단계적으로 높여감으로써 켄치전류를 향상시키는 메카니즘을 보여준다. 이때 사고전류발생 장치를 통한 사고전류의 통전 및 단속은 도3의 절차와 같이, 사고발생장치(12)에서 정상전류의 20∼30배 이상의 사고전류를 3∼7 주기 동안 흘려준 후 곧바로 사고발생장치(12)를 통하여 전류를 끊어 액체질소 내에서 급속하게 냉각을 하는 것이다.FIG. 4 shows a mechanism to improve the quench current by sufficiently cooling the specimen in liquid nitrogen and then stepping up the current flowing through the applied voltage to the superconducting current limiter. At this time, energization and interruption of the fault current through the fault current generating device is performed as soon as the fault current flows from the fault generating device 12 at 20-30 times higher than the normal current for 3 to 7 cycles. The current is cut through the device 12 to rapidly cool in liquid nitrogen.
도5에서는 도4의 결과를 초전도체의 단면적을 고려하여 켄치전류밀도로 환산하여 도시한 것으로, 인가전압 상승에 따른 켄치전류밀도의 특성 그래프이다.In FIG. 5, the result of FIG. 4 is shown in terms of the quench current density in consideration of the cross-sectional area of the superconductor, and is a characteristic graph of the quench current density according to the increase in the applied voltage.
도면에서 보는 바와 같이 최초 인가전압 100 Vrms인가시와 비교하여 350 Vrms인가시에는 약 6 % 만큼 켄치전류밀도가 상승하였음을 확인할 수 있다.As shown in the figure, it can be seen that the quench current density increased by about 6% when 350 V rms was applied as compared with the initial applied voltage of 100 V rms .
도6은 초전도체 한류기를 포함한 켄치전류밀도를 증가시키는 시스템의 개략도로 구성은 입력단, 사고발생장치, 초전도 한류기, 데이터 획득장치로 이루어진다.Figure 6 is a schematic diagram of a system for increasing the quench current density including a superconductor fault current limiter is composed of an input stage, an accident generating device, a superconducting fault current limiter, and a data acquisition device.
입력단(11)으로 전류가 입력되면 사고를 발생시키고 일정기간동안 전류를 흘려준 다음 회로를 개로하는 사고발생장치(12)와, 송전선로의 일부로 사용되며 초전도체로 이루어지는 것으로서 미로 형태로 이루어진 초전도 한류기(13)와, 데이터 획득(14)장치는 출력단(15)의 신호를 검출하고 분석한다.When a current is input to the input terminal 11, an accident occurs and a current flows for a predetermined period of time, and then the circuit generates an accident, and a superconducting fault current limiter, which is used as part of a transmission line and is made of a superconductor, is made of a superconductor. 13 and the data acquisition 14 device detect and analyze the signal at the output 15.
상술한 바와 같이, 본 발명은 사고발생장치(12)에서 정상전류의 20∼30배 이상의 사고전류를 3∼7 주기 동안 흘려준 후 사고발생장치(12)를 통하여 전류를 끊어서 액체질소 내에서 급속하게 냉각을 하면 초전도 한류기의 초전도체가 약 100회 정도의 사고전류를 경험하고도 거의 특성저하가 발생하지 않으며, 시편을 액체질소 내에서 충분히 냉각한 다음, 초전도 한류기에 인가전압을 통하여 흐르는 전류를 단계적으로 높여감으로써 켄치전류밀도의 특성을 향상시킨다.As described above, the present invention flows 20-30 times more than the normal current of the fault current in the accident generating device 12 for 3 to 7 cycles, and then breaks the current through the accident generating device 12 to rapidly discharge the liquid nitrogen. In this case, the superconductor of the superconducting fault current limiter hardly loses its characteristics even after experiencing about 100 fault currents, and after cooling the specimen sufficiently in liquid nitrogen, the current flowing through the applied voltage to the superconducting fault current limiter By increasing stepwise, the characteristics of the quench current density are improved.
또한, 본 발명은 전술한 실시 예에 국한되지 않고 초전도 한류기 이외에 초전도 박막을 이용하여 제작·완료된 초전도 전력기기 및 초전도 소자 모두에 확장하여 적용함으로써 켄치전류밀도를 향상시키는 메카니즘으로 널리 응용할 수 있으며 본 발명의 기술사항이 허용하는 범위 내에서 다양하게 변형하여 실시할 수가 있다.In addition, the present invention is not limited to the above-described embodiment, and can be widely applied as a mechanism for improving the quench current density by expanding the superconducting power device and the superconducting device manufactured and completed using a superconducting thin film in addition to the superconducting current limiter. Various modifications can be made without departing from the scope of the technical details of the invention.
이상과 같이, 본 발명은 제작, 완료된 초전도 한류기에 대하여 첫째로 인가전압을 고정한 상태에서 정상전류값의 20∼30배의 급격한 전류변화를 3∼7주기 동안 약 100회 가량 단계적으로 실시함으로써 켄치전류밀도의 특성저하가 없는 조건을 제시하였으며, 두 번째로 인가전압 상승을 통한 사고전류의 단계적인 상승을 통하여 켄치전류밀도 특성을 약 6%가량 향상시키는 효과가 있다.As described above, the present invention performs the quench current by performing a sudden current change of about 20 to 30 times the normal current value for about 3 to 7 cycles in a state where the applied voltage is first fixed to the manufactured and completed superconducting fault current limiter. The condition that there is no deterioration of density is presented, and secondly, the quench current density characteristic is improved by about 6% through the stepwise increase of the fault current through the increase of applied voltage.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000063038A KR100355450B1 (en) | 2000-10-25 | 2000-10-25 | Means to increase the quench current density of superconductors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000063038A KR100355450B1 (en) | 2000-10-25 | 2000-10-25 | Means to increase the quench current density of superconductors |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020032135A KR20020032135A (en) | 2002-05-03 |
KR100355450B1 true KR100355450B1 (en) | 2002-10-11 |
Family
ID=19695462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000063038A KR100355450B1 (en) | 2000-10-25 | 2000-10-25 | Means to increase the quench current density of superconductors |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100355450B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090067101A1 (en) * | 2007-09-06 | 2009-03-12 | Siemens Power Generation, Inc. | Method and System for Limiting a Current in an Alternating Current Generator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4994932A (en) * | 1987-11-09 | 1991-02-19 | Kabushiki Kaisha Toshiba | Superconducting current limiting apparatus |
JPH08172013A (en) * | 1994-10-04 | 1996-07-02 | Toshiba Corp | Superconducting coil, its manufacture, and superconducting wire |
KR20000060116A (en) * | 1999-03-12 | 2000-10-16 | 윤문수 | Superconducting Rotor for Generator and Motor |
-
2000
- 2000-10-25 KR KR1020000063038A patent/KR100355450B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4994932A (en) * | 1987-11-09 | 1991-02-19 | Kabushiki Kaisha Toshiba | Superconducting current limiting apparatus |
JPH08172013A (en) * | 1994-10-04 | 1996-07-02 | Toshiba Corp | Superconducting coil, its manufacture, and superconducting wire |
KR20000060116A (en) * | 1999-03-12 | 2000-10-16 | 윤문수 | Superconducting Rotor for Generator and Motor |
Also Published As
Publication number | Publication date |
---|---|
KR20020032135A (en) | 2002-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4961066A (en) | Fault current limiter | |
US20080043382A1 (en) | Complex superconducting fault current limiter | |
KR20090083674A (en) | Current Limiting Module and Hybrid Current Limiter Using Heterogeneous Superconducting Wires | |
US5083232A (en) | Fault current limiter | |
KR100355450B1 (en) | Means to increase the quench current density of superconductors | |
JP2000032654A (en) | Current limiting element and current limiting device using oxide superconductor | |
WO1999017415A1 (en) | Power breaker for power supply and distribution | |
Verhaege et al. | Experimental 7.2 kV/sub rms//1 kA/sub rms//3 kA/sub peak/current limiter system | |
JPH01185127A (en) | Current limiter | |
KR100382286B1 (en) | Superconducting faulting current limiter using thin films having semiconductor switch | |
KR102264598B1 (en) | Flux-Coupling type superconducting fault current limiter with two triggered current limiting levels | |
KR102358560B1 (en) | Flux-Coupling type superconducting fault current limiter with non-isolated secondary winding | |
JPH01185128A (en) | Self-reset current limiter | |
JPH08308093A (en) | Circuit breaker apparatus for heavy current | |
JP2947275B1 (en) | Current limiting device | |
RU1805510C (en) | Fuse link | |
US20070217098A1 (en) | Current Limiting Device Having a Superconductive Switching Element | |
JP3343946B2 (en) | Current limiter | |
JP2000324685A (en) | Current-limiting device | |
JPH04207924A (en) | Superconductive current limiter | |
Hodges et al. | A fault control system using solid state circuit breakers and high temperature superconducting fault current limiters | |
GB1558666A (en) | Cartridge fuse | |
KR820001199Y1 (en) | Power breaker apparatus | |
JPH0515055A (en) | Current limiter | |
JPH01109630A (en) | superconducting fuse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20001025 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20020628 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20020924 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20020925 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20050915 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20060918 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20070918 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20080917 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20090925 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20100916 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20110916 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20120918 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20120918 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20130917 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20130917 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140915 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20140915 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20150915 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20150915 Start annual number: 14 End annual number: 14 |
|
FPAY | Annual fee payment |
Payment date: 20160920 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20160920 Start annual number: 15 End annual number: 15 |
|
FPAY | Annual fee payment |
Payment date: 20180831 Year of fee payment: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20180831 Start annual number: 17 End annual number: 17 |
|
FPAY | Annual fee payment |
Payment date: 20190829 Year of fee payment: 18 |
|
PR1001 | Payment of annual fee |
Payment date: 20190829 Start annual number: 18 End annual number: 18 |
|
PR1001 | Payment of annual fee |
Payment date: 20200819 Start annual number: 19 End annual number: 19 |
|
PC1801 | Expiration of term |
Termination date: 20210425 Termination category: Expiration of duration |